/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Michael Smith * Copyright (c) 2004 Paul Saab * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Common Interface for SCSI-3 Support driver. * * CISS claims to provide a common interface between a generic SCSI * transport and an intelligent host adapter. * * This driver supports CISS as defined in the document "CISS Command * Interface for SCSI-3 Support Open Specification", Version 1.04, * Valence Number 1, dated 20001127, produced by Compaq Computer * Corporation. This document appears to be a hastily and somewhat * arbitrarlily cut-down version of a larger (and probably even more * chaotic and inconsistent) Compaq internal document. Various * details were also gleaned from Compaq's "cciss" driver for Linux. * * We provide a shim layer between the CISS interface and CAM, * offloading most of the queueing and being-a-disk chores onto CAM. * Entry to the driver is via the PCI bus attachment (ciss_probe, * ciss_attach, etc) and via the CAM interface (ciss_cam_action, * ciss_cam_poll). The Compaq CISS adapters are, however, poor SCSI * citizens and we have to fake up some responses to get reasonable * behaviour out of them. In addition, the CISS command set is by no * means adequate to support the functionality of a RAID controller, * and thus the supported Compaq adapters utilise portions of the * control protocol from earlier Compaq adapter families. * * Note that we only support the "simple" transport layer over PCI. * This interface (ab)uses the I2O register set (specifically the post * queues) to exchange commands with the adapter. Other interfaces * are available, but we aren't supposed to know about them, and it is * dubious whether they would provide major performance improvements * except under extreme load. * * Currently the only supported CISS adapters are the Compaq Smart * Array 5* series (5300, 5i, 532). Even with only three adapters, * Compaq still manage to have interface variations. * * * Thanks must go to Fred Harris and Darryl DeVinney at Compaq, as * well as Paul Saab at Yahoo! for their assistance in making this * driver happen. * * More thanks must go to John Cagle at HP for the countless hours * spent making this driver "work" with the MSA* series storage * enclosures. Without his help (and nagging), this driver could not * be used with these enclosures. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CISS_DEBUG #include "opt_ddb.h" #endif static MALLOC_DEFINE(CISS_MALLOC_CLASS, "ciss_data", "ciss internal data buffers"); /* pci interface */ static int ciss_lookup(device_t dev); static int ciss_probe(device_t dev); static int ciss_attach(device_t dev); static int ciss_detach(device_t dev); static int ciss_shutdown(device_t dev); /* (de)initialisation functions, control wrappers */ static int ciss_init_pci(struct ciss_softc *sc); static int ciss_setup_msix(struct ciss_softc *sc); static int ciss_init_perf(struct ciss_softc *sc); static int ciss_wait_adapter(struct ciss_softc *sc); static int ciss_flush_adapter(struct ciss_softc *sc); static int ciss_init_requests(struct ciss_softc *sc); static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error); static int ciss_identify_adapter(struct ciss_softc *sc); static int ciss_init_logical(struct ciss_softc *sc); static int ciss_init_physical(struct ciss_softc *sc); static int ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll); static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld); static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld); static int ciss_update_config(struct ciss_softc *sc); static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld); static void ciss_init_sysctl(struct ciss_softc *sc); static void ciss_soft_reset(struct ciss_softc *sc); static void ciss_free(struct ciss_softc *sc); static void ciss_spawn_notify_thread(struct ciss_softc *sc); static void ciss_kill_notify_thread(struct ciss_softc *sc); /* request submission/completion */ static int ciss_start(struct ciss_request *cr); static void ciss_done(struct ciss_softc *sc, cr_qhead_t *qh); static void ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh); static void ciss_intr(void *arg); static void ciss_perf_intr(void *arg); static void ciss_perf_msi_intr(void *arg); static void ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh); static int _ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func); static int ciss_synch_request(struct ciss_request *cr, int timeout); static int ciss_poll_request(struct ciss_request *cr, int timeout); static int ciss_wait_request(struct ciss_request *cr, int timeout); #if 0 static int ciss_abort_request(struct ciss_request *cr); #endif /* request queueing */ static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp); static void ciss_preen_command(struct ciss_request *cr); static void ciss_release_request(struct ciss_request *cr); /* request helpers */ static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp, int opcode, void **bufp, size_t bufsize); static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc); /* DMA map/unmap */ static int ciss_map_request(struct ciss_request *cr); static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error); static void ciss_unmap_request(struct ciss_request *cr); /* CAM interface */ static int ciss_cam_init(struct ciss_softc *sc); static void ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target); static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb); static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio); static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio); static void ciss_cam_poll(struct cam_sim *sim); static void ciss_cam_complete(struct ciss_request *cr); static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio); static int ciss_name_device(struct ciss_softc *sc, int bus, int target); /* periodic status monitoring */ static void ciss_periodic(void *arg); static void ciss_nop_complete(struct ciss_request *cr); static void ciss_disable_adapter(struct ciss_softc *sc); static void ciss_notify_event(struct ciss_softc *sc); static void ciss_notify_complete(struct ciss_request *cr); static int ciss_notify_abort(struct ciss_softc *sc); static int ciss_notify_abort_bmic(struct ciss_softc *sc); static void ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn); static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn); static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn); /* debugging output */ #ifdef DDB static void ciss_print_request(struct ciss_request *cr); #endif static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld); static const char *ciss_name_ldrive_status(int status); static int ciss_decode_ldrive_status(int status); static const char *ciss_name_ldrive_org(int org); static const char *ciss_name_command_status(int status); /* * PCI bus interface. */ static device_method_t ciss_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ciss_probe), DEVMETHOD(device_attach, ciss_attach), DEVMETHOD(device_detach, ciss_detach), DEVMETHOD(device_shutdown, ciss_shutdown), { 0, 0 } }; static driver_t ciss_pci_driver = { "ciss", ciss_methods, sizeof(struct ciss_softc) }; /* * Control device interface. */ static d_open_t ciss_open; static d_close_t ciss_close; static d_ioctl_t ciss_ioctl; static struct cdevsw ciss_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = ciss_open, .d_close = ciss_close, .d_ioctl = ciss_ioctl, .d_name = "ciss", }; /* * This tunable can be set at boot time and controls whether physical devices * that are marked hidden by the firmware should be exposed anyways. */ static unsigned int ciss_expose_hidden_physical = 0; TUNABLE_INT("hw.ciss.expose_hidden_physical", &ciss_expose_hidden_physical); static unsigned int ciss_nop_message_heartbeat = 0; TUNABLE_INT("hw.ciss.nop_message_heartbeat", &ciss_nop_message_heartbeat); /* * This tunable can force a particular transport to be used: * <= 0 : use default * 1 : force simple * 2 : force performant */ static int ciss_force_transport = 0; TUNABLE_INT("hw.ciss.force_transport", &ciss_force_transport); /* * This tunable can force a particular interrupt delivery method to be used: * <= 0 : use default * 1 : force INTx * 2 : force MSIX */ static int ciss_force_interrupt = 0; TUNABLE_INT("hw.ciss.force_interrupt", &ciss_force_interrupt); /************************************************************************ * CISS adapters amazingly don't have a defined programming interface * value. (One could say some very despairing things about PCI and * people just not getting the general idea.) So we are forced to * stick with matching against subvendor/subdevice, and thus have to * be updated for every new CISS adapter that appears. */ #define CISS_BOARD_UNKNOWN 0 #define CISS_BOARD_SA5 1 #define CISS_BOARD_SA5B 2 #define CISS_BOARD_NOMSI (1<<4) #define CISS_BOARD_SIMPLE (1<<5) static struct { u_int16_t subvendor; u_int16_t subdevice; int flags; char *desc; } ciss_vendor_data[] = { { 0x0e11, 0x4070, CISS_BOARD_SA5|CISS_BOARD_NOMSI|CISS_BOARD_SIMPLE, "Compaq Smart Array 5300" }, { 0x0e11, 0x4080, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 5i" }, { 0x0e11, 0x4082, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 532" }, { 0x0e11, 0x4083, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "HP Smart Array 5312" }, { 0x0e11, 0x4091, CISS_BOARD_SA5, "HP Smart Array 6i" }, { 0x0e11, 0x409A, CISS_BOARD_SA5, "HP Smart Array 641" }, { 0x0e11, 0x409B, CISS_BOARD_SA5, "HP Smart Array 642" }, { 0x0e11, 0x409C, CISS_BOARD_SA5, "HP Smart Array 6400" }, { 0x0e11, 0x409D, CISS_BOARD_SA5, "HP Smart Array 6400 EM" }, { 0x103C, 0x3211, CISS_BOARD_SA5, "HP Smart Array E200i" }, { 0x103C, 0x3212, CISS_BOARD_SA5, "HP Smart Array E200" }, { 0x103C, 0x3213, CISS_BOARD_SA5, "HP Smart Array E200i" }, { 0x103C, 0x3214, CISS_BOARD_SA5, "HP Smart Array E200i" }, { 0x103C, 0x3215, CISS_BOARD_SA5, "HP Smart Array E200i" }, { 0x103C, 0x3220, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3222, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3223, CISS_BOARD_SA5, "HP Smart Array P800" }, { 0x103C, 0x3225, CISS_BOARD_SA5, "HP Smart Array P600" }, { 0x103C, 0x3230, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3231, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3232, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3233, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3234, CISS_BOARD_SA5, "HP Smart Array P400" }, { 0x103C, 0x3235, CISS_BOARD_SA5, "HP Smart Array P400i" }, { 0x103C, 0x3236, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3237, CISS_BOARD_SA5, "HP Smart Array E500" }, { 0x103C, 