/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/t4_hw.h" #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4fw_interface.h" #include "t4_ioctl.h" #include "t4_l2t.h" /* T4 bus driver interface */ static int t4_probe(device_t); static int t4_attach(device_t); static int t4_detach(device_t); static device_method_t t4_methods[] = { DEVMETHOD(device_probe, t4_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), { 0, 0 } }; static driver_t t4_driver = { "t4nex", t4_methods, sizeof(struct adapter) }; /* T4 port (cxgbe) interface */ static int cxgbe_probe(device_t); static int cxgbe_attach(device_t); static int cxgbe_detach(device_t); static device_method_t cxgbe_methods[] = { DEVMETHOD(device_probe, cxgbe_probe), DEVMETHOD(device_attach, cxgbe_attach), DEVMETHOD(device_detach, cxgbe_detach), { 0, 0 } }; static driver_t cxgbe_driver = { "cxgbe", cxgbe_methods, sizeof(struct port_info) }; static d_ioctl_t t4_ioctl; static d_open_t t4_open; static d_close_t t4_close; static struct cdevsw t4_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = t4_open, .d_close = t4_close, .d_ioctl = t4_ioctl, .d_name = "t4nex", }; /* ifnet + media interface */ static void cxgbe_init(void *); static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); static void cxgbe_start(struct ifnet *); static int cxgbe_transmit(struct ifnet *, struct mbuf *); static void cxgbe_qflush(struct ifnet *); static int cxgbe_media_change(struct ifnet *); static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4 Ethernet driver and services"); /* * Tunables. */ SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe driver parameters"); static int force_firmware_install = 0; TUNABLE_INT("hw.cxgbe.force_firmware_install", &force_firmware_install); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, force_firmware_install, CTLFLAG_RDTUN, &force_firmware_install, 0, "install firmware on every attach."); /* * Holdoff timer and packet counter values. */ static unsigned int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; static unsigned int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ /* * Max # of tx and rx queues to use for each 10G and 1G port. */ static unsigned int max_ntxq_10g = 8; TUNABLE_INT("hw.cxgbe.max_ntxq_10G_port", &max_ntxq_10g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_ntxq_10G_port, CTLFLAG_RDTUN, &max_ntxq_10g, 0, "maximum number of tx queues per 10G port."); static unsigned int max_nrxq_10g = 8; TUNABLE_INT("hw.cxgbe.max_nrxq_10G_port", &max_nrxq_10g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_nrxq_10G_port, CTLFLAG_RDTUN, &max_nrxq_10g, 0, "maximum number of rxq's (per 10G port)."); static unsigned int max_ntxq_1g = 2; TUNABLE_INT("hw.cxgbe.max_ntxq_1G_port", &max_ntxq_1g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_ntxq_1G_port, CTLFLAG_RDTUN, &max_ntxq_1g, 0, "maximum number of tx queues per 1G port."); static unsigned int max_nrxq_1g = 2; TUNABLE_INT("hw.cxgbe.max_nrxq_1G_port", &max_nrxq_1g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, max_nrxq_1G_port, CTLFLAG_RDTUN, &max_nrxq_1g, 0, "maximum number of rxq's (per 1G port)."); /* * Holdoff parameters for 10G and 1G ports. */ static unsigned int tmr_idx_10g = 1; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &tmr_idx_10g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_10G, CTLFLAG_RDTUN, &tmr_idx_10g, 0, "default timer index for interrupt holdoff (10G ports)."); static int pktc_idx_10g = 2; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &pktc_idx_10g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_10G, CTLFLAG_RDTUN, &pktc_idx_10g, 0, "default pkt counter index for interrupt holdoff (10G ports)."); static unsigned int tmr_idx_1g = 1; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &tmr_idx_1g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_1G, CTLFLAG_RDTUN, &tmr_idx_1g, 0, "default timer index for interrupt holdoff (1G ports)."); static int pktc_idx_1g = 2; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &pktc_idx_1g); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_1G, CTLFLAG_RDTUN, &pktc_idx_1g, 0, "default pkt counter index for interrupt holdoff (1G ports)."); /* * Size (# of entries) of each tx and rx queue. */ static unsigned int qsize_txq = TX_EQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_txq", &qsize_txq); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &qsize_txq, 0, "default queue size of NIC tx queues."); static unsigned int qsize_rxq = RX_IQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_rxq", &qsize_rxq); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &qsize_rxq, 0, "default queue size of NIC rx queues."); /* * Interrupt types allowed. */ static int intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; TUNABLE_INT("hw.cxgbe.interrupt_types", &intr_types); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &intr_types, 0, "interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively)"); /* * Force the driver to use the same set of interrupts for all ports. */ static int intr_shared = 0; TUNABLE_INT("hw.cxgbe.interrupts_shared", &intr_shared); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, interrupts_shared, CTLFLAG_RDTUN, &intr_shared, 0, "interrupts shared between all ports"); static unsigned int filter_mode = HW_TPL_FR_MT_PR_IV_P_FC; TUNABLE_INT("hw.cxgbe.filter_mode", &filter_mode); SYSCTL_UINT(_hw_cxgbe, OID_AUTO, filter_mode, CTLFLAG_RDTUN, &filter_mode, 0, "default global filter mode."); struct intrs_and_queues { int intr_type; /* INTx, MSI, or MSI-X */ int nirq; /* Number of vectors */ int intr_shared; /* Interrupts shared between all ports */ int ntxq10g; /* # of NIC txq's for each 10G port */ int nrxq10g; /* # of NIC rxq's for each 10G port */ int ntxq1g; /* # of NIC txq's for each 1G port */ int nrxq1g; /* # of NIC rxq's for each 1G port */ }; struct filter_entry { uint32_t valid:1; /* filter allocated and valid */ uint32_t locked:1; /* filter is administratively locked */ uint32_t pending:1; /* filter action is pending firmware reply */ uint32_t smtidx:8; /* Source MAC Table index for smac */ struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ struct t4_filter_specification fs; }; enum { MEMWIN0_APERTURE = 2048, MEMWIN0_BASE = 0x1b800, MEMWIN1_APERTURE = 32768, MEMWIN1_BASE = 0x28000, MEMWIN2_APERTURE = 65536, MEMWIN2_BASE = 0x30000, }; enum { XGMAC_MTU = (1 << 0), XGMAC_PROMISC = (1 << 1), XGMAC_ALLMULTI = (1 << 2), XGMAC_VLANEX = (1 << 3), XGMAC_UCADDR = (1 << 4), XGMAC_MCADDRS = (1 << 5), XGMAC_ALL = 0xffff }; static int map_bars(struct adapter *); static void setup_memwin(struct adapter *); static int cfg_itype_and_nqueues(struct adapter *, int, int, struct intrs_and_queues *); static int prep_firmware(struct adapter *); static int get_devlog_params(struct adapter *, struct devlog_params *); static int get_capabilities(struct adapter *, struct fw_caps_config_cmd *); static int get_params(struct adapter *, struct fw_caps_config_cmd *); static void t4_set_desc(struct adapter *); static void build_medialist(struct port_info *); static int update_mac_settings(struct port_info *, int); static int cxgbe_init_locked(struct port_info *); static int cxgbe_init_synchronized(struct port_info *); static int cxgbe_uninit_locked(struct port_info *); static int cxgbe_uninit_synchronized(struct port_info *); static int first_port_up(struct adapter *); static int last_port_down(struct adapter *); static int t4_alloc_irq(struct adapter *, struct irq *, int rid, iq_intr_handler_t *, void *, char *); static int t4_free_irq(struct adapter *, struct irq *); static void reg_block_dump(struct adapter *, uint8_t *, unsigned int, unsigned int); static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *); static void cxgbe_tick(void *); static int t4_sysctls(struct adapter *); static int cxgbe_sysctls(struct port_info *); static int sysctl_int_array(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); static int sysctl_devlog(SYSCTL_HANDLER_ARGS); static inline void txq_start(struct ifnet *, struct sge_txq *); static uint32_t fconf_to_mode(uint32_t); static uint32_t mode_to_fconf(uint32_t); static uint32_t fspec_to_fconf(struct t4_filter_specification *); static int get_filter_mode(struct adapter *, uint32_t *); static int set_filter_mode(struct adapter *, uint32_t); static inline uint64_t get_filter_hits(struct adapter *, uint32_t); static int get_filter(struct adapter *, struct t4_filter *); static int set_filter(struct adapter *, struct t4_filter *); static int del_filter(struct adapter *, struct t4_filter *); static void clear_filter(struct filter_entry *); static int set_filter_wr(struct