/*- * Copyright (c) 2017 Chelsio Communications, Inc. * All rights reserved. * Written by: John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "cryptodev_if.h" #include "common/common.h" #include "crypto/t4_crypto.h" /* * Requests consist of: * * +-------------------------------+ * | struct fw_crypto_lookaside_wr | * +-------------------------------+ * | struct ulp_txpkt | * +-------------------------------+ * | struct ulptx_idata | * +-------------------------------+ * | struct cpl_tx_sec_pdu | * +-------------------------------+ * | struct cpl_tls_tx_scmd_fmt | * +-------------------------------+ * | key context header | * +-------------------------------+ * | AES key | ----- For requests with AES * +-------------------------------+ * | Hash state | ----- For hash-only requests * +-------------------------------+ - * | IPAD (16-byte aligned) | \ * +-------------------------------+ +---- For requests with HMAC * | OPAD (16-byte aligned) | / * +-------------------------------+ - * | GMAC H | ----- For AES-GCM * +-------------------------------+ - * | struct cpl_rx_phys_dsgl | \ * +-------------------------------+ +---- Destination buffer for * | PHYS_DSGL entries | / non-hash-only requests * +-------------------------------+ - * | 16 dummy bytes | ----- Only for HMAC/hash-only requests * +-------------------------------+ * | IV | ----- If immediate IV * +-------------------------------+ * | Payload | ----- If immediate Payload * +-------------------------------+ - * | struct ulptx_sgl | \ * +-------------------------------+ +---- If payload via SGL * | SGL entries | / * +-------------------------------+ - * * Note that the key context must be padded to ensure 16-byte alignment. * For HMAC requests, the key consists of the partial hash of the IPAD * followed by the partial hash of the OPAD. * * Replies consist of: * * +-------------------------------+ * | struct cpl_fw6_pld | * +-------------------------------+ * | hash digest | ----- For HMAC request with * +-------------------------------+ 'hash_size' set in work request * * A 32-bit big-endian error status word is supplied in the last 4 * bytes of data[0] in the CPL_FW6_PLD message. bit 0 indicates a * "MAC" error and bit 1 indicates a "PAD" error. * * The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message * in the request is returned in data[1] of the CPL_FW6_PLD message. * * For block cipher replies, the updated IV is supplied in data[2] and * data[3] of the CPL_FW6_PLD message. * * For hash replies where the work request set 'hash_size' to request * a copy of the hash in the reply, the hash digest is supplied * immediately following the CPL_FW6_PLD message. */ /* * The crypto engine supports a maximum AAD size of 511 bytes. */ #define MAX_AAD_LEN 511 /* * The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32 SG * entries. While the CPL includes a 16-bit length field, the T6 can * sometimes hang if an error occurs while processing a request with a * single DSGL entry larger than 2k. */ #define MAX_RX_PHYS_DSGL_SGE 32 #define DSGL_SGE_MAXLEN 2048 /* * The adapter only supports requests with a total input or output * length of 64k-1 or smaller. Longer requests either result in hung * requests or incorrect results. */ #define MAX_REQUEST_SIZE 65535 static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto"); struct ccr_session_hmac { struct auth_hash *auth_hash; int hash_len; unsigned int partial_digest_len; unsigned int auth_mode; unsigned int mk_size; char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128]; char opad[CHCR_HASH_MAX_BLOCK_SIZE_128]; }; struct ccr_session_gmac { int hash_len; char ghash_h[GMAC_BLOCK_LEN]; }; struct ccr_session_blkcipher { unsigned int cipher_mode; unsigned int key_len; unsigned int iv_len; __be32 key_ctx_hdr; char enckey[CHCR_AES_MAX_KEY_LEN]; char deckey[CHCR_AES_MAX_KEY_LEN]; }; struct ccr_session { bool active; int pending; enum { HASH, HMAC, BLKCIPHER, AUTHENC, GCM } mode; union { struct ccr_session_hmac hmac; struct ccr_session_gmac gmac; }; struct ccr_session_blkcipher blkcipher; }; struct ccr_softc { struct adapter *adapter; device_t dev; uint32_t cid; int tx_channel_id; struct mtx lock; bool detaching; struct sge_wrq *txq; struct sge_rxq *rxq; /* * Pre-allocate S/G lists used when preparing a work request. * 'sg_crp' contains an sglist describing the entire buffer * for a 'struct cryptop'. 'sg_ulptx' is used to describe * the data the engine should DMA as input via ULPTX_SGL. * 'sg_dsgl' is used to describe the destination that cipher * text and a tag should be written to. */ struct sglist *sg_crp; struct sglist *sg_ulptx; struct sglist *sg_dsgl; /* * Pre-allocate a dummy output buffer for the IV and AAD for * AEAD requests. */ char *iv_aad_buf; struct sglist *sg_iv_aad; /* Statistics. */ uint64_t stats_blkcipher_encrypt; uint64_t stats_blkcipher_decrypt; uint64_t stats_hash; uint64_t stats_hmac; uint64_t stats_authenc_encrypt; uint64_t stats_authenc_decrypt; uint64_t stats_gcm_encrypt; uint64_t stats_gcm_decrypt; uint64_t stats_wr_nomem; uint64_t stats_inflight; uint64_t stats_mac_error; uint64_t stats_pad_error; uint64_t stats_bad_session; uint64_t stats_sglist_error; uint64_t stats_process_error; uint64_t stats_sw_fallback; }; /* * Crypto requests involve two kind of scatter/gather lists. * * Non-hash-only requests require a PHYS_DSGL that describes the * location to store the results of the encryption or decryption * operation. This SGL uses a different format (PHYS_DSGL) and should * exclude the crd_skip bytes at the start of the data as well as * any AAD or IV. For authenticated encryption requests it should * cover include the destination of the hash or tag. * * The input payload may either be supplied inline as immediate data, * or via a standard ULP_TX SGL. This SGL should include AAD, * ciphertext, and the hash or tag for authenticated decryption * requests. * * These scatter/gather lists can describe different subsets of the * buffer described by the crypto operation. ccr_populate_sglist() * generates a scatter/gather list that covers the entire crypto * operation buffer that is then used to construct the other * scatter/gather lists. */ static int ccr_populate_sglist(struct sglist *sg, struct cryptop *crp) { int error; sglist_reset(sg); if (crp->crp_flags & CRYPTO_F_IMBUF) error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf); else if (crp->crp_flags & CRYPTO_F_IOV) error = sglist_append_uio(sg, (struct uio *)crp->crp_buf); else error = sglist_append(sg, crp->crp_buf, crp->crp_ilen); return (error); } /* * Segments in 'sg' larger than 'maxsegsize' are counted as multiple * segments. */ static int ccr_count_sgl(struct sglist *sg, int maxsegsize) { int i, nsegs; nsegs = 0; for (i = 0; i < sg->sg_nseg; i++) nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize); return (nsegs); } /* These functions deal with PHYS_DSGL for the reply buffer. */ static inline int ccr_phys_dsgl_len(int nsegs) { int len; len = (nsegs / 8) * sizeof(struct phys_sge_pairs); if ((nsegs % 8) != 0) { len += sizeof(uint16_t) * 8; len += roundup2(nsegs % 8, 2) * sizeof(uint64_t); } return (len); } static void ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs) { struct sglist *sg; struct cpl_rx_phys_dsgl *cpl; struct phys_sge_pairs *sgl; vm_paddr_t paddr; size_t seglen; u_int i, j; sg = sc->sg_dsgl; cpl = dst; cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) | V_CPL_RX_PHYS_DSGL_ISRDMA(0)); cpl->pcirlxorder_to_noofsgentr = htobe32( V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) | V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) | V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) | V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs)); cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR; cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id); cpl->rss_hdr_int.hash_val = 0; sgl = (struct phys_sge_pairs *)(cpl + 1); j = 0; for (i = 0; i < sg->sg_nseg; i++) { seglen = sg->sg_segs[i].ss_len; paddr = sg->sg_segs[i].ss_paddr; do { sgl->addr[j] = htobe64(paddr); if (seglen > DSGL_SGE_MAXLEN) { sgl->len[j] = htobe16(DSGL_SGE_MAXLEN); paddr += DSGL_SGE_MAXLEN; seglen -= DSGL_SGE_MAXLEN; } else { sgl->len[j] = htobe16(seglen); seglen = 0; } j++; if (j == 8) { sgl++; j = 0; } } while (seglen != 0); } MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs); } /* These functions deal with the ULPTX_SGL for input payload. */ static inline int ccr_ulptx_sgl_len(int nsegs) { u_int n; nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (roundup2(n, 16)); } static void ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs) { struct ulptx_sgl *usgl; struct sglist *sg; struct sglist_seg *ss; int i; sg = sc->sg_ulptx; MPASS(nsegs == sg->sg_nseg); ss = &sg->sg_segs[0]; usgl = dst; usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); usgl->len0 = htobe32(ss->ss_len); usgl->addr0 = htobe64(ss->ss_paddr); ss++; for (i = 0; i < sg->sg_nseg - 1; i++) { usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr); ss++; } } static bool ccr_use_imm_data(u_int transhdr_len, u_int input_len) { if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN) return (false); if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) > SGE_MAX_WR_LEN) return (false); return (true); } static void ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len, u_int wr_len, u_int imm_len, u_int sgl_len, u_int hash_size, struct cryptop *crp) { u_int cctx_size; cctx_size = sizeof(struct _key_ctx) + kctx_len; crwr->wreq.op_to_cctx_size = htobe32( V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) | V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) | V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) | V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) | V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4)); crwr->wreq.len16_pkd = htobe32( V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16)); crwr->wreq.session_id = 0; crwr->wreq.rx_chid_to_rx_q_id = htobe32( V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) | V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) | V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) | V_FW_CRYPTO_LOOKASIDE_WR_IV(IV_NOP) | V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) | V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) | V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id)); crwr->wreq.key_addr = 0; crwr->wreq.pld_size_hash_size = htobe32( V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) | V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size)); crwr->wreq.cookie = htobe64((uintptr_t)crp); crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DATAMODIFY(0) | V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1)); crwr->ulptx.len = htobe32( ((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16)); crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | V_ULP_TX_SC_MORE(imm_len != 0 ? 0 : 1)); crwr->sc_imm.len = htobe32(wr_len - offsetof(struct chcr_wr, sec_cpl) - sgl_len); } static int ccr_hash(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) { struct chcr_wr *crwr; struct wrqe *wr; struct auth_hash *axf; struct cryptodesc *crd; char *dst; u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len; u_int hmac_ctrl, imm_len, iopad_size; int error, sgl_nsegs, sgl_len, use_opad; crd = crp->crp_desc; /* Reject requests with too large of an input buffer. */ if (crd->crd_len > MAX_REQUEST_SIZE) return (EFBIG); axf = s->hmac.auth_hash; if (s->mode == HMAC) { use_opad = 1; hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; } else { use_opad = 0; hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NOP; } /* PADs must be 128-bit aligned. */ iopad_size = roundup2(s->hmac.partial_digest_len, 16); /* * The 'key' part of the context includes the aligned IPAD and * OPAD. */ kctx_len = iopad_size; if (use_opad) kctx_len += iopad_size; hash_size_in_response = axf->hashsize; transhdr_len = HASH_TRANSHDR_SIZE(kctx_len); if (crd->crd_len == 0) { imm_len = axf->blocksize; sgl_nsegs = 0; sgl_len = 0; } else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) { imm_len = crd->crd_len; sgl_nsegs = 0; sgl_len = 0; } else { imm_len = 0; sglist_reset(sc->sg_ulptx); error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crd->crd_skip, crd->crd_len); if (error) return (error); sgl_nsegs = sc->sg_ulptx->sg_nseg; sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); } wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len; if (wr_len > SGE_MAX_WR_LEN) return (EFBIG); wr = alloc_wrqe(wr_len, sc->txq); if (wr == NULL) { sc->stats_wr_nomem++; return (ENOMEM); } crwr = wrtod(wr); memset(crwr, 0, wr_len); ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, hash_size_in_response, crp); /* XXX: Hardcodes SGE loopback channel of 0. */ crwr->sec_cpl.op_ivinsrtofst = htobe32( V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | V_CPL_TX_SEC_PDU_IVINSRTOFST(0)); crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize : crd->crd_len); crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0)); /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ crwr->sec_cpl.seqno_numivs = htobe32( V_SCMD_SEQ_NO_CTRL(0) | V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_NOP) | V_SCMD_AUTH_MODE(s->hmac.auth_mode) | V_SCMD_HMAC_CTRL(hmac_ctrl)); crwr->sec_cpl.ivgen_hdrlen = htobe32( V_SCMD_LAST_FRAG(0) | V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1)); memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len); if (use_opad) memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad, s->hmac.partial_digest_len); /* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */ kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | V_KEY_CONTEXT_OPAD_PRESENT(use_opad) | V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) | V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1)); dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES; if (crd->crd_len == 0) { dst[0] = 0x80; *(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) = htobe64(axf->blocksize << 3); } else if (imm_len != 0) crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, crd->crd_len, dst); else ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); /* XXX: TODO backpressure */ t4_wrq_tx(sc->adapter, wr); return (0); } static int ccr_hash_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) { struct cryptodesc *crd; crd = crp->crp_desc; if (error == 0) { crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, s->hmac.hash_len, (c_caddr_t)(cpl + 1)); } return (error); } static int ccr_blkcipher(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) { char iv[CHCR_MAX_CRYPTO_IV_LEN]; struct chcr_wr *crwr; struct wrqe *wr; struct cryptodesc *crd; char *dst; u_int kctx_len, key_half, op_type, transhdr_len, wr_len; u_int imm_len; int dsgl_nsegs, dsgl_len; int sgl_nsegs, sgl_len; int