0x3238, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3239, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x323A, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x323B, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x323C, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x323D, CISS_BOARD_SA5, "HP Smart Array P700m" }, { 0x103C, 0x3241, CISS_BOARD_SA5, "HP Smart Array P212" }, { 0x103C, 0x3243, CISS_BOARD_SA5, "HP Smart Array P410" }, { 0x103C, 0x3245, CISS_BOARD_SA5, "HP Smart Array P410i" }, { 0x103C, 0x3247, CISS_BOARD_SA5, "HP Smart Array P411" }, { 0x103C, 0x3249, CISS_BOARD_SA5, "HP Smart Array P812" }, { 0x103C, 0x324A, CISS_BOARD_SA5, "HP Smart Array P712m" }, { 0x103C, 0x324B, CISS_BOARD_SA5, "HP Smart Array" }, { 0x103C, 0x3350, CISS_BOARD_SA5, "HP Smart Array P222" }, { 0x103C, 0x3351, CISS_BOARD_SA5, "HP Smart Array P420" }, { 0x103C, 0x3352, CISS_BOARD_SA5, "HP Smart Array P421" }, { 0x103C, 0x3353, CISS_BOARD_SA5, "HP Smart Array P822" }, { 0x103C, 0x3354, CISS_BOARD_SA5, "HP Smart Array P420i" }, { 0x103C, 0x3355, CISS_BOARD_SA5, "HP Smart Array P220i" }, { 0x103C, 0x3356, CISS_BOARD_SA5, "HP Smart Array P721m" }, { 0x103C, 0x1920, CISS_BOARD_SA5, "HP Smart Array P430i" }, { 0x103C, 0x1921, CISS_BOARD_SA5, "HP Smart Array P830i" }, { 0x103C, 0x1922, CISS_BOARD_SA5, "HP Smart Array P430" }, { 0x103C, 0x1923, CISS_BOARD_SA5, "HP Smart Array P431" }, { 0x103C, 0x1924, CISS_BOARD_SA5, "HP Smart Array P830" }, { 0x103C, 0x1926, CISS_BOARD_SA5, "HP Smart Array P731m" }, { 0x103C, 0x1928, CISS_BOARD_SA5, "HP Smart Array P230i" }, { 0x103C, 0x1929, CISS_BOARD_SA5, "HP Smart Array P530" }, { 0x103C, 0x192A, CISS_BOARD_SA5, "HP Smart Array P531" }, { 0x103C, 0x21BD, CISS_BOARD_SA5, "HP Smart Array P244br" }, { 0x103C, 0x21BE, CISS_BOARD_SA5, "HP Smart Array P741m" }, { 0x103C, 0x21BF, CISS_BOARD_SA5, "HP Smart Array H240ar" }, { 0x103C, 0x21C0, CISS_BOARD_SA5, "HP Smart Array P440ar" }, { 0x103C, 0x21C1, CISS_BOARD_SA5, "HP Smart Array P840ar" }, { 0x103C, 0x21C2, CISS_BOARD_SA5, "HP Smart Array P440" }, { 0x103C, 0x21C3, CISS_BOARD_SA5, "HP Smart Array P441" }, { 0x103C, 0x21C5, CISS_BOARD_SA5, "HP Smart Array P841" }, { 0x103C, 0x21C6, CISS_BOARD_SA5, "HP Smart Array H244br" }, { 0x103C, 0x21C7, CISS_BOARD_SA5, "HP Smart Array H240" }, { 0x103C, 0x21C8, CISS_BOARD_SA5, "HP Smart Array H241" }, { 0x103C, 0x21CA, CISS_BOARD_SA5, "HP Smart Array P246br" }, { 0x103C, 0x21CB, CISS_BOARD_SA5, "HP Smart Array P840" }, { 0x103C, 0x21CC, CISS_BOARD_SA5, "HP Smart Array P542d" }, { 0x103C, 0x21CD, CISS_BOARD_SA5, "HP Smart Array P240nr" }, { 0x103C, 0x21CE, CISS_BOARD_SA5, "HP Smart Array H240nr" }, { 0, 0, 0, NULL } }; DRIVER_MODULE(ciss, pci, ciss_pci_driver, 0, 0); MODULE_PNP_INFO("U16:vendor;U16:device;", pci, ciss, ciss_vendor_data, nitems(ciss_vendor_data) - 1); MODULE_DEPEND(ciss, cam, 1, 1, 1); MODULE_DEPEND(ciss, pci, 1, 1, 1); /************************************************************************ * Find a match for the device in our list of known adapters. */ static int ciss_lookup(device_t dev) { int i; for (i = 0; ciss_vendor_data[i].desc != NULL; i++) if ((pci_get_subvendor(dev) == ciss_vendor_data[i].subvendor) && (pci_get_subdevice(dev) == ciss_vendor_data[i].subdevice)) { return(i); } return(-1); } /************************************************************************ * Match a known CISS adapter. */ static int ciss_probe(device_t dev) { int i; i = ciss_lookup(dev); if (i != -1) { device_set_desc(dev, ciss_vendor_data[i].desc); return(BUS_PROBE_DEFAULT); } return(ENOENT); } /************************************************************************ * Attach the driver to this adapter. */ static int ciss_attach(device_t dev) { struct ciss_softc *sc; int error; debug_called(1); #ifdef CISS_DEBUG /* print structure/union sizes */ debug_struct(ciss_command); debug_struct(ciss_header); debug_union(ciss_device_address); debug_struct(ciss_cdb); debug_struct(ciss_report_cdb); debug_struct(ciss_notify_cdb); debug_struct(ciss_notify); debug_struct(ciss_message_cdb); debug_struct(ciss_error_info_pointer); debug_struct(ciss_error_info); debug_struct(ciss_sg_entry); debug_struct(ciss_config_table); debug_struct(ciss_bmic_cdb); debug_struct(ciss_bmic_id_ldrive); debug_struct(ciss_bmic_id_lstatus); debug_struct(ciss_bmic_id_table); debug_struct(ciss_bmic_id_pdrive); debug_struct(ciss_bmic_blink_pdrive); debug_struct(ciss_bmic_flush_cache); debug_const(CISS_MAX_REQUESTS); debug_const(CISS_MAX_LOGICAL); debug_const(CISS_INTERRUPT_COALESCE_DELAY); debug_const(CISS_INTERRUPT_COALESCE_COUNT); debug_const(CISS_COMMAND_ALLOC_SIZE); debug_const(CISS_COMMAND_SG_LENGTH); debug_type(cciss_pci_info_struct); debug_type(cciss_coalint_struct); debug_type(cciss_coalint_struct); debug_type(NodeName_type); debug_type(NodeName_type); debug_type(Heartbeat_type); debug_type(BusTypes_type); debug_type(FirmwareVer_type); debug_type(DriverVer_type); debug_type(IOCTL_Command_struct); #endif sc = device_get_softc(dev); sc->ciss_dev = dev; mtx_init(&sc->ciss_mtx, "cissmtx", NULL, MTX_DEF); callout_init_mtx(&sc->ciss_periodic, &sc->ciss_mtx, 0); /* * Do PCI-specific init. */ if ((error = ciss_init_pci(sc)) != 0) goto out; /* * Initialise driver queues. */ ciss_initq_free(sc); ciss_initq_notify(sc); /* * Initialize device sysctls. */ ciss_init_sysctl(sc); /* * Initialise command/request pool. */ if ((error = ciss_init_requests(sc)) != 0) goto out; /* * Get adapter information. */ if ((error = ciss_identify_adapter(sc)) != 0) goto out; /* * Find all the physical devices. */ if ((error = ciss_init_physical(sc)) != 0) goto out; /* * Build our private table of logical devices. */ if ((error = ciss_init_logical(sc)) != 0) goto out; /* * Enable interrupts so that the CAM scan can complete. */ CISS_TL_SIMPLE_ENABLE_INTERRUPTS(sc); /* * Initialise the CAM interface. */ if ((error = ciss_cam_init(sc)) != 0) goto out; /* * Start the heartbeat routine and event chain. */ ciss_periodic(sc); /* * Create the control device. */ sc->ciss_dev_t = make_dev(&ciss_cdevsw, device_get_unit(sc->ciss_dev), UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "ciss%d", device_get_unit(sc->ciss_dev)); sc->ciss_dev_t->si_drv1 = sc; /* * The adapter is running; synchronous commands can now sleep * waiting for an interrupt to signal completion. */ sc->ciss_flags |= CISS_FLAG_RUNNING; ciss_spawn_notify_thread(sc); error = 0; out: if (error != 0) { /* ciss_free() expects the mutex to be held */ mtx_lock(&sc->ciss_mtx); ciss_free(sc); } return(error); } /************************************************************************ * Detach the driver from this adapter. */ static int ciss_detach(device_t dev) { struct ciss_softc *sc = device_get_softc(dev); debug_called(1); mtx_lock(&sc->ciss_mtx); if (sc->ciss_flags & CISS_FLAG_CONTROL_OPEN) { mtx_unlock(&sc->ciss_mtx); return (EBUSY); } /* flush adapter cache */ ciss_flush_adapter(sc); /* release all resources. The mutex is released and freed here too. */ ciss_free(sc); return(0); } /************************************************************************ * Prepare adapter for system shutdown. */ static int ciss_shutdown(device_t dev) { struct ciss_softc *sc = device_get_softc(dev); debug_called(1); mtx_lock(&sc->ciss_mtx); /* flush adapter cache */ ciss_flush_adapter(sc); if (sc->ciss_soft_reset) ciss_soft_reset(sc); mtx_unlock(&sc->ciss_mtx); return(0); } static void ciss_init_sysctl(struct ciss_softc *sc) { SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->ciss_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ciss_dev)), OID_AUTO, "soft_reset", CTLFLAG_RW, &sc->ciss_soft_reset, 0, ""); } /************************************************************************ * Perform PCI-specific attachment actions. */ static int ciss_init_pci(struct ciss_softc *sc) { uintptr_t cbase, csize, cofs; uint32_t method, supported_methods; int error, sqmask, i; void *intr; debug_called(1); /* * Work out adapter type. */ i = ciss_lookup(sc->ciss_dev); if (i < 0) { ciss_printf(sc, "unknown adapter type\n"); return (ENXIO); } if (ciss_vendor_data[i].flags & CISS_BOARD_SA5) { sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5; } else if (ciss_vendor_data[i].flags & CISS_BOARD_SA5B) { sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5B; } else { /* * XXX Big hammer, masks/unmasks all possible interrupts. This should * work on all hardware variants. Need to add code to handle the * "controller crashed" interrupt bit that this unmasks. */ sqmask = ~0; } /* * Allocate register window first (we need this to find the config * struct). */ error = ENXIO; sc->ciss_regs_rid = CISS_TL_SIMPLE_BAR_REGS; if ((sc->ciss_regs_resource = bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY, &sc->ciss_regs_rid, RF_ACTIVE)) == NULL) { ciss_printf(sc, "can't allocate register window\n"); return(ENXIO); } sc->ciss_regs_bhandle = rman_get_bushandle(sc->ciss_regs_resource); sc->ciss_regs_btag = rman_get_bustag(sc->ciss_regs_resource); /* * Find the BAR holding the config structure. If it's not the one * we already mapped for registers, map it too. */ sc->ciss_cfg_rid = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_BAR) & 0xffff; if (sc->ciss_cfg_rid != sc->ciss_regs_rid) { if ((sc->ciss_cfg_resource = bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY, &sc->ciss_cfg_rid, RF_ACTIVE)) == NULL) { ciss_printf(sc, "can't allocate config window\n"); return(ENXIO); } cbase = (uintptr_t)rman_get_virtual(sc->ciss_cfg_resource); csize = rman_get_end(sc->ciss_cfg_resource) - rman_get_start(sc->ciss_cfg_resource) + 1; } else { cbase = (uintptr_t)rman_get_virtual(sc->ciss_regs_resource); csize = rman_get_end(sc->ciss_regs_resource) - rman_get_start(sc->ciss_regs_resource) + 1; } cofs = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_OFF); /* * Use the base/size/offset values we just calculated to * sanity-check the config structure. If it's OK, point to it. */ if ((cofs + sizeof(struct ciss_config_table)) > csize) { ciss_printf(sc, "config table outside window\n"); return(ENXIO); } sc->ciss_cfg = (struct ciss_config_table *)(cbase + cofs); debug(1, "config struct at %p", sc->ciss_cfg); /* * Calculate the number of request structures/commands we are * going to provide for this adapter. */ sc->ciss_max_requests = min(CISS_MAX_REQUESTS, sc->ciss_cfg->max_outstanding_commands); /* * Validate the config structure. If we supported other transport * methods, we could select amongst them at this point in time. */ if (strncmp(sc->ciss_cfg->signature, "CISS", 4)) { ciss_printf(sc, "config signature mismatch (got '%c%c%c%c')\n", sc->ciss_cfg->signature[0], sc->ciss_cfg->signature[1], sc->ciss_cfg->signature[2], sc->ciss_cfg->signature[3]); return(ENXIO); } /* * Select the mode of operation, prefer Performant. */ if (!