adapter *, int); static int del_filter_wr(struct adapter *, int); void filter_rpl(struct adapter *, const struct cpl_set_tcb_rpl *); static int t4_mod_event(module_t, int, void *); struct t4_pciids { uint16_t device; uint8_t mpf; char *desc; } t4_pciids[] = { {0xa000, 0, "Chelsio Terminator 4 FPGA"}, {0x4400, 4, "Chelsio T440-dbg"}, {0x4401, 4, "Chelsio T420-CR"}, {0x4402, 4, "Chelsio T422-CR"}, {0x4403, 4, "Chelsio T440-CR"}, {0x4404, 4, "Chelsio T420-BCH"}, {0x4405, 4, "Chelsio T440-BCH"}, {0x4406, 4, "Chelsio T440-CH"}, {0x4407, 4, "Chelsio T420-SO"}, {0x4408, 4, "Chelsio T420-CX"}, {0x4409, 4, "Chelsio T420-BT"}, {0x440a, 4, "Chelsio T404-BT"}, }; static int t4_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); for (i = 0; i < ARRAY_SIZE(t4_pciids); i++) { if (d == t4_pciids[i].device && pci_get_function(dev) == t4_pciids[i].mpf) { device_set_desc(dev, t4_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t4_attach(device_t dev) { struct adapter *sc; int rc = 0, i, n10g, n1g, rqidx, tqidx; struct fw_caps_config_cmd caps; uint32_t p, v; struct intrs_and_queues iaq; struct sge *s; sc = device_get_softc(dev); sc->dev = dev; sc->pf = pci_get_function(dev); sc->mbox = sc->pf; pci_enable_busmaster(dev); if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { pci_set_max_read_req(dev, 4096); v = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2); v |= PCIM_EXP_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, v, 2); } snprintf(sc->lockname, sizeof(sc->lockname), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); rc = map_bars(sc); if (rc != 0) goto done; /* error message displayed already */ memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); /* Prepare the adapter for operation */ rc = -t4_prep_adapter(sc); if (rc != 0) { device_printf(dev, "failed to prepare adapter: %d.\n", rc); goto done; } /* Do this really early */ sc->cdev = make_dev(&t4_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); sc->cdev->si_drv1 = sc; /* Prepare the firmware for operation */ rc = prep_firmware(sc); if (rc != 0) goto done; /* error message displayed already */ /* Read firmware devlog parameters */ (void) get_devlog_params(sc, &sc->params.devlog); /* Get device capabilities and select which ones we'll use */ rc = get_capabilities(sc, &caps); if (rc != 0) { device_printf(dev, "failed to initialize adapter capabilities: %d.\n", rc); goto done; } /* Choose the global RSS mode. */ rc = -t4_config_glbl_rss(sc, sc->mbox, FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); if (rc != 0) { device_printf(dev, "failed to select global RSS mode: %d.\n", rc); goto done; } /* These are total (sum of all ports) limits for a bus driver */ rc = -t4_cfg_pfvf(sc, sc->mbox, sc->pf, 0, 128, /* max # of egress queues */ 64, /* max # of egress Ethernet or control queues */ 64, /* max # of ingress queues with fl/interrupt */ 0, /* max # of ingress queues without interrupt */ 0, /* PCIe traffic class */ 4, /* max # of virtual interfaces */ M_FW_PFVF_CMD_CMASK, M_FW_PFVF_CMD_PMASK, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); if (rc != 0) { device_printf(dev, "failed to configure pf/vf resources: %d.\n", rc); goto done; } /* Need this before sge_init */ for (i = 0; i < SGE_NTIMERS; i++) sc->sge.timer_val[i] = min(intr_timer[i], 200U); for (i = 0; i < SGE_NCOUNTERS; i++) sc->sge.counter_val[i] = min(intr_pktcount[i], M_THRESHOLD_0); /* Also need the cooked value of cclk before sge_init */ p = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &p, &v); if (rc != 0) { device_printf(sc->dev, "failed to obtain core clock value: %d.\n", rc); goto done; } sc->params.vpd.cclk = v; t4_sge_init(sc); t4_set_filter_mode(sc, filter_mode); t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, V_FIVETUPLELOOKUP(M_FIVETUPLELOOKUP), V_FIVETUPLELOOKUP(M_FIVETUPLELOOKUP)); t4_tp_wr_bits_indirect(sc, A_TP_INGRESS_CONFIG, F_CSUM_HAS_PSEUDO_HDR, F_LOOKUPEVERYPKT); /* get basic stuff going */ rc = -t4_early_init(sc, sc->mbox); if (rc != 0) { device_printf(dev, "early init failed: %d.\n", rc); goto done; } rc = get_params(sc, &caps); if (rc != 0) goto done; /* error message displayed already */ /* These are finalized by FW initialization, load their values now */ v = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); sc->params.tp.tre = G_TIMERRESOLUTION(v); sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v); t4_read_mtu_tbl(sc, sc->params.mtus, NULL); /* tweak some settings */ t4_write_reg(sc, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | V_KEEPALIVEMAXR1(4) | V_KEEPALIVEMAXR2(9)); t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); setup_memwin(sc); rc = t4_create_dma_tag(sc); if (rc != 0) goto done; /* error message displayed already */ /* * First pass over all the ports - allocate VIs and initialize some * basic parameters like mac address, port type, etc. We also figure * out whether a port is 10G or 1G and use that information when * calculating how many interrupts to attempt to allocate. */ n10g = n1g = 0; for_each_port(sc, i) { struct port_info *pi; pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); sc->port[i] = pi; /* These must be set before t4_port_init */ pi->adapter = sc; pi->port_id = i; /* Allocate the vi and initialize parameters like mac addr */ rc = -t4_port_init(pi, sc->mbox, sc->pf, 0); if (rc != 0) { device_printf(dev, "unable to initialize port %d: %d\n", i, rc); free(pi, M_CXGBE); sc->port[i] = NULL; goto done; } snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", device_get_nameunit(dev), i); mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); if (is_10G_port(pi)) { n10g++; pi->tmr_idx = tmr_idx_10g; pi->pktc_idx = pktc_idx_10g; } else { n1g++; pi->tmr_idx = tmr_idx_1g; pi->pktc_idx = pktc_idx_1g; } pi->xact_addr_filt = -1; pi->qsize_rxq = max(qsize_rxq, 128); while (pi->qsize_rxq & 7) pi->qsize_rxq++; pi->qsize_txq = max(qsize_txq, 128); if (pi->qsize_rxq != qsize_rxq) { device_printf(dev, "using %d instead of %d as the rx queue size.\n", pi->qsize_rxq, qsize_rxq); } if (pi->qsize_txq != qsize_txq) { device_printf(dev, "using %d instead of %d as the tx queue size.\n", pi->qsize_txq, qsize_txq); } pi->dev = device_add_child(dev, "cxgbe", -1); if (pi->dev == NULL) { device_printf(dev, "failed to add device for port %d.\n", i); rc = ENXIO; goto done; } device_set_softc(pi->dev, pi); setbit(&sc->registered_device_map, i); } if (sc->registered_device_map == 0) { device_printf(dev, "no usable ports\n"); rc = ENXIO; goto done; } /* * Interrupt type, # of interrupts, # of rx/tx queues, etc. */ rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq); if (rc != 0) goto done; /* error message displayed already */ sc->intr_type = iaq.intr_type; sc->intr_count = iaq.nirq; s = &sc->sge; s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ s->neq += sc->params.nports; /* control queues, 1 per port */ s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ if (iaq.intr_shared) sc->flags |= INTR_SHARED; s->niq += NINTRQ(sc); /* interrupt queues */ s->intrq = malloc(NINTRQ(sc) * sizeof(struct sge_iq), M_CXGBE, M_ZERO | M_WAITOK); s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_ctrlq), M_CXGBE, M_ZERO | M_WAITOK); s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, M_ZERO | M_WAITOK); s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, M_ZERO | M_WAITOK); s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, M_ZERO | M_WAITOK); sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, M_ZERO | M_WAITOK); sc->l2t = t4_init_l2t(M_WAITOK); t4_sysctls(sc); /* * Second pass over the ports. This time we know the number of rx and * tx queues that each port should get. */ rqidx = tqidx = 0; for_each_port(sc, i) { struct port_info *pi = sc->port[i]; if (pi == NULL) continue; pi->first_rxq = rqidx; pi->nrxq = is_10G_port(pi) ? iaq.nrxq10g : iaq.nrxq1g; pi->first_txq = tqidx; pi->ntxq = is_10G_port(pi) ? iaq.ntxq10g : iaq.ntxq1g; rqidx += pi->nrxq; tqidx += pi->ntxq; } rc = bus_generic_attach(dev); if (rc != 0) { device_printf(dev, "failed to attach all child ports: %d\n", rc); goto done; } #ifdef INVARIANTS device_printf(dev, "%p, %d ports (0x%x), %d intr_type, %d intr_count\n", sc, sc->params.nports, sc->params.portvec, sc->intr_type, sc->intr_count); #endif t4_set_desc(sc); done: if (rc != 0) t4_detach(dev); return (rc); } /* * Idempotent */ static int t4_detach(device_t dev) { struct adapter *sc; struct port_info *pi; int i; sc = device_get_softc(dev); if (sc->cdev) destroy_dev(sc->cdev); bus_generic_detach(dev); for (i = 0; i < MAX_NPORTS; i++) { pi = sc->port[i]; if (pi) { t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid); if (pi->dev) device_delete_child(dev, pi->dev); mtx_destroy(&pi->pi_lock); free(pi, M_CXGBE); } } if (sc->flags & FW_OK) t4_fw_bye(sc, sc->mbox); if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) pci_release_msi(dev); if (sc->regs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, sc->regs_res); if (sc->msix_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, sc->msix_res); if (sc->l2t) t4_free_l2t(sc->l2t); free(sc->irq, M_CXGBE); free(sc->sge.rxq, M_CXGBE); free(sc->sge.txq, M_CXGBE); free(sc->sge.ctrlq, M_CXGBE); free(sc->sge.intrq, M_CXGBE); free(sc->sge.iqmap, M_CXGBE); free(sc->sge.eqmap, M_CXGBE); free(sc->tids.ftid_tab, M_CXGBE); t4_destroy_dma_tag(sc); mtx_destroy(&sc->sc_lock); bzero(sc, sizeof(*sc)); return (0); } static int cxgbe_probe(device_t dev) { char buf[128]; struct port_info *pi = device_get_softc(dev); snprintf(buf, sizeof(buf), "Port %d", pi->port_id); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ IFCAP_VLAN_HWTSO) #define T4_CAP_ENABLE (T4_CAP & ~IFCAP_TSO6) static int cxgbe_attach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct ifnet *ifp; /* Allocate an ifnet and set it up */ ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Cannot allocate ifnet\n"); return (ENOMEM); } pi->ifp = ifp; ifp->if_softc = pi; callout_init(&pi->tick, CALLOUT_MPSAFE); pi->tq = taskqueue_create("cxgbe_taskq", M_NOWAIT, taskqueue_thread_enqueue, &pi->tq); if (pi->tq == NULL) { device_printf(dev, "failed to allocate port task queue\n"); if_free(pi->ifp); return (ENOMEM); } taskqueue_start_threads(&pi->tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = cxgbe_init; ifp->if_ioctl = cxgbe_ioctl; ifp->if_start = cxgbe_start; ifp->if_transmit = cxgbe_transmit; ifp->if_qflush = cxgbe_qflush; ifp->if_snd.ifq_drv_maxlen = 1024; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = T4_CAP; ifp->if_capenable = T4_CAP_ENABLE; ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO; /* Initialize ifmedia for this port */ ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, cxgbe_media_status); build_medialist(pi); ether_ifattach(ifp, pi->hw_addr); #ifdef INVARIANTS device_printf(dev, "%p, %d txq, %d rxq\n", pi, pi->ntxq, pi->nrxq); #endif cxgbe_sysctls(pi); return (0); } static int cxgbe_detach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; int rc; /* Tell if_ioctl and if_init that the port is going away */ ADAPTER_LOCK(sc); SET_DOOMED(pi); wakeup(&sc->flags); while (IS_BUSY(sc)) mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); SET_BUSY(sc); ADAPTER_UNLOCK(sc); rc = cxgbe_uninit_synchronized(pi); if (rc != 0) device_printf(dev, "port uninit failed: %d.\n", rc); taskqueue_free(pi->tq); ifmedia_removeall(&pi->media); ether_ifdetach(pi->ifp); if_free(pi->ifp); ADAPTER_LOCK(sc); CLR_BUSY(sc); wakeup_one(&sc->flags); ADAPTER_UNLOCK(sc); return (0); } static void cxgbe_init(void *arg) { struct port_info *pi = arg; struct adapter *sc = pi->adapter; ADAPTER_LOCK(sc); cxgbe_init_locked(pi); /* releases adapter lock */ ADAPTER_LOCK_ASSERT_NOTOWNED(sc); } static int cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) { int rc = 0, mtu, flags; struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct ifreq *ifr = (struct ifreq *)data; uint32_t mask; switch (cmd) { case SIOCSIFMTU: ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) { fail: ADAPTER_UNLOCK(sc); return (rc); } mtu = ifr->ifr_mtu; if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) { rc = EINVAL; } else { ifp->if_mtu = mtu; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { t4_update_fl_bufsize(ifp); PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_MTU); PORT_UNLOCK(pi); } } ADAPTER_UNLOCK(sc); break; case SIOCSIFFLAGS: ADAPTER_LOCK(sc); if (IS_DOOMED(pi)) { rc = ENXIO; goto fail; } if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = pi->if_flags; if ((ifp->if_flags ^ flags) & (IFF_PROMISC | IFF_ALLMULTI)) { if (IS_BUSY(sc)) { rc = EBUSY; goto fail; } PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_PROMISC | XGMAC_ALLMULTI); PORT_UNLOCK(pi); } ADAPTER_UNLOCK(sc); } else rc = cxgbe_init_locked(pi); pi->if_flags = ifp->if_flags; } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = cxgbe_uninit_locked(pi); else ADAPTER_UNLOCK(sc); ADAPTER_LOCK_ASSERT_NOTOWNED(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* these two can be called with a mutex held :-( */ ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) goto fail; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_MCADDRS); PORT_UNLOCK(pi); } ADAPTER_UNLOCK(sc); break; case SIOCSIFCAP: ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) goto fail; mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO; ifp->if_hwassist &= ~CSUM_TSO; if_printf(ifp, "tso disabled due to -txcsum.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (IFCAP_TSO & ifp->if_capenable) { if (IFCAP_TXCSUM & ifp->if_capenable) ifp->if_hwassist |= CSUM_TSO; else { ifp->if_capenable &= ~IFCAP_TSO; ifp->if_hwassist &= ~CSUM_TSO; if_printf(ifp, "enable txcsum first.\n"); rc = EAGAIN; } } else ifp->if_hwassist &= ~CSUM_TSO; } if (mask & IFCAP_LRO) { #ifdef INET int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_LRO; for_each_rxq(pi, i, rxq) { if (ifp->if_capenable & IFCAP_LRO) rxq->flags |= RXQ_LRO_ENABLED; else rxq->flags &= ~RXQ_LRO_ENABLED; } #endif } #ifndef TCP_OFFLOAD_DISABLE if (mask & IFCAP_TOE4) { rc = EOPNOTSUPP; } #endif if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_VLANEX); PORT_UNLOCK(pi); } } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; /* Need to find out how to disable auto-mtu-inflation */ } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif ADAPTER_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: ifmedia_ioctl(ifp, ifr, &pi->media, cmd); break; default: rc = ether_ioctl(ifp, cmd, data); } return (rc); } static void cxgbe_start(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_txq *txq; int i; for_each_txq(pi, i, txq) { if (TXQ_TRYLOCK(txq)) { txq_start(ifp, txq); TXQ_UNLOCK(txq); } } } static int cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) { struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct sge_txq *txq = &sc->sge.txq[pi->first_txq]; struct buf_ring *br; int rc; M_ASSERTPKTHDR(m); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { m_freem(m); return (0); } if (m->m_flags & M_FLOWID) txq += (m->m_pkthdr.flowid % pi->ntxq); br = txq->br; if (TXQ_TRYLOCK(txq) == 0) { /* * XXX: make sure that this packet really is sent out. There is * a small race where t4_eth_tx may stop draining the drbr and * goes away, just before we enqueued this mbuf. */ return (drbr_enqueue(ifp, br, m)); } /* * txq->m is the mbuf that is held up due to a temporary shortage of * resources and it should be put on the wire first. Then what's in * drbr and finally the mbuf that was just passed in to us. * * Return code should indicate the fate of the mbuf that was passed in * this time. */ TXQ_LOCK_ASSERT_OWNED(txq); if (drbr_needs_enqueue(ifp, br) || txq->m) { /* Queued for transmission. */ rc = drbr_enqueue(ifp, br, m); m = txq->m ? txq->m : drbr_dequeue(ifp, br); (void) t4_eth_tx(ifp, txq, m); TXQ_UNLOCK(txq); return (rc); } /* Direct transmission. */ rc = t4_eth_tx(ifp, txq, m); if (rc != 0 && txq->m) rc = 0; /* held, will be transmitted soon (hopefully) */ TXQ_UNLOCK(txq); return (rc); } static void cxgbe_qflush(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_txq *txq; int i; struct mbuf *m; /* queues do not exist if !IFF_DRV_RUNNING. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { for_each_txq(pi, i, txq) { TXQ_LOCK(txq); m_freem(txq->m); while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) m_freem(m); TXQ_UNLOCK(txq); } } if_qflush(ifp); } static int cxgbe_media_change(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; device_printf(pi->dev, "%s unimplemented.\n", __func__); return (EOPNOTSUPP); } static void cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct port_info *pi = ifp->if_softc; struct ifmedia_entry *cur = pi->media.ifm_cur; int speed = pi->link_cfg.speed; int data = (pi->port_type << 8) | pi->mod_type; if (cur->ifm_data != data) { build_medialist(pi); cur = pi->media.ifm_cur; } ifmr->ifm_status = IFM_AVALID; if (!pi->link_cfg.link_ok) return; ifmr->ifm_status |= IFM_ACTIVE; /* active and current will differ iff current media is autoselect. */ if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) return; ifmr->ifm_active = IFM_ETHER | IFM_FDX; if (speed == SPEED_10000) ifmr->ifm_active |= IFM_10G_T; else if (speed == SPEED_1000) ifmr->ifm_active |= IFM_1000_T; else if (speed == SPEED_100) ifmr->ifm_active |= IFM_100_TX; else if (speed == SPEED_10) ifmr->ifm_active |= IFM_10_T; else KASSERT(0, ("%s: link up but speed unknown (%u)", __func__, speed)); } void t4_fatal_err(struct adapter *sc) { t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); t4_intr_disable(sc); log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", device_get_nameunit(sc->dev)); } static int map_bars(struct adapter *sc) { sc->regs_rid = PCIR_BAR(0); sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->regs_rid, RF_ACTIVE); if (sc->regs_res == NULL) { device_printf(sc->dev, "cannot map registers.