error; crd = crp->crp_desc; if (s->blkcipher.key_len == 0 || crd->crd_len == 0) return (EINVAL); if (crd->crd_alg == CRYPTO_AES_CBC && (crd->crd_len % AES_BLOCK_LEN) != 0) return (EINVAL); /* Reject requests with too large of an input buffer. */ if (crd->crd_len > MAX_REQUEST_SIZE) return (EFBIG); if (crd->crd_flags & CRD_F_ENCRYPT) op_type = CHCR_ENCRYPT_OP; else op_type = CHCR_DECRYPT_OP; sglist_reset(sc->sg_dsgl); error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip, crd->crd_len); if (error) return (error); dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) return (EFBIG); dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); /* The 'key' must be 128-bit aligned. */ kctx_len = roundup2(s->blkcipher.key_len, 16); transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); if (ccr_use_imm_data(transhdr_len, crd->crd_len + s->blkcipher.iv_len)) { imm_len = crd->crd_len; sgl_nsegs = 0; sgl_len = 0; } else { imm_len = 0; sglist_reset(sc->sg_ulptx); error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crd->crd_skip, crd->crd_len); if (error) return (error); sgl_nsegs = sc->sg_ulptx->sg_nseg; sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); } wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + roundup2(imm_len, 16) + sgl_len; if (wr_len > SGE_MAX_WR_LEN) return (EFBIG); wr = alloc_wrqe(wr_len, sc->txq); if (wr == NULL) { sc->stats_wr_nomem++; return (ENOMEM); } crwr = wrtod(wr); memset(crwr, 0, wr_len); /* * Read the existing IV from the request or generate a random * one if none is provided. Optionally copy the generated IV * into the output buffer if requested. */ if (op_type == CHCR_ENCRYPT_OP) { if (crd->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); else arc4rand(iv, s->blkcipher.iv_len, 0); if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, s->blkcipher.iv_len, iv); } else { if (crd->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); else crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_inject, s->blkcipher.iv_len, iv); } ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, crp); /* XXX: Hardcodes SGE loopback channel of 0. */ crwr->sec_cpl.op_ivinsrtofst = htobe32( V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len); crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) | V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0)); /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ crwr->sec_cpl.seqno_numivs = htobe32( V_SCMD_SEQ_NO_CTRL(0) | V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | V_SCMD_ENC_DEC_CTRL(op_type) | V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_NOP) | V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NOP) | V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | V_SCMD_NUM_IVS(0)); crwr->sec_cpl.ivgen_hdrlen = htobe32( V_SCMD_IV_GEN_CTRL(0) | V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len)); crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; switch (crd->crd_alg) { case CRYPTO_AES_CBC: if (crd->crd_flags & CRD_F_ENCRYPT) memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); else memcpy(crwr->key_ctx.key, s->blkcipher.deckey, s->blkcipher.key_len); break; case CRYPTO_AES_ICM: memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); break; case CRYPTO_AES_XTS: key_half = s->blkcipher.key_len / 2; memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, key_half); if (crd->crd_flags & CRD_F_ENCRYPT) memcpy(crwr->key_ctx.key + key_half, s->blkcipher.enckey, key_half); else memcpy(crwr->key_ctx.key + key_half, s->blkcipher.deckey, key_half); break; } dst = (char *)(crwr + 1) + kctx_len; ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; memcpy(dst, iv, s->blkcipher.iv_len); dst += s->blkcipher.iv_len; if (imm_len != 0) crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, crd->crd_len, dst); else ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); /* XXX: TODO backpressure */ t4_wrq_tx(sc->adapter, wr); return (0); } static int ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) { /* * The updated IV to permit chained requests is at * cpl->data[2], but OCF doesn't permit chained requests. */ return (error); } /* * 'hashsize' is the length of a full digest. 'authsize' is the * requested digest length for this operation which may be less * than 'hashsize'. */ static int ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize) { if (authsize == 10) return (CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366); if (authsize == 12) return (CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT); if (authsize == hashsize / 2) return (CHCR_SCMD_HMAC_CTRL_DIV2); return (CHCR_SCMD_HMAC_CTRL_NO_TRUNC); } static int ccr_authenc(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde) { char iv[CHCR_MAX_CRYPTO_IV_LEN]; struct chcr_wr *crwr; struct wrqe *wr; struct auth_hash *axf; char *dst; u_int kctx_len, key_half, op_type, transhdr_len, wr_len; u_int hash_size_in_response, imm_len, iopad_size; u_int aad_start, aad_len, aad_stop; u_int auth_start, auth_stop, auth_insert; u_int cipher_start, cipher_stop; u_int hmac_ctrl, input_len; int dsgl_nsegs, dsgl_len; int sgl_nsegs, sgl_len; int error; /* * If there is a need in the future, requests with an empty * payload could be supported as HMAC-only requests. */ if (s->blkcipher.key_len == 0 || crde->crd_len == 0) return (EINVAL); if (crde->crd_alg == CRYPTO_AES_CBC && (crde->crd_len % AES_BLOCK_LEN) != 0) return (EINVAL); /* * Compute the length of the AAD (data covered by the * authentication descriptor but not the encryption * descriptor). To simplify the logic, AAD is only permitted * before the cipher/plain text, not after. This is true of * all currently-generated requests. */ if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) return (EINVAL); if (crda->crd_skip < crde->crd_skip) { if (crda->crd_skip + crda->crd_len > crde->crd_skip) aad_len = (crde->crd_skip - crda->crd_skip); else aad_len = crda->crd_len; } else aad_len = 0; if (aad_len + s->blkcipher.iv_len > MAX_AAD_LEN) return (EINVAL); axf = s->hmac.auth_hash; hash_size_in_response = s->hmac.hash_len; if (crde->crd_flags & CRD_F_ENCRYPT) op_type = CHCR_ENCRYPT_OP; else op_type = CHCR_DECRYPT_OP; /* * The output buffer consists of the cipher text followed by * the hash when encrypting. For decryption it only contains * the plain text. * * Due to a firmware bug, the output buffer must include a * dummy output buffer for the IV and AAD prior to the real * output buffer. */ if (op_type == CHCR_ENCRYPT_OP) { if (s->blkcipher.iv_len + aad_len + crde->crd_len + hash_size_in_response > MAX_REQUEST_SIZE) return (EFBIG); } else { if (s->blkcipher.iv_len + aad_len + crde->crd_len > MAX_REQUEST_SIZE) return (EFBIG); } sglist_reset(sc->sg_dsgl); error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, s->blkcipher.iv_len + aad_len); if (error) return (error); error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, crde->crd_len); if (error) return (error); if (op_type == CHCR_ENCRYPT_OP) { error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crda->crd_inject, hash_size_in_response); if (error) return (error); } dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) return (EFBIG); dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); /* PADs must be 128-bit aligned. */ iopad_size = roundup2(s->hmac.partial_digest_len, 16); /* * The 'key' part of the key context consists of the key followed * by the IPAD and