(sc->ciss_cfg->supported_methods & (CISS_TRANSPORT_METHOD_SIMPLE | CISS_TRANSPORT_METHOD_PERF))) { ciss_printf(sc, "No supported transport layers: 0x%x\n", sc->ciss_cfg->supported_methods); } switch (ciss_force_transport) { case 1: supported_methods = CISS_TRANSPORT_METHOD_SIMPLE; break; case 2: supported_methods = CISS_TRANSPORT_METHOD_PERF; break; default: /* * Override the capabilities of the BOARD and specify SIMPLE * MODE */ if (ciss_vendor_data[i].flags & CISS_BOARD_SIMPLE) supported_methods = CISS_TRANSPORT_METHOD_SIMPLE; else supported_methods = sc->ciss_cfg->supported_methods; break; } setup: if ((supported_methods & CISS_TRANSPORT_METHOD_PERF) != 0) { method = CISS_TRANSPORT_METHOD_PERF; sc->ciss_perf = (struct ciss_perf_config *)(cbase + cofs + sc->ciss_cfg->transport_offset); if (ciss_init_perf(sc)) { supported_methods &= ~method; goto setup; } } else if (supported_methods & CISS_TRANSPORT_METHOD_SIMPLE) { method = CISS_TRANSPORT_METHOD_SIMPLE; } else { ciss_printf(sc, "No supported transport methods: 0x%x\n", sc->ciss_cfg->supported_methods); return(ENXIO); } /* * Tell it we're using the low 4GB of RAM. Set the default interrupt * coalescing options. */ sc->ciss_cfg->requested_method = method; sc->ciss_cfg->command_physlimit = 0; sc->ciss_cfg->interrupt_coalesce_delay = CISS_INTERRUPT_COALESCE_DELAY; sc->ciss_cfg->interrupt_coalesce_count = CISS_INTERRUPT_COALESCE_COUNT; #ifdef __i386__ sc->ciss_cfg->host_driver |= CISS_DRIVER_SCSI_PREFETCH; #endif if (ciss_update_config(sc)) { ciss_printf(sc, "adapter refuses to accept config update (IDBR 0x%x)\n", CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR)); return(ENXIO); } if ((sc->ciss_cfg->active_method & method) == 0) { supported_methods &= ~method; if (supported_methods == 0) { ciss_printf(sc, "adapter refuses to go into available transports " "mode (0x%x, 0x%x)\n", supported_methods, sc->ciss_cfg->active_method); return(ENXIO); } else goto setup; } /* * Wait for the adapter to come ready. */ if ((error = ciss_wait_adapter(sc)) != 0) return(error); /* Prepare to possibly use MSIX and/or PERFORMANT interrupts. Normal * interrupts have a rid of 0, this will be overridden if MSIX is used. */ sc->ciss_irq_rid[0] = 0; if (method == CISS_TRANSPORT_METHOD_PERF) { ciss_printf(sc, "PERFORMANT Transport\n"); if ((ciss_force_interrupt != 1) && (ciss_setup_msix(sc) == 0)) { intr = ciss_perf_msi_intr; } else { intr = ciss_perf_intr; } /* XXX The docs say that the 0x01 bit is only for SAS controllers. * Unfortunately, there is no good way to know if this is a SAS * controller. Hopefully enabling this bit universally will work OK. * It seems to work fine for SA6i controllers. */ sc->ciss_interrupt_mask = CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI; } else { ciss_printf(sc, "SIMPLE Transport\n"); /* MSIX doesn't seem to work in SIMPLE mode, only enable if it forced */ if (ciss_force_interrupt == 2) /* If this fails, we automatically revert to INTx */ ciss_setup_msix(sc); sc->ciss_perf = NULL; intr = ciss_intr; sc->ciss_interrupt_mask = sqmask; } /* * Turn off interrupts before we go routing anything. */ CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc); /* * Allocate and set up our interrupt. */ if ((sc->ciss_irq_resource = bus_alloc_resource_any(sc->ciss_dev, SYS_RES_IRQ, &sc->ciss_irq_rid[0], RF_ACTIVE | RF_SHAREABLE)) == NULL) { ciss_printf(sc, "can't allocate interrupt\n"); return(ENXIO); } if (bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource, INTR_TYPE_CAM|INTR_MPSAFE, NULL, intr, sc, &sc->ciss_intr)) { ciss_printf(sc, "can't set up interrupt\n"); return(ENXIO); } /* * Allocate the parent bus DMA tag appropriate for our PCI * interface. * * Note that "simple" adapters can only address within a 32-bit * span. */ if (bus_dma_tag_create(bus_get_dma_tag(sc->ciss_dev),/* PCI parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ciss_parent_dmat)) { ciss_printf(sc, "can't allocate parent DMA tag\n"); return(ENOMEM); } /* * Create DMA tag for mapping buffers into adapter-addressable * space. */ if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ (CISS_MAX_SG_ELEMENTS - 1) * PAGE_SIZE, /* maxsize */ CISS_MAX_SG_ELEMENTS, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ busdma_lock_mutex, &sc->ciss_mtx, /* lockfunc, lockarg */ &sc->ciss_buffer_dmat)) { ciss_printf(sc, "can't allocate buffer DMA tag\n"); return(ENOMEM); } return(0); } /************************************************************************ * Setup MSI/MSIX operation (Performant only) * Four interrupts are available, but we only use 1 right now. If MSI-X * isn't avaialble, try using MSI instead. */ static int ciss_setup_msix(struct ciss_softc *sc) { int val, i; /* Weed out devices that don't actually support MSI */ i = ciss_lookup(sc->ciss_dev); if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI) return (EINVAL); /* * Only need to use the minimum number of MSI vectors, as the driver * doesn't support directed MSIX interrupts. */ val = pci_msix_count(sc->ciss_dev); if (val < CISS_MSI_COUNT) { val = pci_msi_count(sc->ciss_dev); device_printf(sc->ciss_dev, "got %d MSI messages]\n", val); if (val < CISS_MSI_COUNT) return (EINVAL); } val = MIN(val, CISS_MSI_COUNT); if (pci_alloc_msix(sc->ciss_dev, &val) != 0) { if (pci_alloc_msi(sc->ciss_dev, &val) != 0) return (EINVAL); } sc->ciss_msi = val; if (bootverbose) ciss_printf(sc, "Using %d MSIX interrupt%s\n", val, (val != 1) ? "s" : ""); for (i = 0; i < val; i++) sc->ciss_irq_rid[i] = i + 1; return (0); } /************************************************************************ * Setup the Performant structures. */ static int ciss_init_perf(struct ciss_softc *sc) { struct ciss_perf_config *pc = sc->ciss_perf; int reply_size; /* * Create the DMA tag for the reply queue. */ reply_size = sizeof(uint64_t) * sc->ciss_max_requests; if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ reply_size, 1, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ciss_reply_dmat)) { ciss_printf(sc, "can't allocate reply DMA tag\n"); return(ENOMEM); } /* * Allocate memory and make it available for DMA. */ if (bus_dmamem_alloc(sc->ciss_reply_dmat, (void **)&sc->ciss_reply, BUS_DMA_NOWAIT, &sc->ciss_reply_map)) { ciss_printf(sc, "can't allocate reply memory\n"); return(ENOMEM); } bus_dmamap_load(sc->ciss_reply_dmat, sc->ciss_reply_map, sc->ciss_reply, reply_size, ciss_command_map_helper, &sc->ciss_reply_phys, 0); bzero(sc->ciss_reply, reply_size); sc->ciss_cycle = 0x1; sc->ciss_rqidx = 0; /* * Preload the fetch table with common command sizes. This allows the * hardware to not waste bus cycles for typical i/o commands, but also not * tax the driver to be too exact in choosing sizes. The table is optimized * for page-aligned i/o's, but since most i/o comes from the various pagers, * it's a reasonable assumption to make. */ pc->fetch_count[CISS_SG_FETCH_NONE] = (sizeof(struct ciss_command) + 15) / 16; pc->fetch_count[CISS_SG_FETCH_1] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 1 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_2] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 2 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_4] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 4 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_8] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 8 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_16] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 16 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_32] = (sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 32 + 15) / 16; pc->fetch_count[CISS_SG_FETCH_MAX] = (CISS_COMMAND_ALLOC_SIZE + 15) / 16; pc->rq_size = sc->ciss_max_requests; /* XXX less than the card supports? */ pc->rq_count = 1; /* XXX Hardcode for a single queue */ pc->rq_bank_hi = 0; pc->rq_bank_lo = 0; pc->rq[0].rq_addr_hi = 0x0; pc->rq[0].rq_addr_lo = sc->ciss_reply_phys; return(0); } /************************************************************************ * Wait for the adapter to come ready. */ static int ciss_wait_adapter(struct ciss_softc *sc) { int i; debug_called(1); /* * Wait for the adapter to come ready. */ if (!(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY)) { ciss_printf(sc, "waiting for adapter to come ready...\n"); for (i = 0; !(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY); i++) { DELAY(1000000); /* one second */ if (i > 30) { ciss_printf(sc, "timed out waiting for adapter to come ready\n"); return(EIO); } } } return(0); } /************************************************************************ * Flush the adapter cache. */ static int ciss_flush_adapter(struct ciss_softc *sc) { struct ciss_request *cr; struct ciss_bmic_flush_cache *cbfc; int error, command_status; debug_called(1); cr = NULL; cbfc = NULL; /* * Build a BMIC request to flush the cache. We don't disable * it, as we may be going to do more I/O (eg. we are emulating * the Synchronise Cache command). */ if ((cbfc = malloc(sizeof(*cbfc), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) { error = ENOMEM; goto out; } if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_FLUSH_CACHE, (void **)&cbfc, sizeof(*cbfc))) != 0) goto out; /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC FLUSH_CACHE command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: break; default: ciss_printf(sc, "error flushing cache (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } out: if (cbfc != NULL) free(cbfc, CISS_MALLOC_CLASS); if (cr != NULL) ciss_release_request(cr); return(error); } static void ciss_soft_reset(struct ciss_softc *sc) { struct ciss_request *cr = NULL; struct ciss_command *cc; int i, error = 0; for (i = 0; i < sc->ciss_max_logical_bus; i++) { /* only reset proxy controllers */ if (sc->ciss_controllers[i].physical.bus == 0) continue; if ((error = ciss_get_request(sc, &cr)) != 0) break; if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_SOFT_RESET, NULL, 0)) != 0) break; cc = cr->cr_cc; cc->header.address = sc->ciss_controllers[i]; if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) break; ciss_release_request(cr); } if (error) ciss_printf(sc, "error resetting controller (%d)\n", error); if (cr != NULL) ciss_release_request(cr); } /************************************************************************ * Allocate memory for the adapter command structures, initialise * the request structures. * * Note that the entire set of commands are allocated in a single * contiguous slab. */ static int ciss_init_requests(struct ciss_softc *sc) { struct ciss_request *cr; int i; debug_called(1); if (bootverbose) ciss_printf(sc, "using %d of %d available commands\n", sc->ciss_max_requests, sc->ciss_cfg->max_outstanding_commands); /* * Create the DMA tag for commands. */ if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */ 32, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests, 1, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ciss_command_dmat)) { ciss_printf(sc, "can't allocate command DMA tag\n"); return(ENOMEM); } /* * Allocate memory and make it available for DMA. */ if (bus_dmamem_alloc(sc->ciss_command_dmat, (void **)&sc->ciss_command, BUS_DMA_NOWAIT, &sc->ciss_command_map)) { ciss_printf(sc, "can't allocate command memory\n"); return(ENOMEM); } bus_dmamap_load(sc->ciss_command_dmat, sc->ciss_command_map,sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests, ciss_command_map_helper, &sc->ciss_command_phys, 0); bzero(sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests); /* * Set up the request and command structures, push requests onto * the free queue. */ for (i = 1; i < sc->ciss_max_requests; i++) { cr = &sc->ciss_request[i]; cr->cr_sc = sc; cr->cr_tag = i; cr->cr_cc = (struct ciss_command *)((uintptr_t)sc->ciss_command + CISS_COMMAND_ALLOC_SIZE * i); cr->cr_ccphys = sc->ciss_command_phys + CISS_COMMAND_ALLOC_SIZE * i; bus_dmamap_create(sc->ciss_buffer_dmat, 0, &cr->cr_datamap); ciss_enqueue_free(cr); } return(0); } static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) { uint32_t *addr; addr = arg; *addr = segs[0].ds_addr; } /************************************************************************ * Identify the adapter, print some information about it. */ static int ciss_identify_adapter(struct ciss_softc *sc) { struct ciss_request *cr; int error, command_status; debug_called(1); cr = NULL; /* * Get a request, allocate storage for the adapter data. */ if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_CTLR, (void **)&sc->ciss_id, sizeof(*sc->ciss_id))) != 0) goto out; /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC ID_CTLR command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: /* buffer right size */ break; case CISS_CMD_STATUS_DATA_UNDERRUN: case CISS_CMD_STATUS_DATA_OVERRUN: ciss_printf(sc, "data over/underrun reading adapter information\n"); default: ciss_printf(sc, "error reading adapter information (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } /* sanity-check reply */ if (!(sc->ciss_id->controller_flags & CONTROLLER_FLAGS_BIG_MAP_SUPPORT)) { ciss_printf(sc, "adapter does not support BIG_MAP\n"); error = ENXIO; goto out; } #if 0 /* XXX later revisions may not need this */ sc->ciss_flags |= CISS_FLAG_FAKE_SYNCH; #endif /* XXX only really required for old 5300 adapters? */ sc->ciss_flags |= CISS_FLAG_BMIC_ABORT; /* * Earlier controller specs do not contain these config * entries, so assume that a 0 means its old and assign * these values to the defaults that were established * when this driver was developed for them */ if (sc->ciss_cfg->max_logical_supported == 0) sc->ciss_cfg->max_logical_supported = CISS_MAX_LOGICAL; if (sc->ciss_cfg->max_physical_supported == 0) sc->ciss_cfg->max_physical_supported = CISS_MAX_PHYSICAL; /* print information */ if (bootverbose) { ciss_printf(sc, " %d logical drive%s configured\n", sc->ciss_id->configured_logical_drives, (sc->ciss_id->configured_logical_drives == 1) ? "" : "s"); ciss_printf(sc, " firmware %4.4s\n", sc->ciss_id->running_firmware_revision); ciss_printf(sc, " %d SCSI channels\n", sc->ciss_id->scsi_chip_count); ciss_printf(sc, " signature '%.4s'\n", sc->ciss_cfg->signature); ciss_printf(sc, " valence %d\n", sc->ciss_cfg->valence); ciss_printf(sc, " supported I/O methods 0x%b\n", sc->ciss_cfg->supported_methods, "\20\1READY\2simple\3performant\4MEMQ\n"); ciss_printf(sc, " active I/O method 0x%b\n", sc->ciss_cfg->active_method, "\20\2simple\3performant\4MEMQ\n"); ciss_printf(sc, " 4G page base 0x%08x\n", sc->ciss_cfg->command_physlimit); ciss_printf(sc, " interrupt coalesce delay %dus\n", sc->ciss_cfg->interrupt_coalesce_delay); ciss_printf(sc, " interrupt coalesce count %d\n", sc->ciss_cfg->interrupt_coalesce_count); ciss_printf(sc, " max outstanding commands %d\n", sc->ciss_cfg->max_outstanding_commands); ciss_printf(sc, " bus types 0x%b\n", sc->ciss_cfg->bus_types, "\20\1ultra2\2ultra3\10fibre1\11fibre2\n"); ciss_printf(sc, " server name '%.16s'\n", sc->ciss_cfg->server_name); ciss_printf(sc, " heartbeat 0x%x\n", sc->ciss_cfg->heartbeat); ciss_printf(sc, " max logical volumes: %d\n", sc->ciss_cfg->max_logical_supported); ciss_printf(sc, " max physical disks supported: %d\n", sc->ciss_cfg->max_physical_supported); ciss_printf(sc, " max physical disks per logical volume: %d\n", sc->ciss_cfg->max_physical_per_logical); ciss_printf(sc, " JBOD Support is %s\n", (sc->ciss_id->uiYetMoreControllerFlags & YMORE_CONTROLLER_FLAGS_JBOD_SUPPORTED) ? "Available" : "Unavailable"); ciss_printf(sc, " JBOD Mode is %s\n", (sc->ciss_id->PowerUPNvramFlags & PWR_UP_FLAG_JBOD_ENABLED) ? "Enabled" : "Disabled"); } out: if (error) { if (sc->ciss_id != NULL) { free(sc->ciss_id, CISS_MALLOC_CLASS); sc->ciss_id = NULL; } } if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Helper routine for generating a list of logical and physical luns. */ static struct ciss_lun_report * ciss_report_luns(struct ciss_softc *sc, int opcode, int nunits) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_report_cdb *crc; struct ciss_lun_report *cll; int command_status; int report_size; int error = 0; debug_called(1); cr = NULL; cll = NULL; /* * Get a request, allocate storage for the address list. */ if ((error = ciss_get_request(sc, &cr)) != 0) goto out; report_size = sizeof(*cll) + nunits * sizeof(union ciss_device_address); if ((cll = malloc(report_size, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) { ciss_printf(sc, "can't allocate memory for lun report\n"); error = ENOMEM; goto out; } /* * Build the Report Logical/Physical LUNs command. */ cc = cr->cr_cc; cr->cr_data = cll; cr->cr_length = report_size; cr->cr_flags = CISS_REQ_DATAIN; cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; cc->header.address.physical.bus = 0; cc->header.address.physical.target = 0; cc->cdb.cdb_length = sizeof(*crc); cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_READ; cc->cdb.timeout = 30; /* XXX better suggestions? */ crc = (struct ciss_report_cdb *)&(cc->cdb.cdb[0]); bzero(crc, sizeof(*crc)); crc->opcode = opcode; crc->length = htonl(report_size); /* big-endian field */ cll->list_size = htonl(report_size - sizeof(*cll)); /* big-endian field */ /* * Submit the request and wait for it to complete. (timeout * here should be much greater than above) */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending %d LUN command (%d)\n", opcode, error); goto out; } /* * Check response. Note that data over/underrun is OK. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: /* buffer right size */ case CISS_CMD_STATUS_DATA_UNDERRUN: /* buffer too large, not bad */ break; case CISS_CMD_STATUS_DATA_OVERRUN: ciss_printf(sc, "WARNING: more units than driver limit (%d)\n", sc->ciss_cfg->max_logical_supported); break; default: ciss_printf(sc, "error detecting logical drive configuration (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } ciss_release_request(cr); cr = NULL; out: if (cr != NULL) ciss_release_request(cr); if (error && cll != NULL) { free(cll, CISS_MALLOC_CLASS); cll = NULL; } return(cll); } /************************************************************************ * Find logical drives on the adapter. */ static int ciss_init_logical(struct ciss_softc *sc) { struct ciss_lun_report *cll; int error = 0, i, j; int ndrives; debug_called(1); cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS, sc->ciss_cfg->max_logical_supported); if (cll == NULL) { error = ENXIO; goto out; } /* sanity-check reply */ ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address)); if ((ndrives < 0) || (ndrives > sc->ciss_cfg->max_logical_supported)) { ciss_printf(sc, "adapter claims to report absurd number of logical drives (%d > %d)\n", ndrives, sc->ciss_cfg->max_logical_supported); error = ENXIO; goto out; } /* * Save logical drive information. */ if (bootverbose) { ciss_printf(sc, "%d logical drive%s\n", ndrives, (ndrives > 1 || ndrives == 0) ? "s" : ""); } sc->ciss_logical = malloc(sc->ciss_max_logical_bus * sizeof(struct ciss_ldrive *), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_logical == NULL) { error = ENXIO; goto out; } for (i = 0; i < sc->ciss_max_logical_bus; i++) { sc->ciss_logical[i] = malloc(sc->ciss_cfg->max_logical_supported * sizeof(struct ciss_ldrive), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_logical[i] == NULL) { error = ENXIO; goto out; } for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) sc->ciss_logical[i][j].cl_status = CISS_LD_NONEXISTENT; } for (i = 0; i < sc->ciss_cfg->max_logical_supported; i++) { if (i < ndrives) { struct ciss_ldrive *ld; int bus, target; bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun); target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun); ld = &sc->ciss_logical[bus][target]; ld->cl_address = cll->lun[i]; ld->cl_controller = &sc->ciss_controllers[bus]; if (ciss_identify_logical(sc, ld) != 0) continue; /* * If the drive has had media exchanged, we should bring it online. */ if (ld->cl_lstatus->media_exchanged) ciss_accept_media(sc, ld); } } out: if (cll != NULL) free(cll, CISS_MALLOC_CLASS); return(error); } static int ciss_init_physical(struct ciss_softc *sc) { struct ciss_lun_report *cll; int error = 0, i; int nphys; int bus; debug_called(1); bus = 0; cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS, sc->ciss_cfg->max_physical_supported); if (cll == NULL) { error = ENXIO; goto out; } nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address)); if (bootverbose) { ciss_printf(sc, "%d physical device%s\n", nphys, (nphys > 1 || nphys == 0) ? "s" : ""); } /* * Figure out the bus mapping. * Logical buses include both the local logical bus for local arrays and * proxy buses for remote arrays. Physical buses are numbered by the * controller and represent physical buses that hold physical devices. * We shift these bus numbers so that everything fits into a single flat * numbering space for CAM. Logical buses occupy the first 32 CAM bus * numbers, and the physical bus numbers are shifted to be above that. * This results in the various driver arrays being indexed as follows: * * ciss_controllers[] - indexed by logical bus * ciss_cam_sim[] - indexed by both logical and physical, with physical * being shifted by 32. * ciss_logical[][] - indexed by logical bus * ciss_physical[][] - indexed by physical bus * * XXX This is getting more and more hackish. CISS really doesn't play * well with a standard SCSI model; devices are addressed via magic * cookies, not via b/t/l addresses. Since there is no way to store * the cookie in the CAM device object, we have to keep these lookup * tables handy