\n"); return (ENXIO); } sc->bt = rman_get_bustag(sc->regs_res); sc->bh = rman_get_bushandle(sc->regs_res); sc->mmio_len = rman_get_size(sc->regs_res); sc->msix_rid = PCIR_BAR(4); sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->msix_rid, RF_ACTIVE); if (sc->msix_res == NULL) { device_printf(sc->dev, "cannot map MSI-X BAR.\n"); return (ENXIO); } return (0); } static void setup_memwin(struct adapter *sc) { u_long bar0; bar0 = rman_get_start(sc->regs_res); t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 0), (bar0 + MEMWIN0_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 1), (bar0 + MEMWIN1_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2), (bar0 + MEMWIN2_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); } static int cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, struct intrs_and_queues *iaq) { int rc, itype, navail, nc, nrxq10g, nrxq1g; bzero(iaq, sizeof(*iaq)); nc = mp_ncpus; /* our snapshot of the number of CPUs */ for (itype = INTR_MSIX; itype; itype >>= 1) { if ((itype & intr_types) == 0) continue; /* not allowed */ if (itype == INTR_MSIX) navail = pci_msix_count(sc->dev); else if (itype == INTR_MSI) navail = pci_msi_count(sc->dev); else navail = 1; if (navail == 0) continue; iaq->intr_type = itype; iaq->ntxq10g = min(nc, max_ntxq_10g); iaq->ntxq1g = min(nc, max_ntxq_1g); nrxq10g = min(nc, max_nrxq_10g); nrxq1g = min(nc, max_nrxq_1g); iaq->nirq = n10g * nrxq10g + n1g * nrxq1g + T4_EXTRA_INTR; if (iaq->nirq <= navail && intr_shared == 0) { if (itype == INTR_MSI && !powerof2(iaq->nirq)) goto share; /* One for err, one for fwq, and one for each rxq */ iaq->intr_shared = 0; iaq->nrxq10g = nrxq10g; iaq->nrxq1g = nrxq1g; } else { share: iaq->intr_shared = 1; if (navail >= nc + T4_EXTRA_INTR) { if (itype == INTR_MSIX) navail = nc + T4_EXTRA_INTR; /* navail is and must remain a pow2 for MSI */ if (itype == INTR_MSI) { KASSERT(powerof2(navail), ("%d not power of 2", navail)); while (navail / 2 >= nc + T4_EXTRA_INTR) navail /= 2; } } iaq->nirq = navail; /* total # of interrupts */ /* * If we have multiple vectors available reserve one * exclusively for errors. The rest will be shared by * the fwq and data. */ if (navail > 1) navail--; iaq->nrxq10g = min(nrxq10g, navail); iaq->nrxq1g = min(nrxq1g, navail); } navail = iaq->nirq; rc = 0; if (itype == INTR_MSIX) rc = pci_alloc_msix(sc->dev, &navail); else if (itype == INTR_MSI) rc = pci_alloc_msi(sc->dev, &navail); if (rc == 0) { if (navail == iaq->nirq) return (0); /* * Didn't get the number requested. Use whatever number * the kernel is willing to allocate (it's in navail). */ pci_release_msi(sc->dev); goto share; } device_printf(sc->dev, "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", itype, rc, iaq->nirq, navail); } device_printf(sc->dev, "failed to find a usable interrupt type. " "allowed=%d, msi-x=%d, msi=%d, intx=1", intr_types, pci_msix_count(sc->dev), pci_msi_count(sc->dev)); return (ENXIO); } /* * Install a compatible firmware (if required), establish contact with it, * become the master, and reset the device. */ static int prep_firmware(struct adapter *sc) { const struct firmware *fw; int rc; enum dev_state state; /* Check firmware version and install a different one if necessary */ rc = t4_check_fw_version(sc); if (rc != 0 || force_firmware_install) { uint32_t v = 0; fw = firmware_get(T4_FWNAME); if (fw != NULL) { const struct fw_hdr *hdr = (const void *)fw->data; v = ntohl(hdr->fw_ver); /* * The firmware module will not be used if it isn't the * same major version as what the driver was compiled * with. This check trumps force_firmware_install. */ if (G_FW_HDR_FW_VER_MAJOR(v) != FW_VERSION_MAJOR) { device_printf(sc->dev, "Found firmware image but version %d " "can not be used with this driver (%d)\n", G_FW_HDR_FW_VER_MAJOR(v), FW_VERSION_MAJOR); firmware_put(fw, FIRMWARE_UNLOAD); fw = NULL; } } if (fw == NULL && (rc < 0 || force_firmware_install)) { device_printf(sc->dev, "No usable firmware. " "card has %d.%d.%d, driver compiled with %d.%d.%d, " "force_firmware_install%s set", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO, force_firmware_install ? "" : " not"); return (EAGAIN); } /* * Always upgrade, even for minor/micro/build mismatches. * Downgrade only for a major version mismatch or if * force_firmware_install was specified. */ if (fw != NULL && (rc < 0 || force_firmware_install || v > sc->params.fw_vers)) { device_printf(sc->dev, "installing firmware %d.%d.%d.%d on card.\n", G_FW_HDR_FW_VER_MAJOR(v), G_FW_HDR_FW_VER_MINOR(v), G_FW_HDR_FW_VER_MICRO(v), G_FW_HDR_FW_VER_BUILD(v)); rc = -t4_load_fw(sc, fw->data, fw->datasize); if (rc != 0) { device_printf(sc->dev, "failed to install firmware: %d\n", rc); firmware_put(fw, FIRMWARE_UNLOAD); return (rc); } else { /* refresh */ (void) t4_check_fw_version(sc); } } if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); } /* Contact firmware, request master */ rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MUST, &state); if (rc < 0) { rc = -rc; device_printf(sc->dev, "failed to connect to the firmware: %d.\n", rc); return (rc); } /* Reset device */ rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); if (rc != 0) { device_printf(sc->dev, "firmware reset failed: %d.\n", rc); if (rc != ETIMEDOUT && rc != EIO) t4_fw_bye(sc, sc->mbox); return (rc); } snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); sc->flags |= FW_OK; return (0); } static int get_devlog_params(struct adapter *sc, struct devlog_params *dlog) { struct fw_devlog_cmd devlog_cmd; uint32_t meminfo; int rc; bzero(&devlog_cmd, sizeof(devlog_cmd)); devlog_cmd.op_to_write = htobe32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); devlog_cmd.retval_len16 = htobe32(FW_LEN16(devlog_cmd)); rc = -t4_wr_mbox(sc, sc->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (rc != 0) { device_printf(sc->dev, "failed to get devlog parameters: %d.\n", rc); bzero(dlog, sizeof (*dlog)); return (rc); } meminfo = be32toh(devlog_cmd.memtype_devlog_memaddr16_devlog); dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(meminfo); dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(meminfo) << 4; dlog->size = be32toh(devlog_cmd.memsize_devlog); return (0); } static int get_capabilities(struct adapter *sc, struct fw_caps_config_cmd *caps) { int rc; bzero(caps, sizeof(*caps)); caps->op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps->retval_len16 = htobe32(FW_LEN16(*caps)); rc = -t4_wr_mbox(sc, sc->mbox, caps, sizeof(*caps), caps); if (rc != 0) return (rc); if (caps->niccaps & htobe16(FW_CAPS_CONFIG_NIC_VM)) caps->niccaps ^= htobe16(FW_CAPS_CONFIG_NIC_VM); caps->op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); rc = -t4_wr_mbox(sc, sc->mbox, caps, sizeof(*caps), NULL); return (rc); } static int get_params(struct adapter *sc, struct fw_caps_config_cmd *caps) { int rc; uint32_t params[7], val[7]; #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) params[0] = FW_PARAM_DEV(PORTVEC); params[1] = FW_PARAM_PFVF(IQFLINT_START); params[2] = FW_PARAM_PFVF(EQ_START); params[3] = FW_PARAM_PFVF(FILTER_START); params[4] = FW_PARAM_PFVF(FILTER_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 5, params, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters: %d.\n", rc); goto done; } sc->params.portvec = val[0]; sc->params.nports = 0; while (val[0]) { sc->params.nports++; val[0] &= val[0] - 1; } sc->sge.iq_start = val[1]; sc->sge.eq_start = val[2]; sc->tids.ftid_base = val[3]; sc->tids.nftids = val[4] - val[3] + 1; if (caps->toecaps) { /* query offload-related parameters */ params[0] = FW_PARAM_DEV(NTID); params[1] = FW_PARAM_PFVF(SERVER_START); params[2] = FW_PARAM_PFVF(SERVER_END); params[3] = FW_PARAM_PFVF(TDDP_START); params[4] = FW_PARAM_PFVF(TDDP_END); params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, params, val); if (rc != 0) { device_printf(sc->dev, "failed to query TOE parameters: %d.