/*- * Copyright (c) 2019 Emmanuel Vadot * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include "clkdev_if.h" /* #define dprintf(format, arg...) printf("%s:(%s)" format, __func__, clknode_get_name(clk), arg) */ #define dprintf(format, arg...) /* * clknode for clocks matching the formula : * * clk = (24Mhz * n) / m in integer mode * clk = frac_out1 or frac_out2 in fractional mode * */ struct aw_clk_frac_sc { uint32_t offset; struct aw_clk_factor m; struct aw_clk_factor n; struct aw_clk_frac frac; uint64_t min_freq; uint64_t max_freq; uint32_t mux_shift; uint32_t mux_mask; uint32_t gate_shift; uint32_t lock_shift; uint32_t lock_retries; uint32_t flags; }; #define WRITE4(_clk, off, val) \ CLKDEV_WRITE_4(clknode_get_device(_clk), off, val) #define READ4(_clk, off, val) \ CLKDEV_READ_4(clknode_get_device(_clk), off, val) #define DEVICE_LOCK(_clk) \ CLKDEV_DEVICE_LOCK(clknode_get_device(_clk)) #define DEVICE_UNLOCK(_clk) \ CLKDEV_DEVICE_UNLOCK(clknode_get_device(_clk)) static int aw_clk_frac_init(struct clknode *clk, device_t dev) { struct aw_clk_frac_sc *sc; uint32_t val, idx; sc = clknode_get_softc(clk); idx = 0; if ((sc->flags & AW_CLK_HAS_MUX) != 0) { DEVICE_LOCK(clk); READ4(clk, sc->offset, &val); DEVICE_UNLOCK(clk); idx = (val & sc->mux_mask) >> sc->mux_shift; } dprintf("init parent idx %d\n", idx); clknode_init_parent_idx(clk, idx); return (0); } static int aw_clk_frac_set_gate(struct clknode *clk, bool enable) { struct aw_clk_frac_sc *sc; uint32_t val; sc = clknode_get_softc(clk); if ((sc->flags & AW_CLK_HAS_GATE) == 0) return (0); dprintf("%sabling gate\n", enable ? "En" : "Dis"); DEVICE_LOCK(clk); READ4(clk, sc->offset, &val); if (enable) val |= (1 << sc->gate_shift); else val &= ~(1 << sc->gate_shift); WRITE4(clk, sc->offset, val); DEVICE_UNLOCK(clk); return (0); } static int aw_clk_frac_set_mux(struct clknode *clk, int index) { struct aw_clk_frac_sc *sc; uint32_t val; sc = clknode_get_softc(clk); if ((sc->flags & AW_CLK_HAS_MUX) == 0) return (0); dprintf("Set mux to %d\n", index); DEVICE_LOCK(clk); READ4(clk, sc->offset, &val); val &= ~sc->mux_mask; val |= index << sc->mux_shift; WRITE4(clk, sc->offset, val); DEVICE_UNLOCK(clk); return (0); } static uint64_t aw_clk_frac_find_best(struct aw_clk_frac_sc *sc, uint64_t fparent, uint64_t fout, uint32_t *factor_n, uint32_t *factor_m) { uint64_t cur, best; uint32_t m, n, max_m, max_n, min_m, min_n; *factor_n = *factor_m = 0; best = cur = 0; max_m = aw_clk_factor_get_max(&sc->m); max_n = aw_clk_factor_get_max(&sc->n); min_m = aw_clk_factor_get_min(&sc->m); min_n = sc->min_freq / fparent; for (n = min_n; n <= max_n; n++) { for (m = min_m; m <= max_m; m++) { cur = fparent * n / m; if (cur < sc->min_freq) { continue; } if (cur > sc->max_freq) { continue; } if (cur == fout) { *factor_n = n; *factor_m = m; return (cur); } if (abs((fout - cur)) < abs((fout - best))) { best = cur; *factor_n = n; *factor_m = m; } } } return (best); } static int aw_clk_frac_set_freq(struct clknode *clk, uint64_t fparent, uint64_t *fout, int flags, int *stop) { struct aw_clk_frac_sc *sc; uint64_t cur, best, best_frac; uint32_t val, m, n, best_m, best_n; int retry, multiple, max_mult, best_mult; sc = clknode_get_softc(clk); best = best_frac = cur = 0; best_mult = 0; max_mult = 1; dprintf("Trying to find freq %ju with parent %ju\n", *fout, fparent); if ((flags & CLK_SET_ROUND_MULTIPLE) != 0) max_mult = 10; for (multiple = 1; multiple <= max_mult; multiple++) { /* First test the fractional frequencies */ dprintf("Testing with multiple %d\n", multiple); if (*fout * multiple == sc->frac.freq0) { best = best_frac = sc->frac.freq0; best_mult = multiple; dprintf("Found with using frac.freq0 and multiple %d\n", multiple); break; } else if (*fout * multiple == sc->frac.freq1) { best = best_frac = sc->frac.freq1; best_mult = multiple; dprintf("Found with using frac.freq1 and multiple %d\n", multiple); break; } else { cur = aw_clk_frac_find_best(sc, fparent, *fout * multiple, &n, &m); dprintf("Got %ju with n=%d, m=%d\n", cur, n, m); if (cur == (*fout * multiple)) { best = cur; best_mult = multiple; best_n = n; best_m = m; dprintf("This is the one: n=%d m=%d mult=%d\n", best_n, best_m, best_mult); break; } if (abs(((*fout * multiple) - cur)) < abs(((*fout * multiple) - best))) { best = cur; best_mult = multiple; best_n = n; best_m = m; dprintf("This is the best for now: n=%d m=%d mult=%d\n", best_n, best_m, best_mult); } } } if (best < sc->min_freq || best > sc->max_freq) { printf("%s: Cannot set %ju for %s (min=%ju max=%ju)\n", __func__, best, clknode_get_name(clk), sc->min_freq, sc->max_freq); return (ERANGE); } if ((flags & CLK_SET_DRYRUN) != 0) { *fout = best; *stop = 1; return (0); } if ((best < (*fout * best_mult)) && ((flags & CLK_SET_ROUND_DOWN) == 0)) { *stop = 1; return (ERANGE); } if ((best > *fout * best_mult) && ((flags & CLK_SET_ROUND_UP) == 0)) { *stop = 1; return (ERANGE); } DEVICE_LOCK(clk); READ4(clk, sc->offset, &val); /* Disable clock during freq changes */ val &= ~(1 << sc->gate_shift); WRITE4(clk, sc->offset, val); if (best_frac != 0) { val &= ~sc->frac.mode_sel; /* M should be 0 per the manual */ val &= ~sc->m.mask; if (best_frac == sc->frac.freq0) val &= ~sc->frac.freq_sel; else val |= sc->frac.freq_sel; } else { val |= sc->frac.mode_sel; /* Select integer mode */ n = aw_clk_factor_get_value(&sc->n, best_n); m = aw_clk_factor_get_value(&sc->m, best_m); val &= ~sc->n.mask; val &= ~sc->m.mask; val |= n << sc->n.shift; val |= m << sc->m.shift; } /* Write the clock changes */ WRITE4(clk, sc->offset, val); /* Enable clock now that we've change it */ val |= 1 << sc->gate_shift; WRITE4(clk, sc->offset, val); DEVICE_UNLOCK(clk); for (retry = 0; retry < sc->lock_retries; retry++) { READ4(clk, sc->offset, &val); if ((val & (1 << sc->lock_shift)) != 0) break; DELAY(1000); } *fout = best; *stop = 1; return (0); } static int aw_clk_frac_recalc(struct clknode *clk, uint64_t *freq) { struct aw_clk_frac_sc *sc; uint32_t val, m, n; sc = clknode_get_softc(clk); DEVICE_LOCK(clk); READ4(clk, sc->offset, &val); DEVICE_UNLOCK(clk); if ((val & sc->frac.mode_sel) == 0) { if (val & sc->frac.freq_sel) *freq = sc->frac.freq1; else *freq = sc->frac.freq0; } else { m = aw_clk_get_factor(val, &sc->m); n = aw_clk_get_factor(val, &sc->n); *freq = *freq * n / m; } return (0); } static clknode_method_t aw_frac_clknode_methods[] = { /* Device interface */ CLKNODEMETHOD(clknode_init, aw_clk_frac_init), CLKNODEMETHOD(clknode_set_gate, aw_clk_frac_set_gate), CLKNODEMETHOD(clknode_set_mux, aw_clk_frac_set_mux), CLKNODEMETHOD(clknode_recalc_freq, aw_clk_frac_recalc), CLKNODEMETHOD(clknode_set_freq, aw_clk_frac_set_freq), CLKNODEMETHOD_END }; DEFINE_CLASS_1(aw_frac_clknode, aw_frac_clknode_class, aw_frac_clknode_methods, sizeof(struct aw_clk_frac_sc), clknode_class); int aw_clk_frac_register(struct clkdom *clkdom, struct aw_clk_frac_def *clkdef) { struct clknode *clk; struct aw_clk_frac_sc *sc; clk = clknode_create(clkdom, &aw_frac_clknode_class, &clkdef->clkdef); if (clk == NULL) return (1); sc = clknode_get_softc(clk); sc->offset = clkdef->offset; sc->m.shift = clkdef->m.shift; sc->m.width = clkdef->m.width; sc->m.mask = ((1 << sc->m.width) - 1) << sc->m.shift; sc->m.value = clkdef->m.value; sc->m.flags = clkdef->m.flags; sc->n.shift = clkdef->n.shift; sc->n.width = clkdef->n.width; sc->n.mask = ((1 << sc->n.width) - 1) << sc->n.shift; sc->n.value = clkdef->n.value; sc->n.flags = clkdef->n.flags; sc->frac.freq0 = clkdef->frac.freq0; sc->frac.freq1 = clkdef->frac.freq1; sc->frac.mode_sel = 1 << clkdef->frac.mode_sel; sc->frac.freq_sel = 1 << clkdef->frac.freq_sel; sc->min_freq = clkdef->min_freq; sc->max_freq = clkdef->max_freq; sc->mux_shift = clkdef->mux_shift; sc->mux_mask = ((1 << clkdef->mux_width) - 1) << sc->mux_shift; sc->gate_shift = clkdef->gate_shift; sc->lock_shift = clkdef->lock_shift; sc->lock_retries = clkdef->lock_retries; sc->flags = clkdef->flags; clknode_register(clkdom, clk); return (0); }