OPAD. */ kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2; transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); /* * The input buffer consists of the IV, any AAD, and then the * cipher/plain text. For decryption requests the hash is * appended after the cipher text. * * The IV is always stored at the start of the input buffer * even though it may be duplicated in the payload. The * crypto engine doesn't work properly if the IV offset points * inside of the AAD region, so a second copy is always * required. */ input_len = aad_len + crde->crd_len; /* * The firmware hangs if sent a request which is a * bit smaller than MAX_REQUEST_SIZE. In particular, the * firmware appears to require 512 - 16 bytes of spare room * along with the size of the hash even if the hash isn't * included in the input buffer. */ if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) > MAX_REQUEST_SIZE) return (EFBIG); if (op_type == CHCR_DECRYPT_OP) input_len += hash_size_in_response; if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) { imm_len = input_len; sgl_nsegs = 0; sgl_len = 0; } else { imm_len = 0; sglist_reset(sc->sg_ulptx); if (aad_len != 0) { error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crda->crd_skip, aad_len); if (error) return (error); } error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crde->crd_skip, crde->crd_len); if (error) return (error); if (op_type == CHCR_DECRYPT_OP) { error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crda->crd_inject, hash_size_in_response); if (error) return (error); } sgl_nsegs = sc->sg_ulptx->sg_nseg; sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); } /* * Any auth-only data before the cipher region is marked as AAD. * Auth-data that overlaps with the cipher region is placed in * the auth section. */ if (aad_len != 0) { aad_start = s->blkcipher.iv_len + 1; aad_stop = aad_start + aad_len - 1; } else { aad_start = 0; aad_stop = 0; } cipher_start = s->blkcipher.iv_len + aad_len + 1; if (op_type == CHCR_DECRYPT_OP) cipher_stop = hash_size_in_response; else cipher_stop = 0; if (aad_len == crda->crd_len) { auth_start = 0; auth_stop = 0; } else { if (aad_len != 0) auth_start = cipher_start; else auth_start = s->blkcipher.iv_len + crda->crd_skip - crde->crd_skip + 1; auth_stop = (crde->crd_skip + crde->crd_len) - (crda->crd_skip + crda->crd_len) + cipher_stop; } if (op_type == CHCR_DECRYPT_OP) auth_insert = hash_size_in_response; else auth_insert = 0; wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + roundup2(imm_len, 16) + sgl_len; if (wr_len > SGE_MAX_WR_LEN) return (EFBIG); wr = alloc_wrqe(wr_len, sc->txq); if (wr == NULL) { sc->stats_wr_nomem++; return (ENOMEM); } crwr = wrtod(wr); memset(crwr, 0, wr_len); /* * Read the existing IV from the request or generate a random * one if none is provided. Optionally copy the generated IV * into the output buffer if requested. */ if (op_type == CHCR_ENCRYPT_OP) { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); else arc4rand(iv, s->blkcipher.iv_len, 0); if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) crypto_copyback(crp->crp_flags, crp->crp_buf, crde->crd_inject, s->blkcipher.iv_len, iv); } else { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); else crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_inject, s->blkcipher.iv_len, iv); } ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, crp); /* XXX: Hardcodes SGE loopback channel of 0. */ crwr->sec_cpl.op_ivinsrtofst = htobe32( V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len); crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( V_CPL_TX_SEC_PDU_AADSTART(aad_start) | V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4)); crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) | V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) | V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) | V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response); crwr->sec_cpl.seqno_numivs = htobe32( V_SCMD_SEQ_NO_CTRL(0) | V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | V_SCMD_ENC_DEC_CTRL(op_type) | V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | V_SCMD_AUTH_MODE(s->hmac.auth_mode) | V_SCMD_HMAC_CTRL(hmac_ctrl) | V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | V_SCMD_NUM_IVS(0)); crwr->sec_cpl.ivgen_hdrlen = htobe32( V_SCMD_IV_GEN_CTRL(0) | V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; switch (crde->crd_alg) { case CRYPTO_AES_CBC: if (crde->crd_flags & CRD_F_ENCRYPT) memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); else memcpy(crwr->key_ctx.key, s->blkcipher.deckey, s->blkcipher.key_len); break; case CRYPTO_AES_ICM: memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); break; case CRYPTO_AES_XTS: key_half = s->blkcipher.key_len / 2; memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, key_half); if (crde->crd_flags & CRD_F_ENCRYPT) memcpy(crwr->key_ctx.key + key_half, s->blkcipher.enckey, key_half); else memcpy(crwr->key_ctx.key + key_half, s->blkcipher.deckey, key_half); break; } dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len); memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len); dst = (char *)(crwr + 1) + kctx_len; ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; memcpy(dst, iv, s->blkcipher.iv_len); dst += s->blkcipher.iv_len; if (imm_len != 0) { if (aad_len != 0) { crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip, aad_len, dst); dst += aad_len; } crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, crde->crd_len, dst); dst += crde->crd_len; if (op_type == CHCR_DECRYPT_OP) crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject, hash_size_in_response, dst); } else ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); /* XXX: TODO backpressure */ t4_wrq_tx(sc->adapter, wr); return (0); } static int ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) { struct cryptodesc *crd; /* * The updated IV to permit chained requests is at * cpl->data[2], but OCF doesn't permit chained requests. * * For a decryption request, the hardware may do a verification * of the HMAC which will fail if the existing HMAC isn't in the * buffer. If that happens, clear the error and copy the HMAC * from the CPL reply into the buffer. * * For encryption requests, crd should be the cipher request * which will have CRD_F_ENCRYPT set. For decryption * requests, crp_desc will be the HMAC request which should * not have this flag set. */ crd = crp->crp_desc; if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) && !