\n", rc); goto done; } sc->tids.ntids = val[0]; sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); sc->tids.stid_base = val[1]; sc->tids.nstids = val[2] - val[1] + 1; sc->vres.ddp.start = val[3]; sc->vres.ddp.size = val[4] - val[3] + 1; sc->params.ofldq_wr_cred = val[5]; sc->params.offload = 1; } if (caps->rdmacaps) { params[0] = FW_PARAM_PFVF(STAG_START); params[1] = FW_PARAM_PFVF(STAG_END); params[2] = FW_PARAM_PFVF(RQ_START); params[3] = FW_PARAM_PFVF(RQ_END); params[4] = FW_PARAM_PFVF(PBL_START); params[5] = FW_PARAM_PFVF(PBL_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, params, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters: %d.\n", rc); goto done; } sc->vres.stag.start = val[0]; sc->vres.stag.size = val[1] - val[0] + 1; sc->vres.rq.start = val[2]; sc->vres.rq.size = val[3] - val[2] + 1; sc->vres.pbl.start = val[4]; sc->vres.pbl.size = val[5] - val[4] + 1; } if (caps->iscsicaps) { params[0] = FW_PARAM_PFVF(ISCSI_START); params[1] = FW_PARAM_PFVF(ISCSI_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, params, val); if (rc != 0) { device_printf(sc->dev, "failed to query iSCSI parameters: %d.\n", rc); goto done; } sc->vres.iscsi.start = val[0]; sc->vres.iscsi.size = val[1] - val[0] + 1; } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV done: return (rc); } static void t4_set_desc(struct adapter *sc) { char buf[128]; struct adapter_params *p = &sc->params; snprintf(buf, sizeof(buf), "Chelsio %s (rev %d) %d port %sNIC PCIe-x%d %d %s, S/N:%s, E/C:%s", p->vpd.id, p->rev, p->nports, is_offload(sc) ? "R" : "", p->pci.width, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), p->vpd.sn, p->vpd.ec); device_set_desc_copy(sc->dev, buf); } static void build_medialist(struct port_info *pi) { struct ifmedia *media = &pi->media; int data, m; PORT_LOCK(pi); ifmedia_removeall(media); m = IFM_ETHER | IFM_FDX; data = (pi->port_type << 8) | pi->mod_type; switch(pi->port_type) { case FW_PORT_TYPE_BT_XFI: ifmedia_add(media, m | IFM_10G_T, data, NULL); break; case FW_PORT_TYPE_BT_XAUI: ifmedia_add(media, m | IFM_10G_T, data, NULL); /* fall through */ case FW_PORT_TYPE_BT_SGMII: ifmedia_add(media, m | IFM_1000_T, data, NULL); ifmedia_add(media, m | IFM_100_TX, data, NULL); ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL); ifmedia_set(media, IFM_ETHER | IFM_AUTO); break; case FW_PORT_TYPE_CX4: ifmedia_add(media, m | IFM_10G_CX4, data, NULL); ifmedia_set(media, m | IFM_10G_CX4); break; case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: ifmedia_add(media, m | IFM_10G_LR, data, NULL); ifmedia_set(media, m | IFM_10G_LR); break; case FW_PORT_MOD_TYPE_SR: ifmedia_add(media, m | IFM_10G_SR, data, NULL); ifmedia_set(media, m | IFM_10G_SR); break; case FW_PORT_MOD_TYPE_LRM: ifmedia_add(media, m | IFM_10G_LRM, data, NULL); ifmedia_set(media, m | IFM_10G_LRM); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL); ifmedia_set(media, m | IFM_10G_TWINAX); break; case FW_PORT_MOD_TYPE_NONE: m &= ~IFM_FDX; ifmedia_add(media, m | IFM_NONE, data, NULL); ifmedia_set(media, m | IFM_NONE); break; case FW_PORT_MOD_TYPE_NA: case FW_PORT_MOD_TYPE_ER: default: ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } break; case FW_PORT_TYPE_KX4: case FW_PORT_TYPE_KX: case FW_PORT_TYPE_KR: default: ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } PORT_UNLOCK(pi); } /* * Program the port's XGMAC based on parameters in ifnet. The caller also * indicates which parameters should be programmed (the rest are left alone). */ static int update_mac_settings(struct port_info *pi, int flags) { int rc; struct ifnet *ifp = pi->ifp; struct adapter *sc = pi->adapter; int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; PORT_LOCK_ASSERT_OWNED(pi); KASSERT(flags, ("%s: not told what to update.", __func__)); if (flags & XGMAC_MTU) mtu = ifp->if_mtu; if (flags & XGMAC_PROMISC) promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; if (flags & XGMAC_ALLMULTI) allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; if (flags & XGMAC_VLANEX) vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1, vlanex, false); if (rc) { if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); return (rc); } if (flags & XGMAC_UCADDR) { uint8_t ucaddr[ETHER_ADDR_LEN]; bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt, ucaddr, true, true); if (rc < 0) { rc = -rc; if_printf(ifp, "change_mac failed: %d\n", rc); return (rc); } else { pi->xact_addr_filt = rc; rc = 0; } } if (flags & XGMAC_MCADDRS) { const uint8_t *mcaddr; int del = 1; uint64_t hash = 0; struct ifmultiaddr *ifma; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mcaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, 1, &mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:%02x:%02x:%02x rc=%d\n", mcaddr[0], mcaddr[1], mcaddr[2], mcaddr[3], mcaddr[4], mcaddr[5], rc); goto mcfail; } del = 0; } rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0); if (rc != 0) if_printf(ifp, "failed to set mc address hash: %d", rc); mcfail: if_maddr_runlock(ifp); } return (rc); } static int cxgbe_init_locked(struct port_info *pi) { struct adapter *sc = pi->adapter; int rc = 0; ADAPTER_LOCK_ASSERT_OWNED(sc); while (!IS_DOOMED(pi) && IS_BUSY(sc)) { if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4init", 0)) { rc = EINTR; goto done; } } if (IS_DOOMED(pi)) { rc = ENXIO; goto done; } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); /* Give up the adapter lock, port init code can sleep. */ SET_BUSY(sc); ADAPTER_UNLOCK(sc); rc = cxgbe_init_synchronized(pi); done: ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup_one(&sc->flags); ADAPTER_UNLOCK(sc); return (rc); } static int cxgbe_init_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc = 0, i; uint16_t *rss; struct sge_rxq *rxq; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); if (isset(&sc->open_device_map, pi->port_id)) { KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("mismatch between open_device_map and if_drv_flags")); return (0); /* already running */ } if (sc->open_device_map == 0 && ((rc = first_port_up(sc)) != 0)) return (rc); /* error message displayed already */ /* * Allocate tx/rx/fl queues for this port. */ rc = t4_setup_eth_queues(pi); if (rc != 0) goto done; /* error message displayed already */ /* * Setup RSS for this port. */ rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); for_each_rxq(pi, i, rxq) { rss[i] = rxq->iq.abs_id; } rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0, pi->rss_size, rss, pi->nrxq); free(rss, M_CXGBE); if (rc != 0) { if_printf(ifp, "rss_config failed: %d\n", rc); goto done; } PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_ALL); PORT_UNLOCK(pi); if (rc) goto done; /* error message displayed already */ rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg); if (rc != 0) { if_printf(ifp, "start_link failed: %d\n", rc); goto done; } rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true); if (rc != 0) { if_printf(ifp, "enable_vi failed: %d\n", rc); goto done; } pi->flags |= VI_ENABLED; /* all ok */ setbit(&sc->open_device_map, pi->port_id); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&pi->tick, hz, cxgbe_tick, pi); done: if (rc != 0) cxgbe_uninit_synchronized(pi); return (rc); } static int cxgbe_uninit_locked(struct port_info *pi) { struct adapter *sc = pi->adapter; int rc; ADAPTER_LOCK_ASSERT_OWNED(sc); while (!IS_DOOMED(pi) && IS_BUSY(sc)) { if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4uninit", 0)) { rc = EINTR; goto done; } } if (IS_DOOMED(pi)) { rc = ENXIO; goto done; } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); SET_BUSY(sc); ADAPTER_UNLOCK(sc); rc = cxgbe_uninit_synchronized(pi); ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup_one(&sc->flags); done: ADAPTER_UNLOCK(sc); return (rc); } /* * Idempotent. */ static int cxgbe_uninit_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc; /* * taskqueue_drain may cause a deadlock if the adapter lock is held. */ ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* * Clear this port's bit from the open device map, and then drain * tasks and callouts. */ clrbit(&sc->open_device_map, pi->port_id); PORT_LOCK(pi); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); callout_stop(&pi->tick); PORT_UNLOCK(pi); callout_drain(&pi->tick); /* * Stop and then free the queues' resources, including the queues * themselves. * * XXX: we could just stop the queues here (on ifconfig down) and free * them later (on port detach), but having up/down go through the entire * allocate/activate/deactivate/free sequence is a good way to find * leaks and bugs. */ rc = t4_teardown_eth_queues(pi); if (rc != 0) if_printf(ifp, "teardown failed: %d\n", rc); if (pi->flags & VI_ENABLED) { rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false); if (rc) if_printf(ifp, "disable_vi failed: %d\n", rc); else pi->flags &= ~VI_ENABLED; } pi->link_cfg.link_ok = 0; pi->link_cfg.speed = 0; t4_os_link_changed(sc, pi->port_id, 0); if (sc->open_device_map == 0) last_port_down(sc); return (0); } #define T4_ALLOC_IRQ(sc, irq, rid, handler, arg, name) do { \ rc = t4_alloc_irq(sc, irq, rid, handler, arg, name); \ if (rc != 0) \ goto done; \ } while (0) static int first_port_up(struct adapter *sc) { int rc, i, rid, p, q; char s[8]; struct irq *irq; struct sge_iq *intrq; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* * queues that belong to the adapter (not any particular port). */ rc = t4_setup_adapter_queues(sc); if (rc != 0) goto done; /* * Setup interrupts. */ irq = &sc->irq[0]; rid = sc->intr_type == INTR_INTX ? 