so that the devices can be found quickly at the cost * of wasting memory and having a convoluted lookup scheme. This * driver should probably be converted to block interface. */ /* * If the L2 and L3 SCSI addresses are 0, this signifies a proxy * controller. A proxy controller is another physical controller * behind the primary PCI controller. We need to know about this * so that BMIC commands can be properly targeted. There can be * proxy controllers attached to a single PCI controller, so * find the highest numbered one so the array can be properly * sized. */ sc->ciss_max_logical_bus = 1; for (i = 0; i < nphys; i++) { if (cll->lun[i].physical.extra_address == 0) { bus = cll->lun[i].physical.bus; sc->ciss_max_logical_bus = max(sc->ciss_max_logical_bus, bus) + 1; } else { bus = CISS_EXTRA_BUS2(cll->lun[i].physical.extra_address); sc->ciss_max_physical_bus = max(sc->ciss_max_physical_bus, bus); } } sc->ciss_controllers = malloc(sc->ciss_max_logical_bus * sizeof (union ciss_device_address), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_controllers == NULL) { ciss_printf(sc, "Could not allocate memory for controller map\n"); error = ENOMEM; goto out; } /* setup a map of controller addresses */ for (i = 0; i < nphys; i++) { if (cll->lun[i].physical.extra_address == 0) { sc->ciss_controllers[cll->lun[i].physical.bus] = cll->lun[i]; } } sc->ciss_physical = malloc(sc->ciss_max_physical_bus * sizeof(struct ciss_pdrive *), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_physical == NULL) { ciss_printf(sc, "Could not allocate memory for physical device map\n"); error = ENOMEM; goto out; } for (i = 0; i < sc->ciss_max_physical_bus; i++) { sc->ciss_physical[i] = malloc(sizeof(struct ciss_pdrive) * CISS_MAX_PHYSTGT, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_physical[i] == NULL) { ciss_printf(sc, "Could not allocate memory for target map\n"); error = ENOMEM; goto out; } } ciss_filter_physical(sc, cll); out: if (cll != NULL) free(cll, CISS_MALLOC_CLASS); return(error); } static int ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll) { u_int32_t ea; int i, nphys; int bus, target; nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address)); for (i = 0; i < nphys; i++) { if (cll->lun[i].physical.extra_address == 0) continue; /* * Filter out devices that we don't want. Level 3 LUNs could * probably be supported, but the docs don't give enough of a * hint to know how. * * The mode field of the physical address is likely set to have * hard disks masked out. Honor it unless the user has overridden * us with the tunable. We also munge the inquiry data for these * disks so that they only show up as passthrough devices. Keeping * them visible in this fashion is useful for doing things like * flashing firmware. */ ea = cll->lun[i].physical.extra_address; if ((CISS_EXTRA_BUS3(ea) != 0) || (CISS_EXTRA_TARGET3(ea) != 0) || (CISS_EXTRA_MODE2(ea) == 0x3)) continue; if ((ciss_expose_hidden_physical == 0) && (cll->lun[i].physical.mode == CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL)) continue; /* * Note: CISS firmware numbers physical busses starting at '1', not * '0'. This numbering is internal to the firmware and is only * used as a hint here. */ bus = CISS_EXTRA_BUS2(ea) - 1; target = CISS_EXTRA_TARGET2(ea); sc->ciss_physical[bus][target].cp_address = cll->lun[i]; sc->ciss_physical[bus][target].cp_online = 1; } return (0); } static int ciss_inquiry_logical(struct ciss_softc *sc, struct ciss_ldrive *ld) { struct ciss_request *cr; struct ciss_command *cc; struct scsi_inquiry *inq; int error; int command_status; cr = NULL; bzero(&ld->cl_geometry, sizeof(ld->cl_geometry)); if ((error = ciss_get_request(sc, &cr)) != 0) goto out; cc = cr->cr_cc; cr->cr_data = &ld->cl_geometry; cr->cr_length = sizeof(ld->cl_geometry); cr->cr_flags = CISS_REQ_DATAIN; cc->header.address = ld->cl_address; cc->cdb.cdb_length = 6; cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_READ; cc->cdb.timeout = 30; inq = (struct scsi_inquiry *)&(cc->cdb.cdb[0]); inq->opcode = INQUIRY; inq->byte2 = SI_EVPD; inq->page_code = CISS_VPD_LOGICAL_DRIVE_GEOMETRY; scsi_ulto2b(sizeof(ld->cl_geometry), inq->length); if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error getting geometry (%d)\n", error); goto out; } ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: case CISS_CMD_STATUS_DATA_UNDERRUN: break; case CISS_CMD_STATUS_DATA_OVERRUN: ciss_printf(sc, "WARNING: Data overrun\n"); break; default: ciss_printf(sc, "Error detecting logical drive geometry (%s)\n", ciss_name_command_status(command_status)); break; } out: if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Identify a logical drive, initialise state related to it. */ static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_bmic_cdb *cbc; int error, command_status; debug_called(1); cr = NULL; /* * Build a BMIC request to fetch the drive ID. */ if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LDRIVE, (void **)&ld->cl_ldrive, sizeof(*ld->cl_ldrive))) != 0) goto out; cc = cr->cr_cc; cc->header.address = *ld->cl_controller; /* target controller */ cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]); cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun); /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC LDRIVE command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: /* buffer right size */ break; case CISS_CMD_STATUS_DATA_UNDERRUN: case CISS_CMD_STATUS_DATA_OVERRUN: ciss_printf(sc, "data over/underrun reading logical drive ID\n"); default: ciss_printf(sc, "error reading logical drive ID (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } ciss_release_request(cr); cr = NULL; /* * Build a CISS BMIC command to get the logical drive status. */ if ((error = ciss_get_ldrive_status(sc, ld)) != 0) goto out; /* * Get the logical drive geometry. */ if ((error = ciss_inquiry_logical(sc, ld)) != 0) goto out; /* * Print the drive's basic characteristics. */ if (bootverbose) { ciss_printf(sc, "logical drive (b%dt%d): %s, %dMB ", CISS_LUN_TO_BUS(ld->cl_address.logical.lun), CISS_LUN_TO_TARGET(ld->cl_address.logical.lun), ciss_name_ldrive_org(ld->cl_ldrive->fault_tolerance), ((ld->cl_ldrive->blocks_available / (1024 * 1024)) * ld->cl_ldrive->block_size)); ciss_print_ldrive(sc, ld); } out: if (error != 0) { /* make the drive not-exist */ ld->cl_status = CISS_LD_NONEXISTENT; if (ld->cl_ldrive != NULL) { free(ld->cl_ldrive, CISS_MALLOC_CLASS); ld->cl_ldrive = NULL; } if (ld->cl_lstatus != NULL) { free(ld->cl_lstatus, CISS_MALLOC_CLASS); ld->cl_lstatus = NULL; } } if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Get status for a logical drive. * * XXX should we also do this in response to Test Unit Ready? */ static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_bmic_cdb *cbc; int error, command_status; /* * Build a CISS BMIC command to get the logical drive status. */ if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LSTATUS, (void **)&ld->cl_lstatus, sizeof(*ld->cl_lstatus))) != 0) goto out; cc = cr->cr_cc; cc->header.address = *ld->cl_controller; /* target controller */ cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]); cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun); /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: /* buffer right size */ break; case CISS_CMD_STATUS_DATA_UNDERRUN: case CISS_CMD_STATUS_DATA_OVERRUN: ciss_printf(sc, "data over/underrun reading logical drive status\n"); default: ciss_printf(sc, "error reading logical drive status (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } /* * Set the drive's summary status based on the returned status. * * XXX testing shows that a failed JBOD drive comes back at next * boot in "queued for expansion" mode. WTF? */ ld->cl_status = ciss_decode_ldrive_status(ld->cl_lstatus->status); out: if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Notify the adapter of a config update. */ static int ciss_update_config(struct ciss_softc *sc) { int i; debug_called(1); CISS_TL_SIMPLE_WRITE(sc, CISS_TL_SIMPLE_IDBR, CISS_TL_SIMPLE_IDBR_CFG_TABLE); for (i = 0; i < 1000; i++) { if (!(CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR) & CISS_TL_SIMPLE_IDBR_CFG_TABLE)) { return(0); } DELAY(1000); } return(1); } /************************************************************************ * Accept new media into a logical drive. * * XXX The drive has previously been offline; it would be good if we * could make sure it's not open right now. */ static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_bmic_cdb *cbc; int command_status; int error = 0, ldrive; ldrive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun); debug(0, "bringing logical drive %d back online", ldrive); /* * Build a CISS BMIC command to bring the drive back online. */ if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ACCEPT_MEDIA, NULL, 0)) != 0) goto out; cc = cr->cr_cc; cc->header.address = *ld->cl_controller; /* target controller */ cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]); cbc->log_drive = ldrive; /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC ACCEPT MEDIA command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: /* all OK */ /* we should get a logical drive status changed event here */ break; default: ciss_printf(cr->cr_sc, "error accepting media into failed logical drive (%s)\n", ciss_name_command_status(command_status)); break; } out: if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Release adapter resources. */ static void ciss_free(struct ciss_softc *sc) { struct ciss_request *cr; int i, j; debug_called(1); /* we're going away */ sc->ciss_flags |= CISS_FLAG_ABORTING; /* terminate the periodic heartbeat routine */ callout_stop(&sc->ciss_periodic); /* cancel the Event Notify chain */ ciss_notify_abort(sc); ciss_kill_notify_thread(sc); /* disconnect from CAM */ if (sc->ciss_cam_sim) { for (i = 0; i < sc->ciss_max_logical_bus; i++) { if (sc->ciss_cam_sim[i]) { xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i])); cam_sim_free(sc->ciss_cam_sim[i], 0); } } for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus + CISS_PHYSICAL_BASE; i++) { if (sc->ciss_cam_sim[i]) { xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i])); cam_sim_free(sc->ciss_cam_sim[i], 0); } } free(sc->ciss_cam_sim, CISS_MALLOC_CLASS); } if (sc->ciss_cam_devq) cam_simq_free(sc->ciss_cam_devq); /* remove the control device */ mtx_unlock(&sc->ciss_mtx); if (sc->ciss_dev_t != NULL) destroy_dev(sc->ciss_dev_t); /* Final cleanup of the callout. */ callout_drain(&sc->ciss_periodic); mtx_destroy(&sc->ciss_mtx); /* free the controller data */ if (sc->ciss_id != NULL) free(sc->ciss_id, CISS_MALLOC_CLASS); /* release I/O resources */ if (sc->ciss_regs_resource != NULL) bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY, sc->ciss_regs_rid, sc->ciss_regs_resource); if (sc->ciss_cfg_resource != NULL) bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY, sc->ciss_cfg_rid, sc->ciss_cfg_resource); if (sc->ciss_intr != NULL) bus_teardown_intr(sc->ciss_dev, sc->ciss_irq_resource, sc->ciss_intr); if (sc->ciss_irq_resource != NULL) bus_release_resource(sc->ciss_dev, SYS_RES_IRQ, sc->ciss_irq_rid[0], sc->ciss_irq_resource); if (sc->ciss_msi) pci_release_msi(sc->ciss_dev); while ((cr = ciss_dequeue_free(sc)) != NULL) bus_dmamap_destroy(sc->ciss_buffer_dmat, cr->cr_datamap); if (sc->ciss_buffer_dmat) bus_dma_tag_destroy(sc->ciss_buffer_dmat); /* destroy command memory and DMA tag */ if (sc->ciss_command != NULL) { bus_dmamap_unload(sc->ciss_command_dmat, sc->ciss_command_map); bus_dmamem_free(sc->ciss_command_dmat, sc->ciss_command, sc->ciss_command_map); } if (sc->ciss_command_dmat) bus_dma_tag_destroy(sc->ciss_command_dmat); if (sc->ciss_reply) { bus_dmamap_unload(sc->ciss_reply_dmat, sc->ciss_reply_map); bus_dmamem_free(sc->ciss_reply_dmat, sc->ciss_reply, sc->ciss_reply_map); } if (sc->ciss_reply_dmat) bus_dma_tag_destroy(sc->ciss_reply_dmat); /* destroy DMA tags */ if (sc->ciss_parent_dmat) bus_dma_tag_destroy(sc->ciss_parent_dmat); if (sc->ciss_logical) { for (i = 0; i < sc->ciss_max_logical_bus; i++) { for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) { if (sc->ciss_logical[i][j].cl_ldrive) free(sc->ciss_logical[i][j].cl_ldrive, CISS_MALLOC_CLASS); if (sc->ciss_logical[i][j].cl_lstatus) free(sc->ciss_logical[i][j].cl_lstatus, CISS_MALLOC_CLASS); } free(sc->ciss_logical[i], CISS_MALLOC_CLASS); } free(sc->ciss_logical, CISS_MALLOC_CLASS); } if (sc->ciss_physical) { for (i = 0; i < sc->ciss_max_physical_bus; i++) free(sc->ciss_physical[i], CISS_MALLOC_CLASS); free(sc->ciss_physical, CISS_MALLOC_CLASS); } if (sc->ciss_controllers) free(sc->ciss_controllers, CISS_MALLOC_CLASS); } /************************************************************************ * Give a command to the adapter. * * Note that this uses the simple transport layer directly. If we * want to add support for other layers, we'll need a switch of some * sort. * * Note that the simple transport layer has no way of refusing a * command; we only have as many request structures as the adapter * supports commands, so we don't have to check (this presumes that * the adapter can handle commands as fast as we throw them at it). */ static int ciss_start(struct ciss_request *cr) { int error; debug(2, "post command %d tag %d ", cr->cr_tag, cr->cr_cc->header.host_tag); /* * Map the request's data. */ if ((error = ciss_map_request(cr))) return(error); #if 0 ciss_print_request(cr); #endif return(0); } /************************************************************************ * Fetch completed request(s) from the adapter, queue them for * completion handling. * * Note that this uses the simple transport layer directly. If we * want to add support for other layers, we'll need a switch of some * sort. * * Note that the simple transport mechanism does not require any * reentrancy protection; the OPQ read is atomic. If there is a * chance of a race with something else that might move the request * off the busy list, then we will have to lock against that * (eg. timeouts, etc.) */ static void ciss_done(struct ciss_softc *sc, cr_qhead_t *qh) { struct ciss_request *cr; struct ciss_command *cc; u_int32_t tag, index; debug_called(3); /* * Loop quickly taking requests from the adapter and moving them * to the completed queue. */ for (;;) { tag = CISS_TL_SIMPLE_FETCH_CMD(sc); if (tag == CISS_TL_SIMPLE_OPQ_EMPTY) break; index = tag >> 2; debug(2, "completed command %d%s", index, (tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : ""); if (index >= sc->ciss_max_requests) { ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag); continue; } cr = &(sc->ciss_request[index]); cc = cr->cr_cc; cc->header.host_tag = tag; /* not updated by adapter */ ciss_enqueue_complete(cr, qh); } } static void ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh) { struct ciss_request *cr; struct ciss_command *cc; u_int32_t tag, index; debug_called(3); /* * Loop quickly taking requests from the adapter and moving them * to the completed queue. */ for (;;) { tag = sc->ciss_reply[sc->ciss_rqidx]; if ((tag & CISS_CYCLE_MASK) != sc->ciss_cycle) break; index = tag >> 2; debug(2, "completed command %d%s\n", index, (tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : ""); if (index < sc->ciss_max_requests) { cr = &(sc->ciss_request[index]); cc = cr->cr_cc; cc->header.host_tag = tag; /* not updated by adapter */ ciss_enqueue_complete(cr, qh); } else { ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag); } if (++sc->ciss_rqidx == sc->ciss_max_requests) { sc->ciss_rqidx = 0; sc->ciss_cycle ^= 1; } } } /************************************************************************ * Take an interrupt from the adapter. */ static void ciss_intr(void *arg) { cr_qhead_t qh; struct ciss_softc *sc = (struct ciss_softc *)arg; /* * The only interrupt we recognise indicates that there are * entries in the outbound post queue. */ STAILQ_INIT(&qh); ciss_done(sc, &qh); mtx_lock(&sc->ciss_mtx); ciss_complete(sc, &qh); mtx_unlock(&sc->ciss_mtx); } static void ciss_perf_intr(void *arg) { struct ciss_softc *sc = (struct ciss_softc *)arg; /* Clear the interrupt and flush the bridges. Docs say that the flush * needs to be done twice, which doesn't seem right. */ CISS_TL_PERF_CLEAR_INT(sc); CISS_TL_PERF_FLUSH_INT(sc); ciss_perf_msi_intr(sc); } static void ciss_perf_msi_intr(void *arg) { cr_qhead_t qh; struct ciss_softc *sc = (struct ciss_softc *)arg; STAILQ_INIT(&qh); ciss_perf_done(sc, &qh); mtx_lock(&sc->ciss_mtx); ciss_complete(sc, &qh); mtx_unlock(&sc->ciss_mtx); } /************************************************************************ * Process completed requests. * * Requests can be completed in three fashions: * * - by invoking a callback function (cr_complete is non-null) * - by waking up a sleeper (cr_flags has CISS_REQ_SLEEP set) * - by clearing the CISS_REQ_POLL flag in interrupt/timeout context */ static void ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh) { struct ciss_request *cr; debug_called(2); /* * Loop taking requests off the completed queue and performing * completion processing on them. */ for (;;) { if ((cr = ciss_dequeue_complete(sc, qh)) == NULL) break; ciss_unmap_request(cr); if ((cr->cr_flags & CISS_REQ_BUSY) == 0) ciss_printf(sc, "WARNING: completing non-busy request\n"); cr->cr_flags &= ~CISS_REQ_BUSY; /* * If the request has a callback, invoke it. */ if (cr->cr_complete != NULL) { cr->cr_complete(cr); continue; } /* * If someone is sleeping on this request, wake them up. */ if (cr->cr_flags & CISS_REQ_SLEEP) { cr->cr_flags &= ~CISS_REQ_SLEEP; wakeup(cr); continue; } /* * If someone is polling this request for completion, signal. */ if (cr->cr_flags & CISS_REQ_POLL) { cr->cr_flags &= ~CISS_REQ_POLL; continue; } /* * Give up and throw the request back on the free queue. This * should never happen; resources will probably be lost. */ ciss_printf(sc, "WARNING: completed command with no submitter\n"); ciss_enqueue_free(cr); } } /************************************************************************ * Report on the completion status of a request, and pass back SCSI * and command status values. */ static int _ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func) { struct ciss_command *cc; struct ciss_error_info *ce; debug_called(2); cc = cr->cr_cc; ce = (struct ciss_error_info *)&(cc->sg[0]); /* * We don't consider data under/overrun an error for the Report * Logical/Physical LUNs commands. */ if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) && ((ce->command_status == CISS_CMD_STATUS_DATA_OVERRUN) || (ce->command_status == CISS_CMD_STATUS_DATA_UNDERRUN)) && ((cc->cdb.cdb[0] == CISS_OPCODE_REPORT_LOGICAL_LUNS) || (cc->cdb.cdb[0] == CISS_OPCODE_REPORT_PHYSICAL_LUNS) || (cc->cdb.cdb[0] == INQUIRY))) { cc->header.host_tag &= ~CISS_HDR_HOST_TAG_ERROR; debug(2, "ignoring irrelevant under/overrun error"); } /* * Check the command's error bit, if clear, there's no status and * everything is OK. */ if (!(cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR)) { if (scsi_status != NULL) *scsi_status = SCSI_STATUS_OK; if (command_status != NULL) *command_status = CISS_CMD_STATUS_SUCCESS; return(0); } else { if (command_status != NULL) *command_status = ce->command_status; if (scsi_status != NULL) { if (ce->command_status == CISS_CMD_STATUS_DATA_UNDERRUN) { *scsi_status = SCSI_STATUS_OK; } else if (ce->command_status == CISS_CMD_STATUS_TARGET_STATUS) { *scsi_status = ce->scsi_status; } else { *scsi_status = -1; } } if (bootverbose && ce->command_status != CISS_CMD_STATUS_DATA_UNDERRUN) ciss_printf(cr->cr_sc, "command status 0x%x (%s) scsi status 0x%x\n", ce->command_status, ciss_name_command_status(ce->command_status), ce->scsi_status); if (ce->command_status == CISS_CMD_STATUS_INVALID_COMMAND) { ciss_printf(cr->cr_sc, "invalid command, offense size %d at %d, value 0x%x, function %s\n", ce->additional_error_info.invalid_command.offense_size, ce->additional_error_info.invalid_command.offense_offset, ce->additional_error_info.invalid_command.offense_value, func); } } #if 0 ciss_print_request(cr); #endif return(1); } /************************************************************************ * Issue a request and don't return until it's completed. * * Depending on adapter status, we may poll or sleep waiting for * completion. */ static int ciss_synch_request(struct ciss_request *cr, int timeout) { if (cr->cr_sc->ciss_flags & CISS_FLAG_RUNNING) { return(ciss_wait_request(cr, timeout)); } else { return(ciss_poll_request(cr, timeout)); } } /************************************************************************ * Issue a request and poll for completion. * * Timeout in milliseconds. */ static int ciss_poll_request(struct ciss_request *cr, int timeout) { cr_qhead_t qh; struct ciss_softc *sc; int error; debug_called(2); STAILQ_INIT(&qh); sc = cr->cr_sc; cr->cr_flags |= CISS_REQ_POLL; if ((error = ciss_start(cr)) != 0) return(error); do { if (sc->ciss_perf) ciss_perf_done(sc, &qh); else ciss_done(sc, &qh); ciss_complete(sc, &qh); if (!