(crd->crd_flags & CRD_F_ENCRYPT)) { crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, s->hmac.hash_len, (c_caddr_t)(cpl + 1)); error = 0; } return (error); } static int ccr_gcm(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde) { char iv[CHCR_MAX_CRYPTO_IV_LEN]; struct chcr_wr *crwr; struct wrqe *wr; char *dst; u_int iv_len, kctx_len, op_type, transhdr_len, wr_len; u_int hash_size_in_response, imm_len; u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert; u_int hmac_ctrl, input_len; int dsgl_nsegs, dsgl_len; int sgl_nsegs, sgl_len; int error; if (s->blkcipher.key_len == 0) return (EINVAL); /* * The crypto engine doesn't handle GCM requests with an empty * payload, so handle those in software instead. */ if (crde->crd_len == 0) return (EMSGSIZE); /* * AAD is only permitted before the cipher/plain text, not * after. */ if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) return (EMSGSIZE); if (crda->crd_len + AES_BLOCK_LEN > MAX_AAD_LEN) return (EMSGSIZE); hash_size_in_response = s->gmac.hash_len; if (crde->crd_flags & CRD_F_ENCRYPT) op_type = CHCR_ENCRYPT_OP; else op_type = CHCR_DECRYPT_OP; /* * The IV handling for GCM in OCF is a bit more complicated in * that IPSec provides a full 16-byte IV (including the * counter), whereas the /dev/crypto interface sometimes * provides a full 16-byte IV (if no IV is provided in the * ioctl) and sometimes a 12-byte IV (if the IV was explicit). * * When provided a 12-byte IV, assume the IV is really 16 bytes * with a counter in the last 4 bytes initialized to 1. * * While iv_len is checked below, the value is currently * always set to 12 when creating a GCM session in this driver * due to limitations in OCF (there is no way to know what the * IV length of a given request will be). This means that the * driver always assumes as 12-byte IV for now. */ if (s->blkcipher.iv_len == 12) iv_len = AES_BLOCK_LEN; else iv_len = s->blkcipher.iv_len; /* * The output buffer consists of the cipher text followed by * the tag when encrypting. For decryption it only contains * the plain text. * * Due to a firmware bug, the output buffer must include a * dummy output buffer for the IV and AAD prior to the real * output buffer. */ if (op_type == CHCR_ENCRYPT_OP) { if (iv_len + crda->crd_len + crde->crd_len + hash_size_in_response > MAX_REQUEST_SIZE) return (EFBIG); } else { if (iv_len + crda->crd_len + crde->crd_len > MAX_REQUEST_SIZE) return (EFBIG); } sglist_reset(sc->sg_dsgl); error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len + crda->crd_len); if (error) return (error); error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, crde->crd_len); if (error) return (error); if (op_type == CHCR_ENCRYPT_OP) { error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crda->crd_inject, hash_size_in_response); if (error) return (error); } dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) return (EFBIG); dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); /* * The 'key' part of the key context consists of the key followed * by the Galois hash key. */ kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN; transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); /* * The input buffer consists of the IV, any AAD, and then the * cipher/plain text. For decryption requests the hash is * appended after the cipher text. * * The IV is always stored at the start of the input buffer * even though it may be duplicated in the payload. The * crypto engine doesn't work properly if the IV offset points * inside of the AAD region, so a second copy is always * required. */ input_len = crda->crd_len + crde->crd_len; if (op_type == CHCR_DECRYPT_OP) input_len += hash_size_in_response; if (input_len > MAX_REQUEST_SIZE) return (EFBIG); if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) { imm_len = input_len; sgl_nsegs = 0; sgl_len = 0; } else { imm_len = 0; sglist_reset(sc->sg_ulptx); if (crda->crd_len != 0) { error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crda->crd_skip, crda->crd_len); if (error) return (error); } error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crde->crd_skip, crde->crd_len); if (error) return (error); if (op_type == CHCR_DECRYPT_OP) { error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, crda->crd_inject, hash_size_in_response); if (error) return (error); } sgl_nsegs = sc->sg_ulptx->sg_nseg; sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); } if (crda->crd_len != 0) { aad_start = iv_len + 1; aad_stop = aad_start + crda->crd_len - 1; } else { aad_start = 0; aad_stop = 0; } cipher_start = iv_len + crda->crd_len + 1; if (op_type == CHCR_DECRYPT_OP) cipher_stop = hash_size_in_response; else cipher_stop = 0; if (op_type == CHCR_DECRYPT_OP) auth_insert = hash_size_in_response; else auth_insert = 0; wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) + sgl_len; if (wr_len > SGE_MAX_WR_LEN) return (EFBIG); wr = alloc_wrqe(wr_len, sc->txq); if (wr == NULL) { sc->stats_wr_nomem++; return (ENOMEM); } crwr = wrtod(wr); memset(crwr, 0, wr_len); /* * Read the existing IV from the request or generate a random * one if none is provided. Optionally copy the generated IV * into the output buffer if requested. * * If the input IV is 12 bytes, append an explicit 4-byte * counter of 1. */ if (op_type == CHCR_ENCRYPT_OP) { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); else arc4rand(iv, s->blkcipher.iv_len, 0); if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) crypto_copyback(crp->crp_flags, crp->crp_buf, crde->crd_inject, s->blkcipher.iv_len, iv); } else { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); else crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_inject, s->blkcipher.iv_len, iv); } if (s->blkcipher.iv_len == 12) *(uint32_t *)&iv[12] = htobe32(1); ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, crp); /* XXX: Hardcodes SGE loopback channel of 0. */ crwr->sec_cpl.op_ivinsrtofst = htobe32( V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); crwr->sec_cpl.pldlen = htobe32(iv_len + input_len); /* * NB: cipherstop is explicitly set to 0. On encrypt it * should normally be set to 0 anyway (as the encrypt crd ends * at the end of the input). However, for decrypt the cipher * ends before the tag in the AUTHENC case (and authstop is * set to stop before the tag), but for GCM the cipher still * runs to the end of the buffer. Not sure if this is * intentional or a firmware quirk, but it is required for * working tag validation with GCM decryption. */ crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( V_CPL_TX_SEC_PDU_AADSTART(aad_start) | V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) | V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) | V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) | V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response); crwr->sec_cpl.seqno_numivs = htobe32( V_SCMD_SEQ_NO_CTRL(0) | V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | V_SCMD_ENC_DEC_CTRL(op_type) | V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_AES_GCM) | V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_GHASH) | V_SCMD_HMAC_CTRL(hmac_ctrl) | V_SCMD_IV_SIZE(iv_len / 2) | V_SCMD_NUM_IVS(0)); crwr->sec_cpl.ivgen_hdrlen = htobe32( V_SCMD_IV_GEN_CTRL(0) | V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN); dst = (char *)(crwr + 1) + kctx_len; ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; memcpy(dst, iv, iv_len); dst += iv_len; if (imm_len != 0) { if (crda->crd_len != 0) { crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip, crda->crd_len, dst); dst += crda->crd_len; } crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, crde->crd_len, dst); dst += crde->crd_len; if (op_type == CHCR_DECRYPT_OP) crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject, hash_size_in_response, dst); } else ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); /* XXX: TODO backpressure */ t4_wrq_tx(sc->adapter, wr); return (0); } static int ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) { /* * The updated IV to permit chained requests is at * cpl->data[2], but OCF doesn't permit chained requests. * * Note that the hardware should always verify the GMAC hash. */ return (error); } /* * Handle a GCM request that is not supported by the crypto engine by * performing the operation in software. Derived from