0 : 1; if (sc->intr_count == 1) { KASSERT(sc->flags & INTR_SHARED, ("%s: single interrupt but not shared?", __func__)); T4_ALLOC_IRQ(sc, irq, rid, t4_intr_all, sc, "all"); } else { /* Multiple interrupts. The first one is always error intr */ T4_ALLOC_IRQ(sc, irq, rid, t4_intr_err, sc, "err"); irq++; rid++; /* Firmware event queue normally has an interrupt of its own */ if (sc->intr_count > T4_EXTRA_INTR) { T4_ALLOC_IRQ(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, "evt"); irq++; rid++; } intrq = &sc->sge.intrq[0]; if (sc->flags & INTR_SHARED) { /* All ports share these interrupt queues */ for (i = 0; i < NINTRQ(sc); i++) { snprintf(s, sizeof(s), "*.%d", i); T4_ALLOC_IRQ(sc, irq, rid, t4_intr, intrq, s); irq++; rid++; intrq++; } } else { /* Each port has its own set of interrupt queues */ for (p = 0; p < sc->params.nports; p++) { for (q = 0; q < sc->port[p]->nrxq; q++) { snprintf(s, sizeof(s), "%d.%d", p, q); T4_ALLOC_IRQ(sc, irq, rid, t4_intr, intrq, s); irq++; rid++; intrq++; } } } } t4_intr_enable(sc); sc->flags |= FULL_INIT_DONE; done: if (rc != 0) last_port_down(sc); return (rc); } #undef T4_ALLOC_IRQ /* * Idempotent. */ static int last_port_down(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); t4_intr_disable(sc); t4_teardown_adapter_queues(sc); for (i = 0; i < sc->intr_count; i++) t4_free_irq(sc, &sc->irq[i]); sc->flags &= ~FULL_INIT_DONE; return (0); } static int t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, iq_intr_handler_t *handler, void *arg, char *name) { int rc; irq->rid = rid; irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, RF_SHAREABLE | RF_ACTIVE); if (irq->res == NULL) { device_printf(sc->dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, arg, &irq->tag); if (rc != 0) { device_printf(sc->dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name, rc); } else if (name) bus_describe_intr(sc->dev, irq->res, irq->tag, name); return (rc); } static int t4_free_irq(struct adapter *sc, struct irq *irq) { if (irq->tag) bus_teardown_intr(sc->dev, irq->res, irq->tag); if (irq->res) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); bzero(irq, sizeof(*irq)); return (0); } static void reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start, unsigned int end) { uint32_t *p = (uint32_t *)(buf + start); for ( ; start <= end; start += sizeof(uint32_t)) *p++ = t4_read_reg(sc, start); } static void t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) { int i; static const unsigned int reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x5924, 0x5960, 0x59d4, 0x5a00, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a38, 0x6a60, 0x6a78, 0x6b00, 0x6b84, 0x6bf0, 0x6c84, 0x6cf0, 0x6d84, 0x6df0, 0x6e84, 0x6ef0, 0x6f84, 0x6ff0, 0x7084, 0x70f0, 0x7184, 0x71f0, 0x7284, 0x72f0, 0x7384, 0x73f0, 0x7450, 0x7500, 0x7530, 0x7600, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7c38, 0x7d00, 0x7efc, 0x8dc0, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8f6c, 0x8fc0, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9458, 0x9600, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11190, 0x19040, 0x19124, 0x19150, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x19474, 0x19490, 0x194f8, 0x19800, 0x19f30, 0x1a000, 0x1a06c, 0x1a0b0, 0x1a120, 0x1a128, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e240, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e640, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea40, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee40, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f240, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f640, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa40, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe40, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201c8, 0x20200, 0x20318, 0x20400, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21518, 0x2152c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x21628, 0x21630, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21c38, 0x21c80, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221c8, 0x22200, 0x22318, 0x22400, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23518, 0x2352c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x23628, 0x23630, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23c38, 0x23c80, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241c8, 0x24200, 0x24318, 0x24400, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25518, 0x2552c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x25628, 0x25630, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25c38, 0x25c80, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261c8, 0x26200, 0x26318, 0x26400, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27518, 0x2752c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x27628, 0x27630, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27c38, 0x27c80, 0x27d7c, 0x27e00, 0x27e04 }; regs->version = 4 | (sc->params.rev << 10); for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2) reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]); } static void cxgbe_tick(void *arg) { struct port_info *pi = arg; struct ifnet *ifp = pi->ifp; struct sge_txq *txq; int i, drops; struct port_stats *s = &pi->stats; PORT_LOCK(pi); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { PORT_UNLOCK(pi); return; /* without scheduling another callout */ } t4_get_port_stats(pi->adapter, pi->tx_chan, s); ifp->if_opackets = s->tx_frames; ifp->if_ipackets = s->rx_frames; ifp->if_obytes = s->tx_octets; ifp->if_ibytes = s->rx_octets; ifp->if_omcasts = s->tx_mcast_frames; ifp->if_imcasts = s->rx_mcast_frames; ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + s->rx_ovflow3; drops = s->tx_drop; for_each_txq(pi, i, txq) drops += txq->br->br_drops; ifp->if_snd.ifq_drops = drops; ifp->if_oerrors = s->tx_error_frames; ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long + s->rx_fcs_err + s->rx_len_err; callout_schedule(&pi->tick, hz); PORT_UNLOCK(pi); } static int t4_sysctls(struct adapter *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(sc->dev); oid = device_get_sysctl_tree(sc->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, &sc->params.nports, 0, "# of ports"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, &sc->params.rev, 0, "chip hardware revision"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", CTLFLAG_RD, &sc->fw_version, 0, "firmware version"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "TOE", CTLFLAG_RD, &sc->params.offload, 0, "hardware is capable of TCP offload"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, &sc->params.vpd.cclk, 0, "core clock frequency (in KHz)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", CTLTYPE_STRING | CTLFLAG_RD, &intr_timer, sizeof(intr_timer), sysctl_int_array, "A", "interrupt holdoff timer values (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", CTLTYPE_STRING | CTLFLAG_RD, &intr_pktcount, sizeof(intr_pktcount), sysctl_int_array, "A", "interrupt holdoff packet counter values"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_devlog, "A", "device log"); return (0); } static int cxgbe_sysctls(struct port_info *pi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(pi->dev); /* * dev.cxgbe.X. */ oid = device_get_sysctl_tree(pi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, &pi->nrxq, 0, "# of rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, &pi->ntxq, 0, "# of tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, &pi->first_rxq, 0, "index of first rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, &pi->first_txq, 0, "index of first tx queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I", "rx queue size"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I", "tx queue size"); /* * dev.cxgbe.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "port statistics"); children = SYSCTL_CHILDREN(oid); #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \ sysctl_handle_t4_reg64, "QU", desc) SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", "# of frames received with bad FCS", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_len_err", "# of frames received with length error", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); #undef SYSCTL_ADD_T4_REG64 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ &pi->stats.name, desc) /* We get these from port_stats and they may be stale by upto 1s */ SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); #undef SYSCTL_ADD_T4_PORTSTAT return (0); } static int sysctl_int_array(SYSCTL_HANDLER_ARGS) { int rc, *i; struct sbuf sb; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (i = arg1; arg2; arg2 -= sizeof(int), i++) sbuf_printf(&sb, "%d ", *i); sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; struct sge_rxq *rxq; int idx, rc, i; idx = pi->tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0) { for_each_rxq(pi, i, rxq) { rxq->iq.intr_params = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(pi->pktc_idx != -1); } pi->tmr_idx = idx; } ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int idx, rc; idx = pi->pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING) rc = EBUSY; /* can be changed only when port is down */ if (rc == 0) pi->pktc_idx = idx; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_rxq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || (qsize & 7)) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING) rc = EBUSY; /* can be changed only when port is down */ if (rc == 0) pi->qsize_rxq = qsize; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_txq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->ifp->if_drv_flags & IFF_DRV_RUNNING) rc = EBUSY; /* can be changed only when port is down */ if (rc == 0) pi->qsize_txq = qsize; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; uint64_t val; val = t4_read_reg64(sc, reg); return (sysctl_handle_64(oidp, &val, 0, req)); } const char *devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; const char *devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" }; static int sysctl_devlog(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e *buf, *e; int i, j, rc, nentries, first = 0; struct sbuf *sb; uint64_t ftstamp = UINT64_MAX; if (dparams->start == 0) return (ENXIO); nentries = dparams->size / sizeof(struct fw_devlog_e); buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); if (buf == NULL) return (ENOMEM); rc = -t4_mem_read(sc, dparams->memtype, dparams->start, dparams->size, (void *)buf); if (rc != 0) goto done; for (i = 0; i < nentries; i++) { e = &buf[i]; if (e->timestamp == 0) break; /* end */ e->timestamp = be64toh(e->timestamp); e->seqno = be32toh(e->seqno); for (j = 0; j < 8; j++) e->params[j] = be32toh(e->params[j]); if (e->timestamp < ftstamp) { ftstamp = e->timestamp; first = i; } } if (buf[first].timestamp == 0) goto done; /* nothing in the log */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); sbuf_printf(sb, "\n%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); i = first; do { e = &buf[i]; if (e->timestamp == 0) break; /* end */ sbuf_printf(sb, "%10d %15ju %8s %8s ", e->seqno, e->timestamp, (e->level < ARRAY_SIZE(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < ARRAY_SIZE(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); sbuf_printf(sb, e->fmt, e->params[0], e->params[1], e->params[2], e->params[3], e->params[4], e->params[5], e->params[6], e->params[7]); if (++i == nentries) i = 0; } while (i != first); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static inline void txq_start(struct ifnet *ifp, struct sge_txq *txq) { struct buf_ring *br; struct mbuf *m; TXQ_LOCK_ASSERT_OWNED(txq); br = txq->br; m = txq->m ? txq->m : drbr_dequeue(ifp, br); if (m) t4_eth_tx(ifp, txq, m); } void cxgbe_txq_start(void *arg, int count) { struct sge_txq *txq = arg; TXQ_LOCK(txq); if (txq->eq.flags & EQ_CRFLUSHED) { txq->eq.flags &= ~EQ_CRFLUSHED; txq_start(txq->ifp, txq); } else wakeup_one(txq); /* txq is going away, wakeup free_txq */ TXQ_UNLOCK(txq); } static uint32_t fconf_to_mode(uint32_t fconf) { uint32_t mode; mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; if (fconf & F_FRAGMENTATION) mode |= T4_FILTER_IP_FRAGMENT; if (fconf & F_MPSHITTYPE) mode |= T4_FILTER_MPS_HIT_TYPE; if (fconf & F_MACMATCH) mode |= T4_FILTER_MAC_IDX; if (fconf & F_ETHERTYPE) mode |= T4_FILTER_ETH_TYPE; if (fconf & F_PROTOCOL) mode |= T4_FILTER_IP_PROTO; if (fconf & F_TOS) mode |= T4_FILTER_IP_TOS; if (fconf & F_VLAN) mode |= T4_FILTER_IVLAN; if (fconf & F_VNIC_ID) mode |= T4_FILTER_OVLAN; if (fconf & F_PORT) mode |= T4_FILTER_PORT; if (fconf & F_FCOE) mode |= T4_FILTER_FCoE; return (mode); } static uint32_t mode_to_fconf(uint32_t mode) { uint32_t fconf = 0; if (mode & T4_FILTER_IP_FRAGMENT) fconf |= F_FRAGMENTATION; if (mode & T4_FILTER_MPS_HIT_TYPE) fconf |= F_MPSHITTYPE; if (mode & T4_FILTER_MAC_IDX) fconf |= F_MACMATCH; if (mode & T4_FILTER_ETH_TYPE) fconf |= F_ETHERTYPE; if (mode & T4_FILTER_IP_PROTO) fconf |= F_PROTOCOL; if (mode & T4_FILTER_IP_TOS) fconf |= F_TOS; if (mode & T4_FILTER_IVLAN) fconf |= F_VLAN; if (mode & T4_FILTER_OVLAN) fconf |= F_VNIC_ID; if (mode & T4_FILTER_PORT) fconf |= F_PORT; if (mode & T4_FILTER_FCoE) fconf |= F_FCOE; return (fconf); } static uint32_t fspec_to_fconf(struct t4_filter_specification *fs) { uint32_t fconf = 0; if (fs->val.frag || fs->mask.frag) fconf |= F_FRAGMENTATION; if (fs->val.matchtype || fs->mask.matchtype) fconf |= F_MPSHITTYPE; if (fs->val.macidx || fs->mask.macidx) fconf |= F_MACMATCH; if (fs->val.ethtype || fs->mask.ethtype) fconf |= F_ETHERTYPE; if (fs->val.proto || fs->mask.proto) fconf |= F_PROTOCOL; if (fs->val.tos || fs->mask.tos) fconf |= F_TOS; if (fs->val.ivlan_vld || fs->mask.ivlan_vld) fconf |= F_VLAN; if (fs->val.ovlan_vld || fs->mask.ovlan_vld) fconf |= F_VNIC_ID; if (fs->val.iport || fs->mask.iport) fconf |= F_PORT; if (fs->val.fcoe || fs->mask.fcoe) fconf |= F_FCOE; return (fconf); } static int get_filter_mode(struct adapter *sc, uint32_t *mode) { uint32_t fconf; t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1, A_TP_VLAN_PRI_MAP); *mode = fconf_to_mode(fconf); return (0); } static int set_filter_mode(struct adapter *sc, uint32_t mode) { uint32_t fconf; int rc; fconf = mode_to_fconf(mode); ADAPTER_LOCK(sc); if (IS_BUSY(sc)) { rc = EAGAIN; goto done; } if (sc->tids.ftids_in_use > 0) { rc = EBUSY; goto done; } rc = -t4_set_filter_mode(sc, fconf); done: ADAPTER_UNLOCK(sc); return (rc); } static inline uint64_t get_filter_hits(struct adapter *sc, uint32_t fid) { uint32_t tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); uint64_t hits; t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0), tcb_base + (fid + sc->tids.ftid_base) * TCB_SIZE); t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0)); hits = t4_read_reg64(sc, MEMWIN0_BASE + 16); return (be64toh(hits)); } static int get_filter(struct adapter *sc, struct t4_filter *t) { int i, nfilters = sc->tids.nftids; struct filter_entry *f; ADAPTER_LOCK_ASSERT_OWNED(sc); if (IS_BUSY(sc)) return (EAGAIN); if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || t->idx >= nfilters) { t->idx = 0xffffffff; return (0); } f = &sc->tids.ftid_tab[t->idx]; for (i = t->idx; i < nfilters; i++, f++) { if (f->valid) { t->idx = i; t->l2tidx = f->l2t ? f->l2t->idx : 0; t->smtidx = f->smtidx; if (f->fs.hitcnts) t->hits = get_filter_hits(sc, t->idx); else t->hits = UINT64_MAX; t->fs = f->fs; return (0); } } t->idx = 0xffffffff; return (0); } static int set_filter(struct adapter *sc, struct t4_filter *t) { uint32_t fconf; unsigned int nfilters, nports; struct filter_entry *f; int i; ADAPTER_LOCK_ASSERT_OWNED(sc); nfilters = sc->tids.nftids; nports = sc->params.nports; if (nfilters == 0) return (ENOTSUP); if (!(sc->flags & FULL_INIT_DONE)) return (EAGAIN); if (t->idx >= nfilters) return (EINVAL); /* Validate against the global filter mode */ t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1, A_TP_VLAN_PRI_MAP); if ((fconf | fspec_to_fconf(&t->fs)) != fconf) return (E2BIG); if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) return (EINVAL); if (t->fs.val.iport >= nports) return (EINVAL); /* Can't specify an iq if not steering to it */ if (!t->fs.dirsteer && t->fs.iq) return (EINVAL); /* IPv6 filter idx must be 4 aligned */ if (t->fs.type == 1 && ((t->idx & 0x3) || t->idx + 4 >= nfilters)) return (EINVAL); if (sc->tids.ftid_tab == NULL) { KASSERT(sc->tids.ftids_in_use == 0, ("%s: no memory allocated but filters_in_use > 0", __func__)); sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * nfilters, M_CXGBE, M_NOWAIT | M_ZERO); if (sc->tids.ftid_tab == NULL) return (ENOMEM); } for (i = 0; i < 4; i++) { f = &sc->tids.ftid_tab[t->idx + i]; if (f->pending || f->valid) return (EBUSY); if (f->locked) return (EPERM); if (t->fs.type == 0) break; } f = &sc->tids.ftid_tab[t->idx]; f->fs = t->fs; return set_filter_wr(sc, t->idx); } static int del_filter(struct adapter *sc, struct t4_filter *t) { unsigned int nfilters; struct filter_entry *f; ADAPTER_LOCK_ASSERT_OWNED(sc); if (IS_BUSY(sc)) return (EAGAIN); nfilters = sc->tids.nftids; if (nfilters == 0) return (ENOTSUP); if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || t->idx >= nfilters) return (EINVAL); if (!