swcr_authenc(). */ static void ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp, struct cryptodesc *crda, struct cryptodesc *crde) { struct auth_hash *axf; struct enc_xform *exf; void *auth_ctx; uint8_t *kschedule; char block[GMAC_BLOCK_LEN]; char digest[GMAC_DIGEST_LEN]; char iv[AES_BLOCK_LEN]; int error, i, len; auth_ctx = NULL; kschedule = NULL; /* Initialize the MAC. */ switch (s->blkcipher.key_len) { case 16: axf = &auth_hash_nist_gmac_aes_128; break; case 24: axf = &auth_hash_nist_gmac_aes_192; break; case 32: axf = &auth_hash_nist_gmac_aes_256; break; default: error = EINVAL; goto out; } auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT); if (auth_ctx == NULL) { error = ENOMEM; goto out; } axf->Init(auth_ctx); axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len); /* Initialize the cipher. */ exf = &enc_xform_aes_nist_gcm; error = exf->setkey(&kschedule, s->blkcipher.enckey, s->blkcipher.key_len); if (error) goto out; /* * This assumes a 12-byte IV from the crp. See longer comment * above in ccr_gcm() for more details. */ if (crde->crd_flags & CRD_F_ENCRYPT) { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, 12); else arc4rand(iv, 12, 0); if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) crypto_copyback(crp->crp_flags, crp->crp_buf, crde->crd_inject, 12, iv); } else { if (crde->crd_flags & CRD_F_IV_EXPLICIT) memcpy(iv, crde->crd_iv, 12); else crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_inject, 12, iv); } *(uint32_t *)&iv[12] = htobe32(1); axf->Reinit(auth_ctx, iv, sizeof(iv)); /* MAC the AAD. */ for (i = 0; i < crda->crd_len; i += sizeof(block)) { len = imin(crda->crd_len - i, sizeof(block)); crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip + i, len, block); bzero(block + len, sizeof(block) - len); axf->Update(auth_ctx, block, sizeof(block)); } exf->reinit(kschedule, iv); /* Do encryption with MAC */ for (i = 0; i < crde->crd_len; i += sizeof(block)) { len = imin(crde->crd_len - i, sizeof(block)); crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip + i, len, block); bzero(block + len, sizeof(block) - len); if (crde->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(kschedule, block); axf->Update(auth_ctx, block, len); crypto_copyback(crp->crp_flags, crp->crp_buf, crde->crd_skip + i, len, block); } else { axf->Update(auth_ctx, block, len); } } /* Length block. */ bzero(block, sizeof(block)); ((uint32_t *)block)[1] = htobe32(crda->crd_len * 8); ((uint32_t *)block)[3] = htobe32(crde->crd_len * 8); axf->Update(auth_ctx, block, sizeof(block)); /* Finalize MAC. */ axf->Final(digest, auth_ctx); /* Inject or validate tag. */ if (crde->crd_flags & CRD_F_ENCRYPT) { crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject, sizeof(digest), digest); error = 0; } else { char digest2[GMAC_DIGEST_LEN]; crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject, sizeof(digest2), digest2); if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) { error = 0; /* Tag matches, decrypt data. */ for (i = 0; i < crde->crd_len; i += sizeof(block)) { len = imin(crde->crd_len - i, sizeof(block)); crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip + i, len, block); bzero(block + len, sizeof(block) - len); exf->decrypt(kschedule, block); crypto_copyback(crp->crp_flags, crp->crp_buf, crde->crd_skip + i, len, block); } } else error = EBADMSG; } exf->zerokey(&kschedule); out: if (auth_ctx != NULL) { memset(auth_ctx, 0, axf->ctxsize); free(auth_ctx, M_CCR); } crp->crp_etype = error; crypto_done(crp); } static void ccr_identify(driver_t *driver, device_t parent) { struct adapter *sc; sc = device_get_softc(parent); if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE && device_find_child(parent, "ccr", -1) == NULL) device_add_child(parent, "ccr", -1); } static int ccr_probe(device_t dev) { device_set_desc(dev, "Chelsio Crypto Accelerator"); return (BUS_PROBE_DEFAULT); } static void ccr_sysctls(struct ccr_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(sc->dev); /* * dev.ccr.X. */ oid = device_get_sysctl_tree(sc->dev); children = SYSCTL_CHILDREN(oid); /* * dev.ccr.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "statistics"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hash", CTLFLAG_RD, &sc->stats_hash, 0, "Hash requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD, &sc->stats_hmac, 0, "HMAC requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD, &sc->stats_blkcipher_encrypt, 0, "Cipher encryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD, &sc->stats_blkcipher_decrypt, 0, "Cipher decryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD, &sc->stats_authenc_encrypt, 0, "Combined AES+HMAC encryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD, &sc->stats_authenc_decrypt, 0, "Combined AES+HMAC decryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD, &sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD, &sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD, &sc->stats_wr_nomem, 0, "Work request memory allocation failures"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD, &sc->stats_inflight, 0, "Requests currently pending"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD, &sc->stats_mac_error, 0, "MAC errors"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD, &sc->stats_pad_error, 0, "Padding errors"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD, &sc->stats_bad_session, 0, "Requests with invalid session ID"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD, &sc->stats_sglist_error, 0, "Requests for which DMA mapping failed"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD, &sc->stats_process_error, 0, "Requests failed during queueing"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sw_fallback", CTLFLAG_RD, &sc->stats_sw_fallback, 0, "Requests processed by falling back to software"); } static int ccr_attach(device_t dev) { struct ccr_softc *sc; int32_t cid; /* * TODO: Crypto requests will panic if the parent device isn't * initialized so that the queues are up and running. Need to * figure out how to handle that correctly, maybe just reject * requests if the adapter isn't fully initialized? */ sc = device_get_softc(dev); sc->dev = dev; sc->adapter = device_get_softc(device_get_parent(dev)); sc->txq = &sc->adapter->sge.ctrlq[0]; sc->rxq = &sc->adapter->sge.rxq[0]; cid = crypto_get_driverid(dev, sizeof(struct ccr_session), CRYPTOCAP_F_HARDWARE); if (cid < 0) { device_printf(dev, "could not get crypto driver id\n"); return (ENXIO); } sc->cid = cid; sc->adapter->ccr_softc = sc; /* XXX: TODO? */ sc->tx_channel_id = 0; mtx_init(&sc->lock, "ccr", NULL, MTX_DEF); sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK); sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK); sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK); sc->iv_aad_buf = malloc(MAX_AAD_LEN, M_CCR, M_WAITOK); sc->sg_iv_aad = sglist_build(sc->iv_aad_buf, MAX_AAD_LEN, M_WAITOK); ccr_sysctls(sc); crypto_register(cid, CRYPTO_SHA1, 0, 0); crypto_register(cid, CRYPTO_SHA2_224, 0, 0); crypto_register(cid, CRYPTO_SHA2_256, 0, 0); crypto_register(cid, CRYPTO_SHA2_384, 0, 0); crypto_register(cid, CRYPTO_SHA2_512, 0, 0); crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0); crypto_register(cid, CRYPTO_SHA2_224_HMAC, 0, 0); crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0); crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0); crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0); crypto_register(cid, CRYPTO_AES_CBC, 0, 0); crypto_register(cid, CRYPTO_AES_ICM, 0, 0); crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0); crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0); crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0); crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0); crypto_register(cid, CRYPTO_AES_XTS, 0, 0); return (0); } static int ccr_detach(device_t dev) { struct ccr_softc *sc; sc = device_get_softc(dev); mtx_lock(&sc->lock); sc->detaching = true; mtx_unlock(&sc->lock); crypto_unregister_all(sc->cid); mtx_destroy(&sc->lock); sglist_free(sc->sg_iv_aad); free(sc->iv_aad_buf, M_CCR); sglist_free(sc->sg_dsgl); sglist_free(sc->sg_ulptx); sglist_free(sc->sg_crp); sc->adapter->ccr_softc = NULL; return (0); } static void ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx) { uint32_t *u32; uint64_t *u64; u_int i; u32 = (uint32_t *)dst; u64 = (uint64_t *)dst; switch (cri_alg) { case CRYPTO_SHA1: case CRYPTO_SHA1_HMAC: for (i = 0; i < SHA1_HASH_LEN / 4; i++) u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]); break; case CRYPTO_SHA2_224: case CRYPTO_SHA2_224_HMAC: for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) u32[i] = htobe32(auth_ctx->sha224ctx.state[i]); break; case CRYPTO_SHA2_256: case CRYPTO_SHA2_256_HMAC: for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) u32[i] = htobe32(auth_ctx->sha256ctx.state[i]); break; case CRYPTO_SHA2_384: case CRYPTO_SHA2_384_HMAC: for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) u64[i] = htobe64(auth_ctx->sha384ctx.state[i]); break; case CRYPTO_SHA2_512: case CRYPTO_SHA2_512_HMAC: for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) u64[i] = htobe64(auth_ctx->sha512ctx.state[i]); break; } } static void ccr_init_hash_digest(struct ccr_session *s, int cri_alg) { union authctx auth_ctx; struct auth_hash *axf; axf = s->hmac.auth_hash; axf->Init(&auth_ctx); ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx); } static void ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key, int klen) { union authctx auth_ctx; struct auth_hash *axf; u_int i; /* * If the key is larger than the block size, use the digest of * the key as the key instead. */ axf = s->hmac.auth_hash; klen /= 8; if (klen > axf->blocksize) { axf->Init(&auth_ctx); axf->Update(&auth_ctx, key, klen); axf->Final(s->hmac.ipad, &auth_ctx); klen = axf->hashsize; } else memcpy(s->hmac.ipad, key, klen); memset(s->hmac.ipad + klen, 0, axf->blocksize - klen); memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize); for (i = 0; i < axf->blocksize; i++) { s->hmac.ipad[i] ^= HMAC_IPAD_VAL; s->hmac.opad[i] ^= HMAC_OPAD_VAL; } /* * Hash the raw ipad and opad and store the partial result in * the same buffer. */ axf->Init(&auth_ctx); axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize); ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx); axf->Init(&auth_ctx); axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize); ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx); } /* * Borrowed from AES_GMAC_Setkey(). */ static void ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen) { static char zeroes[GMAC_BLOCK_LEN]; uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)]; int rounds; rounds = rijndaelKeySetupEnc(keysched, key, klen); rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h); } static int ccr_aes_check_keylen(int alg, int klen) { switch (klen) { case 128: case 192: if (alg == CRYPTO_AES_XTS) return (EINVAL); break; case 256: break; case 512: if (alg != CRYPTO_AES_XTS) return (EINVAL); break; default: return (EINVAL); } return (0); } static void ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen) { unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size; unsigned int opad_present; if (alg == CRYPTO_AES_XTS) kbits = klen / 2; else kbits = klen; switch (kbits) { case 128: ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; break; case 192: ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; break; case 256: ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; break; default: panic("should not get here"); } s->blkcipher.key_len = klen / 8; memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len); switch (alg) { case CRYPTO_AES_CBC: case CRYPTO_AES_XTS: t4_aes_getdeckey(s->blkcipher.deckey, key, kbits); break; } kctx_len = roundup2(s->blkcipher.key_len, 16); switch (s->mode) { case AUTHENC: mk_size = s->hmac.mk_size; opad_present = 1; iopad_size = roundup2(s->hmac.partial_digest_len, 16); kctx_len += iopad_size * 2; break; case GCM: mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; opad_present = 0; kctx_len += GMAC_BLOCK_LEN; break; default: mk_size = CHCR_KEYCTX_NO_KEY; opad_present = 0; break; } kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) | V_KEY_CONTEXT_OPAD_PRESENT(opad_present) | V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) | V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1)); } static int ccr_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri) { struct ccr_softc *sc; struct ccr_session *s; struct auth_hash *auth_hash; struct cryptoini *c, *hash, *cipher; unsigned int auth_mode, cipher_mode, iv_len, mk_size; unsigned int partial_digest_len; int error; bool gcm_hash, hmac; if (cri == NULL) return (EINVAL); gcm_hash = false; hmac = false; cipher = NULL; hash = NULL; auth_hash = NULL; auth_mode = CHCR_SCMD_AUTH_MODE_NOP; cipher_mode = CHCR_SCMD_CIPHER_MODE_NOP; iv_len = 0; mk_size = 0; partial_digest_len = 0; for (c = cri; c != NULL; c = c->cri_next) { switch (c->cri_alg) { case CRYPTO_SHA1: case CRYPTO_SHA2_224: case CRYPTO_SHA2_256: case CRYPTO_SHA2_384: case CRYPTO_SHA2_512: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_AES_128_NIST_GMAC: case CRYPTO_AES_192_NIST_GMAC: case CRYPTO_AES_256_NIST_GMAC: if (hash) return (EINVAL); hash = c; switch (c->cri_alg) { case CRYPTO_SHA1: case CRYPTO_SHA1_HMAC: auth_hash = &auth_hash_hmac_sha1; auth_mode = CHCR_SCMD_AUTH_MODE_SHA1; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160; partial_digest_len = SHA1_HASH_LEN; break; case CRYPTO_SHA2_224: case CRYPTO_SHA2_224_HMAC: auth_hash = &auth_hash_hmac_sha2_224; auth_mode = CHCR_SCMD_AUTH_MODE_SHA224; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; partial_digest_len = SHA2_256_HASH_LEN; break; case CRYPTO_SHA2_256: case CRYPTO_SHA2_256_HMAC: auth_hash = &auth_hash_hmac_sha2_256; auth_mode = CHCR_SCMD_AUTH_MODE_SHA256; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; partial_digest_len = SHA2_256_HASH_LEN; break; case CRYPTO_SHA2_384: case CRYPTO_SHA2_384_HMAC: auth_hash = &auth_hash_hmac_sha2_384; auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; partial_digest_len = SHA2_512_HASH_LEN; break; case CRYPTO_SHA2_512: case CRYPTO_SHA2_512_HMAC: auth_hash = &auth_hash_hmac_sha2_512; auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; partial_digest_len = SHA2_512_HASH_LEN; break; case CRYPTO_AES_128_NIST_GMAC: case CRYPTO_AES_192_NIST_GMAC: case CRYPTO_AES_256_NIST_GMAC: gcm_hash = true; auth_mode = CHCR_SCMD_AUTH_MODE_GHASH; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; break; } switch (c->cri_alg) { case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: hmac = true; break; } break; case CRYPTO_AES_CBC: case CRYPTO_AES_ICM: case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_XTS: if (cipher) return (EINVAL); cipher = c; switch (c->cri_alg) { case CRYPTO_AES_CBC: cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC; iv_len = AES_BLOCK_LEN; break; case CRYPTO_AES_ICM: cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR; iv_len = AES_BLOCK_LEN; break; case CRYPTO_AES_NIST_GCM_16: cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_GCM; iv_len = AES_GCM_IV_LEN; break; case CRYPTO_AES_XTS: cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS; iv_len = AES_BLOCK_LEN; break; } if (c->cri_key != NULL) { error = ccr_aes_check_keylen(c->cri_alg, c->cri_klen); if (error) return (error); } break; default: return (EINVAL); } } if (gcm_hash != (cipher_mode == CHCR_SCMD_CIPHER_MODE_AES_GCM)) return (EINVAL); if (hash == NULL && cipher == NULL) return (EINVAL); if (hash != NULL) { if ((hmac || gcm_hash) && hash->cri_key == NULL) return (EINVAL); if (!