(sc->flags & FULL_INIT_DONE)) return (EAGAIN); f = &sc->tids.ftid_tab[t->idx]; if (f->pending) return (EBUSY); if (f->locked) return (EPERM); if (f->valid) { t->fs = f->fs; /* extra info for the caller */ return del_filter_wr(sc, t->idx); } return (0); } static void clear_filter(struct filter_entry *f) { if (f->l2t) t4_l2t_release(f->l2t); bzero(f, sizeof (*f)); } static int set_filter_wr(struct adapter *sc, int fidx) { int rc; struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct mbuf *m; struct fw_filter_wr *fwr; unsigned int ftid; ADAPTER_LOCK_ASSERT_OWNED(sc); if (f->fs.newdmac || f->fs.newvlan) { /* This filter needs an L2T entry; allocate one. */ f->l2t = t4_l2t_alloc_switching(sc->l2t); if (f->l2t == NULL) return (EAGAIN); if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, f->fs.dmac)) { t4_l2t_release(f->l2t); f->l2t = NULL; return (ENOMEM); } } ftid = sc->tids.ftid_base + fidx; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOMEM); fwr = mtod(m, struct fw_filter_wr *); m->m_len = m->m_pkthdr.len = sizeof(*fwr); bzero(fwr, sizeof (*fwr)); fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); fwr->tid_to_iq = htobe32(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_RQTYPE(f->fs.type) | V_FW_FILTER_WR_NOREPLY(0) | V_FW_FILTER_WR_IQ(f->fs.iq)); fwr->del_filter_to_l2tix = htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | V_FW_FILTER_WR_DMAC(f->fs.newdmac) | V_FW_FILTER_WR_SMAC(f->fs.newsmac) | V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | V_FW_FILTER_WR_TXCHAN(f->fs.eport) | V_FW_FILTER_WR_PRIO(f->fs.prio) | V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); fwr->ethtype = htobe16(f->fs.val.ethtype); fwr->ethtypem = htobe16(f->fs.mask.ethtype); fwr->frag_to_ovlan_vldm = (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) | V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) | V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) | V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld)); fwr->smac_sel = 0; fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.intrq[0].abs_id)); fwr->maci_to_matchtypem = htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | V_FW_FILTER_WR_PORT(f->fs.val.iport) | V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); fwr->ptcl = f->fs.val.proto; fwr->ptclm = f->fs.mask.proto; fwr->ttyp = f->fs.val.tos; fwr->ttypm = f->fs.mask.tos; fwr->ivlan = htobe16(f->fs.val.ivlan); fwr->ivlanm = htobe16(f->fs.mask.ivlan); fwr->ovlan = htobe16(f->fs.val.ovlan); fwr->ovlanm = htobe16(f->fs.mask.ovlan); bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); fwr->lp = htobe16(f->fs.val.dport); fwr->lpm = htobe16(f->fs.mask.dport); fwr->fp = htobe16(f->fs.val.sport); fwr->fpm = htobe16(f->fs.mask.sport); if (f->fs.newsmac) bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); f->pending = 1; sc->tids.ftids_in_use++; rc = t4_mgmt_tx(sc, m); if (rc != 0) { sc->tids.ftids_in_use--; m_freem(m); clear_filter(f); } return (rc); } static int del_filter_wr(struct adapter *sc, int fidx) { struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct mbuf *m; struct fw_filter_wr *fwr; unsigned int rc, ftid; ADAPTER_LOCK_ASSERT_OWNED(sc); ftid = sc->tids.ftid_base + fidx; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOMEM); fwr = mtod(m, struct fw_filter_wr *); m->m_len = m->m_pkthdr.len = sizeof(*fwr); bzero(fwr, sizeof (*fwr)); t4_mk_filtdelwr(ftid, fwr, sc->sge.intrq[0].abs_id); f->pending = 1; rc = t4_mgmt_tx(sc, m); if (rc != 0) { f->pending = 0; m_freem(m); } return (rc); } /* XXX move intr handlers to main.c and make this static */ void filter_rpl(struct adapter *sc, const struct cpl_set_tcb_rpl *rpl) { unsigned int idx = GET_TID(rpl); if (idx >= sc->tids.ftid_base && (idx -= sc->tids.ftid_base) < sc->tids.nftids) { unsigned int rc = G_COOKIE(rpl->cookie); struct filter_entry *f = &sc->tids.ftid_tab[idx]; if (rc == FW_FILTER_WR_FLT_DELETED) { /* * Clear the filter when we get confirmation from the * hardware that the filter has been deleted. */ clear_filter(f); sc->tids.ftids_in_use--; } else if (rc == FW_FILTER_WR_SMT_TBL_FULL) { device_printf(sc->dev, "filter %u setup failed due to full SMT\n", idx); clear_filter(f); sc->tids.ftids_in_use--; } else if (rc == FW_FILTER_WR_FLT_ADDED) { f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; f->pending = 0; /* asynchronous setup completed */ f->valid = 1; } else { /* * Something went wrong. Issue a warning about the * problem and clear everything out. */ device_printf(sc->dev, "filter %u setup failed with error %u\n", idx, rc); clear_filter(f); sc->tids.ftids_in_use--; } } } int t4_os_find_pci_capability(struct adapter *sc, int cap) { int i; return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); } int t4_os_pci_save_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); return (0); } int t4_os_pci_restore_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); return (0); } void t4_os_portmod_changed(const struct adapter *sc, int idx) { struct port_info *pi = sc->port[idx]; static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" }; if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) if_printf(pi->ifp, "transceiver unplugged.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) if_printf(pi->ifp, "unknown transceiver inserted.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) if_printf(pi->ifp, "unsupported transceiver inserted.\n"); else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) { if_printf(pi->ifp, "%s transceiver inserted.\n", mod_str[pi->mod_type]); } else { if_printf(pi->ifp, "transceiver (type %d) inserted.\n", pi->mod_type); } } void t4_os_link_changed(struct adapter *sc, int idx, int link_stat) { struct port_info *pi = sc->port[idx]; struct ifnet *ifp = pi->ifp; if (link_stat) { ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed); if_link_state_change(ifp, LINK_STATE_UP); } else if_link_state_change(ifp, LINK_STATE_DOWN); } static int t4_open(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_close(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct adapter *sc = dev->si_drv1; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (rc); switch (cmd) { case CHELSIO_T4_GETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) edata->val = t4_read_reg(sc, edata->addr); else if (edata->size == 8) edata->val = t4_read_reg64(sc, edata->addr); else return (EINVAL); break; } case CHELSIO_T4_SETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) { if (edata->val & 0xffffffff00000000) return (EINVAL); t4_write_reg(sc, edata->addr, (uint32_t) edata->val); } else if (edata->size == 8) t4_write_reg64(sc, edata->addr, edata->val); else return (EINVAL); break; } case CHELSIO_T4_REGDUMP: { struct t4_regdump *regs = (struct t4_regdump *)data; int reglen = T4_REGDUMP_SIZE; uint8_t *buf; if (regs->len < reglen) { regs->len = reglen; /* hint to the caller */ return (ENOBUFS); } regs->len = reglen; buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); t4_get_regs(sc, regs, buf); rc = copyout(buf, regs->data, reglen); free(buf, M_CXGBE); break; } case CHELSIO_T4_GET_FILTER_MODE: rc = get_filter_mode(sc, (uint32_t *)data); break; case CHELSIO_T4_SET_FILTER_MODE: rc = set_filter_mode(sc, *(uint32_t *)data); break; case CHELSIO_T4_GET_FILTER: ADAPTER_LOCK(sc); rc = get_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; case CHELSIO_T4_SET_FILTER: ADAPTER_LOCK(sc); rc = set_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; case CHELSIO_T4_DEL_FILTER: ADAPTER_LOCK(sc); rc = del_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; default: rc = EINVAL; } return (rc); } static int t4_mod_event(module_t mod, int cmd, void *arg) { if (cmd == MOD_LOAD) t4_sge_modload(); return (0); } static devclass_t t4_devclass; static devclass_t cxgbe_devclass; DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, t4_mod_event, 0); MODULE_VERSION(t4nex, 1); DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); MODULE_VERSION(cxgbe, 1);