(hmac || gcm_hash) && hash->cri_key != NULL) return (EINVAL); } sc = device_get_softc(dev); mtx_lock(&sc->lock); if (sc->detaching) { mtx_unlock(&sc->lock); return (ENXIO); } s = crypto_get_driver_session(cses); if (gcm_hash) s->mode = GCM; else if (hash != NULL && cipher != NULL) s->mode = AUTHENC; else if (hash != NULL) { if (hmac) s->mode = HMAC; else s->mode = HASH; } else { MPASS(cipher != NULL); s->mode = BLKCIPHER; } if (gcm_hash) { if (hash->cri_mlen == 0) s->gmac.hash_len = AES_GMAC_HASH_LEN; else s->gmac.hash_len = hash->cri_mlen; ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen); } else if (hash != NULL) { s->hmac.auth_hash = auth_hash; s->hmac.auth_mode = auth_mode; s->hmac.mk_size = mk_size; s->hmac.partial_digest_len = partial_digest_len; if (hash->cri_mlen == 0) s->hmac.hash_len = auth_hash->hashsize; else s->hmac.hash_len = hash->cri_mlen; if (hmac) ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key, hash->cri_klen); else ccr_init_hash_digest(s, hash->cri_alg); } if (cipher != NULL) { s->blkcipher.cipher_mode = cipher_mode; s->blkcipher.iv_len = iv_len; if (cipher->cri_key != NULL) ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key, cipher->cri_klen); } s->active = true; mtx_unlock(&sc->lock); return (0); } static void ccr_freesession(device_t dev, crypto_session_t cses) { struct ccr_softc *sc; struct ccr_session *s; sc = device_get_softc(dev); s = crypto_get_driver_session(cses); mtx_lock(&sc->lock); if (s->pending != 0) device_printf(dev, "session %p freed with %d pending requests\n", s, s->pending); s->active = false; mtx_unlock(&sc->lock); } static int ccr_process(device_t dev, struct cryptop *crp, int hint) { struct ccr_softc *sc; struct ccr_session *s; struct cryptodesc *crd, *crda, *crde; int error; if (crp == NULL) return (EINVAL); crd = crp->crp_desc; s = crypto_get_driver_session(crp->crp_session); sc = device_get_softc(dev); mtx_lock(&sc->lock); error = ccr_populate_sglist(sc->sg_crp, crp); if (error) { sc->stats_sglist_error++; goto out; } switch (s->mode) { case HASH: error = ccr_hash(sc, s, crp); if (error == 0) sc->stats_hash++; break; case HMAC: if (crd->crd_flags & CRD_F_KEY_EXPLICIT) ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key, crd->crd_klen); error = ccr_hash(sc, s, crp); if (error == 0) sc->stats_hmac++; break; case BLKCIPHER: if (crd->crd_flags & CRD_F_KEY_EXPLICIT) { error = ccr_aes_check_keylen(crd->crd_alg, crd->crd_klen); if (error) break; ccr_aes_setkey(s, crd->crd_alg, crd->crd_key, crd->crd_klen); } error = ccr_blkcipher(sc, s, crp); if (error == 0) { if (crd->crd_flags & CRD_F_ENCRYPT) sc->stats_blkcipher_encrypt++; else sc->stats_blkcipher_decrypt++; } break; case AUTHENC: error = 0; switch (crd->crd_alg) { case CRYPTO_AES_CBC: case CRYPTO_AES_ICM: case CRYPTO_AES_XTS: /* Only encrypt-then-authenticate supported. */ crde = crd; crda = crd->crd_next; if (!(crde->crd_flags & CRD_F_ENCRYPT)) { error = EINVAL; break; } break; default: crda = crd; crde = crd->crd_next; if (crde->crd_flags & CRD_F_ENCRYPT) { error = EINVAL; break; } break; } if (error) break; if (crda->crd_flags & CRD_F_KEY_EXPLICIT) ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key, crda->crd_klen); if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { error = ccr_aes_check_keylen(crde->crd_alg, crde->crd_klen); if (error) break; ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, crde->crd_klen); } error = ccr_authenc(sc, s, crp, crda, crde); if (error == 0) { if (crde->crd_flags & CRD_F_ENCRYPT) sc->stats_authenc_encrypt++; else sc->stats_authenc_decrypt++; } break; case GCM: error = 0; if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) { crde = crd; crda = crd->crd_next; } else { crda = crd; crde = crd->crd_next; } if (crda->crd_flags & CRD_F_KEY_EXPLICIT) ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen); if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { error = ccr_aes_check_keylen(crde->crd_alg, crde->crd_klen); if (error) break; ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, crde->crd_klen); } if (crde->crd_len == 0) { mtx_unlock(&sc->lock); ccr_gcm_soft(s, crp, crda, crde); return (0); } error = ccr_gcm(sc, s, crp, crda, crde); if (error == EMSGSIZE) { sc->stats_sw_fallback++; mtx_unlock(&sc->lock); ccr_gcm_soft(s, crp, crda, crde); return (0); } if (error == 0) { if (crde->crd_flags & CRD_F_ENCRYPT) sc->stats_gcm_encrypt++; else sc->stats_gcm_decrypt++; } break; } if (error == 0) { s->pending++; sc->stats_inflight++; } else sc->stats_process_error++; out: mtx_unlock(&sc->lock); if (error) { crp->crp_etype = error; crypto_done(crp); } return (0); } static int do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct ccr_softc *sc = iq->adapter->ccr_softc; struct ccr_session *s; const struct cpl_fw6_pld *cpl; struct cryptop *crp; uint32_t status; int error; if (m != NULL) cpl = mtod(m, const void *); else cpl = (const void *)(rss + 1); crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]); s = crypto_get_driver_session(crp->crp_session); status = be64toh(cpl->data[0]); if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status)) error = EBADMSG; else error = 0; mtx_lock(&sc->lock); s->pending--; sc->stats_inflight--; switch (s->mode) { case HASH: case HMAC: error = ccr_hash_done(sc, s, crp, cpl, error); break; case BLKCIPHER: error = ccr_blkcipher_done(sc, s, crp, cpl, error); break; case AUTHENC: error = ccr_authenc_done(sc, s, crp, cpl, error); break; case GCM: error = ccr_gcm_done(sc, s, crp, cpl, error); break; } if (error == EBADMSG) { if (CHK_MAC_ERR_BIT(status)) sc->stats_mac_error++; if (CHK_PAD_ERR_BIT(status)) sc->stats_pad_error++; } mtx_unlock(&sc->lock); crp->crp_etype = error; crypto_done(crp); m_freem(m); return (0); } static int ccr_modevent(module_t mod, int cmd, void *arg) { switch (cmd) { case MOD_LOAD: t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld); return (0); case MOD_UNLOAD: t4_register_cpl_handler(CPL_FW6_PLD, NULL); return (0); default: return (EOPNOTSUPP); } } static device_method_t ccr_methods[] = { DEVMETHOD(device_identify, ccr_identify), DEVMETHOD(device_probe, ccr_probe), DEVMETHOD(device_attach, ccr_attach), DEVMETHOD(device_detach, ccr_detach), DEVMETHOD(cryptodev_newsession, ccr_newsession), DEVMETHOD(cryptodev_freesession, ccr_freesession), DEVMETHOD(cryptodev_process, ccr_process), DEVMETHOD_END }; static driver_t ccr_driver = { "ccr", ccr_methods, sizeof(struct ccr_softc) }; static devclass_t ccr_devclass; DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL); MODULE_VERSION(ccr, 1); MODULE_DEPEND(ccr, crypto, 1, 1, 1); MODULE_DEPEND(ccr, t6nex, 1, 1, 1);