(cr->cr_flags & CISS_REQ_POLL)) return(0); DELAY(1000); } while (timeout-- >= 0); return(EWOULDBLOCK); } /************************************************************************ * Issue a request and sleep waiting for completion. * * Timeout in milliseconds. Note that a spurious wakeup will reset * the timeout. */ static int ciss_wait_request(struct ciss_request *cr, int timeout) { int error; debug_called(2); cr->cr_flags |= CISS_REQ_SLEEP; if ((error = ciss_start(cr)) != 0) return(error); while ((cr->cr_flags & CISS_REQ_SLEEP) && (error != EWOULDBLOCK)) { error = msleep_sbt(cr, &cr->cr_sc->ciss_mtx, PRIBIO, "cissREQ", SBT_1MS * timeout, 0, 0); } return(error); } #if 0 /************************************************************************ * Abort a request. Note that a potential exists here to race the * request being completed; the caller must deal with this. */ static int ciss_abort_request(struct ciss_request *ar) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_message_cdb *cmc; int error; debug_called(1); /* get a request */ if ((error = ciss_get_request(ar->cr_sc, &cr)) != 0) return(error); /* build the abort command */ cc = cr->cr_cc; cc->header.address.mode.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; /* addressing? */ cc->header.address.physical.target = 0; cc->header.address.physical.bus = 0; cc->cdb.cdb_length = sizeof(*cmc); cc->cdb.type = CISS_CDB_TYPE_MESSAGE; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_NONE; cc->cdb.timeout = 30; cmc = (struct ciss_message_cdb *)&(cc->cdb.cdb[0]); cmc->opcode = CISS_OPCODE_MESSAGE_ABORT; cmc->type = CISS_MESSAGE_ABORT_TASK; cmc->abort_tag = ar->cr_tag; /* endianness?? */ /* * Send the request and wait for a response. If we believe we * aborted the request OK, clear the flag that indicates it's * running. */ error = ciss_synch_request(cr, 35 * 1000); if (!error) error = ciss_report_request(cr, NULL, NULL); ciss_release_request(cr); return(error); } #endif /************************************************************************ * Fetch and initialise a request */ static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp) { struct ciss_request *cr; debug_called(2); /* * Get a request and clean it up. */ if ((cr = ciss_dequeue_free(sc)) == NULL) return(ENOMEM); cr->cr_data = NULL; cr->cr_flags = 0; cr->cr_complete = NULL; cr->cr_private = NULL; cr->cr_sg_tag = CISS_SG_MAX; /* Backstop to prevent accidents */ ciss_preen_command(cr); *crp = cr; return(0); } static void ciss_preen_command(struct ciss_request *cr) { struct ciss_command *cc; u_int32_t cmdphys; /* * Clean up the command structure. * * Note that we set up the error_info structure here, since the * length can be overwritten by any command. */ cc = cr->cr_cc; cc->header.sg_in_list = 0; /* kinda inefficient this way */ cc->header.sg_total = 0; cc->header.host_tag = cr->cr_tag << 2; cc->header.host_tag_zeroes = 0; bzero(&(cc->sg[0]), CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command)); cmdphys = cr->cr_ccphys; cc->error_info.error_info_address = cmdphys + sizeof(struct ciss_command); cc->error_info.error_info_length = CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command); } /************************************************************************ * Release a request to the free list. */ static void ciss_release_request(struct ciss_request *cr) { debug_called(2); /* release the request to the free queue */ ciss_requeue_free(cr); } /************************************************************************ * Allocate a request that will be used to send a BMIC command. Do some * of the common setup here to avoid duplicating it everywhere else. */ static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp, int opcode, void **bufp, size_t bufsize) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_bmic_cdb *cbc; void *buf; int error; int dataout; debug_called(2); cr = NULL; buf = NULL; /* * Get a request. */ if ((error = ciss_get_request(sc, &cr)) != 0) goto out; /* * Allocate data storage if requested, determine the data direction. */ dataout = 0; if ((bufsize > 0) && (bufp != NULL)) { if (*bufp == NULL) { if ((buf = malloc(bufsize, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) { error = ENOMEM; goto out; } } else { buf = *bufp; dataout = 1; /* we are given a buffer, so we are writing */ } } /* * Build a CISS BMIC command to get the logical drive ID. */ cr->cr_data = buf; cr->cr_length = bufsize; if (!dataout) cr->cr_flags = CISS_REQ_DATAIN; cc = cr->cr_cc; cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; cc->header.address.physical.bus = 0; cc->header.address.physical.target = 0; cc->cdb.cdb_length = sizeof(*cbc); cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = dataout ? CISS_CDB_DIRECTION_WRITE : CISS_CDB_DIRECTION_READ; cc->cdb.timeout = 0; cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]); bzero(cbc, sizeof(*cbc)); cbc->opcode = dataout ? CISS_ARRAY_CONTROLLER_WRITE : CISS_ARRAY_CONTROLLER_READ; cbc->bmic_opcode = opcode; cbc->size = htons((u_int16_t)bufsize); out: if (error) { if (cr != NULL) ciss_release_request(cr); } else { *crp = cr; if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL)) *bufp = buf; } return(error); } /************************************************************************ * Handle a command passed in from userspace. */ static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_error_info *ce; int error = 0; debug_called(1); cr = NULL; /* * Get a request. */ while (ciss_get_request(sc, &cr) != 0) msleep(sc, &sc->ciss_mtx, PPAUSE, "cissREQ", hz); cc = cr->cr_cc; /* * Allocate an in-kernel databuffer if required, copy in user data. */ mtx_unlock(&sc->ciss_mtx); cr->cr_length = ioc->buf_size; if (ioc->buf_size > 0) { if ((cr->cr_data = malloc(ioc->buf_size, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) { error = ENOMEM; goto out_unlocked; } if ((error = copyin(ioc->buf, cr->cr_data, ioc->buf_size))) { debug(0, "copyin: bad data buffer %p/%d", ioc->buf, ioc->buf_size); goto out_unlocked; } } /* * Build the request based on the user command. */ bcopy(&ioc->LUN_info, &cc->header.address, sizeof(cc->header.address)); bcopy(&ioc->Request, &cc->cdb, sizeof(cc->cdb)); /* XXX anything else to populate here? */ mtx_lock(&sc->ciss_mtx); /* * Run the command. */ if ((error = ciss_synch_request(cr, 60 * 1000))) { debug(0, "request failed - %d", error); goto out; } /* * Check to see if the command succeeded. */ ce = (struct ciss_error_info *)&(cc->sg[0]); if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) == 0) bzero(ce, sizeof(*ce)); /* * Copy the results back to the user. */ bcopy(ce, &ioc->error_info, sizeof(*ce)); mtx_unlock(&sc->ciss_mtx); if ((ioc->buf_size > 0) && (error = copyout(cr->cr_data, ioc->buf, ioc->buf_size))) { debug(0, "copyout: bad data buffer %p/%d", ioc->buf, ioc->buf_size); goto out_unlocked; } /* done OK */ error = 0; out_unlocked: mtx_lock(&sc->ciss_mtx); out: if ((cr != NULL) && (cr->cr_data != NULL)) free(cr->cr_data, CISS_MALLOC_CLASS); if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Map a request into bus-visible space, initialise the scatter/gather * list. */ static int ciss_map_request(struct ciss_request *cr) { struct ciss_softc *sc; int error = 0; debug_called(2); sc = cr->cr_sc; /* check that mapping is necessary */ if (cr->cr_flags & CISS_REQ_MAPPED) return(0); cr->cr_flags |= CISS_REQ_MAPPED; bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map, BUS_DMASYNC_PREWRITE); if (cr->cr_data != NULL) { if (cr->cr_flags & CISS_REQ_CCB) error = bus_dmamap_load_ccb(sc->ciss_buffer_dmat, cr->cr_datamap, cr->cr_data, ciss_request_map_helper, cr, 0); else error = bus_dmamap_load(sc->ciss_buffer_dmat, cr->cr_datamap, cr->cr_data, cr->cr_length, ciss_request_map_helper, cr, 0); if (error != 0) return (error); } else { /* * Post the command to the adapter. */ cr->cr_sg_tag = CISS_SG_NONE; cr->cr_flags |= CISS_REQ_BUSY; if (sc->ciss_perf) CISS_TL_PERF_POST_CMD(sc, cr); else CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys); } return(0); } static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct ciss_command *cc; struct ciss_request *cr; struct ciss_softc *sc; int i; debug_called(2); cr = (struct ciss_request *)arg; sc = cr->cr_sc; cc = cr->cr_cc; for (i = 0; i < nseg; i++) { cc->sg[i].address = segs[i].ds_addr; cc->sg[i].length = segs[i].ds_len; cc->sg[i].extension = 0; } /* we leave the s/g table entirely within the command */ cc->header.sg_in_list = nseg; cc->header.sg_total = nseg; if (cr->cr_flags & CISS_REQ_DATAIN) bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREREAD); if (cr->cr_flags & CISS_REQ_DATAOUT) bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREWRITE); if (nseg == 0) cr->cr_sg_tag = CISS_SG_NONE; else if (nseg == 1) cr->cr_sg_tag = CISS_SG_1; else if (nseg == 2) cr->cr_sg_tag = CISS_SG_2; else if (nseg <= 4) cr->cr_sg_tag = CISS_SG_4; else if (nseg <= 8) cr->cr_sg_tag = CISS_SG_8; else if (nseg <= 16) cr->cr_sg_tag = CISS_SG_16; else if (nseg <= 32) cr->cr_sg_tag = CISS_SG_32; else cr->cr_sg_tag = CISS_SG_MAX; /* * Post the command to the adapter. */ cr->cr_flags |= CISS_REQ_BUSY; if (sc->ciss_perf) CISS_TL_PERF_POST_CMD(sc, cr); else CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys); } /************************************************************************ * Unmap a request from bus-visible space. */ static void ciss_unmap_request(struct ciss_request *cr) { struct ciss_softc *sc; debug_called(2); sc = cr->cr_sc; /* check that unmapping is necessary */ if ((cr->cr_flags & CISS_REQ_MAPPED) == 0) return; bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map, BUS_DMASYNC_POSTWRITE); if (cr->cr_data == NULL) goto out; if (cr->cr_flags & CISS_REQ_DATAIN) bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTREAD); if (cr->cr_flags & CISS_REQ_DATAOUT) bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->ciss_buffer_dmat, cr->cr_datamap); out: cr->cr_flags &= ~CISS_REQ_MAPPED; } /************************************************************************ * Attach the driver to CAM. * * We put all the logical drives on a single SCSI bus. */ static int ciss_cam_init(struct ciss_softc *sc) { int i, maxbus; debug_called(1); /* * Allocate a devq. We can reuse this for the masked physical * devices if we decide to export these as well. */ if ((sc->ciss_cam_devq = cam_simq_alloc(sc->ciss_max_requests - 2)) == NULL) { ciss_printf(sc, "can't allocate CAM SIM queue\n"); return(ENOMEM); } /* * Create a SIM. * * This naturally wastes a bit of memory. The alternative is to allocate * and register each bus as it is found, and then track them on a linked * list. Unfortunately, the driver has a few places where it needs to * look up the SIM based solely on bus number, and it's unclear whether * a list traversal would work for these situations. */ maxbus = max(sc->ciss_max_logical_bus, sc->ciss_max_physical_bus + CISS_PHYSICAL_BASE); sc->ciss_cam_sim = malloc(maxbus * sizeof(struct cam_sim*), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO); if (sc->ciss_cam_sim == NULL) { ciss_printf(sc, "can't allocate memory for controller SIM\n"); return(ENOMEM); } for (i = 0; i < sc->ciss_max_logical_bus; i++) { if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll, "ciss", sc, device_get_unit(sc->ciss_dev), &sc->ciss_mtx, 2, sc->ciss_max_requests - 2, sc->ciss_cam_devq)) == NULL) { ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i); return(ENOMEM); } /* * Register bus with this SIM. */ mtx_lock(&sc->ciss_mtx); if (i == 0 || sc->ciss_controllers[i].physical.bus != 0) { if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) { ciss_printf(sc, "can't register SCSI bus %d\n", i); mtx_unlock(&sc->ciss_mtx); return (ENXIO); } } mtx_unlock(&sc->ciss_mtx); } for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus + CISS_PHYSICAL_BASE; i++) { if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll, "ciss", sc, device_get_unit(sc->ciss_dev), &sc->ciss_mtx, 1, sc->ciss_max_requests - 2, sc->ciss_cam_devq)) == NULL) { ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i); return (ENOMEM); } mtx_lock(&sc->ciss_mtx); if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) { ciss_printf(sc, "can't register SCSI bus %d\n", i); mtx_unlock(&sc->ciss_mtx); return (ENXIO); } mtx_unlock(&sc->ciss_mtx); } return(0); } /************************************************************************ * Initiate a rescan of the 'logical devices' SIM */ static void ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target) { union ccb *ccb; debug_called(1); if ((ccb = xpt_alloc_ccb_nowait()) == NULL) { ciss_printf(sc, "rescan failed (can't allocate CCB)\n"); return; } if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]), target, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { ciss_printf(sc, "rescan failed (can't create path)\n"); xpt_free_ccb(ccb); return; } xpt_rescan(ccb); /* scan is now in progress */ } /************************************************************************ * Handle requests coming from CAM */ static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb) { struct ciss_softc *sc; struct ccb_scsiio *csio; int bus, target; int physical; sc = cam_sim_softc(sim); bus = cam_sim_bus(sim); csio = (struct ccb_scsiio *)&ccb->csio; target = csio->ccb_h.target_id; physical = CISS_IS_PHYSICAL(bus); switch (ccb->ccb_h.func_code) { /* perform SCSI I/O */ case XPT_SCSI_IO: if (!ciss_cam_action_io(sim, csio)) return; break; /* perform geometry calculations */ case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg = &ccb->ccg; struct ciss_ldrive *ld; debug(1, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun); ld = NULL; if (!physical) ld = &sc->ciss_logical[bus][target]; /* * Use the cached geometry settings unless the fault tolerance * is invalid. */ if (physical || ld->cl_geometry.fault_tolerance == 0xFF) { u_int32_t secs_per_cylinder; ccg->heads = 255; ccg->secs_per_track = 32; secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; } else { ccg->heads = ld->cl_geometry.heads; ccg->secs_per_track = ld->cl_geometry.sectors; ccg->cylinders = ntohs(ld->cl_geometry.cylinders); } ccb->ccb_h.status = CAM_REQ_CMP; break; } /* handle path attribute inquiry */ case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; int sg_length; debug(1, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun); cpi->version_num = 1; cpi->hba_inquiry = PI_TAG_ABLE; /* XXX is this correct? */ cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->max_target = sc->ciss_cfg->max_logical_supported; cpi->max_lun = 0; /* 'logical drive' channel only */ cpi->initiator_id = sc->ciss_cfg->max_logical_supported; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "CISS", HBA_IDLEN); strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */ cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; if (sc->ciss_cfg->max_sg_length == 0) { sg_length = 17; } else { /* XXX Fix for ZMR cards that advertise max_sg_length == 32 * Confusing bit here. max_sg_length is usually a power of 2. We always * need to subtract 1 to account for partial pages. Then we need to * align on a valid PAGE_SIZE so we round down to the nearest power of 2. * Add 1 so we can then subtract it out in the assignment to maxio. * The reason for all these shenanigans is to create a maxio value that * creates IO operations to volumes that yield consistent operations * with good performance. */ sg_length = sc->ciss_cfg->max_sg_length - 1; sg_length = (1 << (fls(sg_length) - 1)) + 1; } cpi->maxio = (min(CISS_MAX_SG_ELEMENTS, sg_length) - 1) * PAGE_SIZE; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; debug(1, "XPT_GET_TRAN_SETTINGS %d:%d", cam_sim_bus(sim), ctl->ccb_h.target_id); /* disconnect always OK */ cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; spi->valid = CTS_SPI_VALID_DISC; spi->flags = CTS_SPI_FLAGS_DISC_ENB; scsi->valid = CTS_SCSI_VALID_TQ; scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; cts->ccb_h.status = CAM_REQ_CMP; break; } default: /* we can't do this */ debug(1, "unspported func_code = 0x%x", ccb->ccb_h.func_code); ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } /************************************************************************ * Handle a CAM SCSI I/O request. */ static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio) { struct ciss_softc *sc; int bus, target; struct ciss_request *cr; struct ciss_command *cc; int error; sc = cam_sim_softc(sim); bus = cam_sim_bus(sim); target = csio->ccb_h.target_id; debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun); /* check that the CDB pointer is not to a physical address */ if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) { debug(3, " CDB pointer is to physical address"); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* abandon aborted ccbs or those that have failed validation */ if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { debug(3, "abandoning CCB due to abort/validation failure"); return(EINVAL); } /* handle emulation of some SCSI commands ourself */ if (ciss_cam_emulate(sc, csio)) return(0); /* * Get a request to manage this command. If we can't, return the * ccb, freeze the queue and flag so that we unfreeze it when a * request completes. */ if ((error = ciss_get_request(sc, &cr)) != 0) { xpt_freeze_simq(sim, 1); sc->ciss_flags |= CISS_FLAG_BUSY; csio->ccb_h.status |= CAM_REQUEUE_REQ; return(error); } /* * Build the command. */ cc = cr->cr_cc; cr->cr_data = csio; cr->cr_length = csio->dxfer_len; cr->cr_complete = ciss_cam_complete; cr->cr_private = csio; /* * Target the right logical volume. */ if (CISS_IS_PHYSICAL(bus)) cc->header.address = sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_address; else cc->header.address = sc->ciss_logical[bus][target].cl_address; cc->cdb.cdb_length = csio->cdb_len; cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; /* XXX ordered tags? */ if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) { cr->cr_flags = CISS_REQ_DATAOUT | CISS_REQ_CCB; cc->cdb.direction = CISS_CDB_DIRECTION_WRITE; } else if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { cr->cr_flags = CISS_REQ_DATAIN | CISS_REQ_CCB; cc->cdb.direction = CISS_CDB_DIRECTION_READ; } else { cr->cr_data = NULL; cr->cr_flags = 0; cc->cdb.direction = CISS_CDB_DIRECTION_NONE; } cc->cdb.timeout = (csio->ccb_h.timeout / 1000) + 1; if (csio->ccb_h.flags & CAM_CDB_POINTER) { bcopy(csio->cdb_io.cdb_ptr, &cc->cdb.cdb[0], csio->cdb_len); } else { bcopy(csio->cdb_io.cdb_bytes, &cc->cdb.cdb[0], csio->cdb_len); } /* * Submit the request to the adapter. * * Note that this may fail if we're unable to map the request (and * if we ever learn a transport layer other than simple, may fail * if the adapter rejects the command). */ if ((error = ciss_start(cr)) != 0) { xpt_freeze_simq(sim, 1); csio->ccb_h.status |= CAM_RELEASE_SIMQ; if (error == EINPROGRESS) { error = 0; } else { csio->ccb_h.status |= CAM_REQUEUE_REQ; ciss_release_request(cr); } return(error); } return(0); } /************************************************************************ * Emulate SCSI commands the adapter doesn't handle as we might like. */ static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio) { int bus, target; u_int8_t opcode; target = csio->ccb_h.target_id; bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path)); opcode = (csio->ccb_h.flags & CAM_CDB_POINTER) ? *(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]; if (CISS_IS_PHYSICAL(bus)) { if (sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_online != 1) { csio->ccb_h.status |= CAM_SEL_TIMEOUT; xpt_done((union ccb *)csio); return(1); } else return(0); } /* * Handle requests for volumes that don't exist or are not online. * A selection timeout is slightly better than an illegal request. * Other errors might be better. */ if (sc->ciss_logical[bus][target].cl_status != CISS_LD_ONLINE) { csio->ccb_h.status |= CAM_SEL_TIMEOUT; xpt_done((union ccb *)csio); return(1); } /* if we have to fake Synchronise Cache */ if (sc->ciss_flags & CISS_FLAG_FAKE_SYNCH) { /* * If this is a Synchronise Cache command, typically issued when * a device is closed, flush the adapter and complete now. */ if (((csio->ccb_h.flags & CAM_CDB_POINTER) ? *(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE) { ciss_flush_adapter(sc); csio->ccb_h.status |= CAM_REQ_CMP; xpt_done((union ccb *)csio); return(1); } } /* * A CISS target can only ever have one lun per target. REPORT_LUNS requires * at least one LUN field to be pre created for us, so snag it and fill in * the least significant byte indicating 1 LUN here. Emulate the command * return to shut up warning on console of a CDB error. swb */ if (opcode == REPORT_LUNS && csio->dxfer_len > 0) { csio->data_ptr[3] = 8; csio->ccb_h.status |= CAM_REQ_CMP; xpt_done((union ccb *)csio); return(1); } return(0); } /************************************************************************ * Check for possibly-completed commands. */ static void ciss_cam_poll(struct cam_sim *sim) { cr_qhead_t qh; struct ciss_softc *sc = cam_sim_softc(sim); debug_called(2); STAILQ_INIT(&qh); if (sc->ciss_perf) ciss_perf_done(sc, &qh); else ciss_done(sc, &qh); ciss_complete(sc, &qh); } /************************************************************************ * Handle completion of a command - pass results back through the CCB */ static void ciss_cam_complete(struct ciss_request *cr) { struct ciss_softc *sc; struct ciss_command *cc; struct ciss_error_info *ce; struct ccb_scsiio *csio; int scsi_status; int command_status; debug_called(2); sc = cr->cr_sc; cc = cr->cr_cc; ce = (struct ciss_error_info *)&(cc->sg[0]); csio = (struct ccb_scsiio *)cr->cr_private; /* * Extract status values from request. */ ciss_report_request(cr, &command_status, &scsi_status); switch(command_status) { case CISS_CMD_STATUS_DATA_UNDERRUN: csio->resid = ce->residual_count; /* FALLTHROUGH */ case CISS_CMD_STATUS_SUCCESS: csio->scsi_status = scsi_status; debug(2, "SCSI_STATUS_OK"); csio->ccb_h.status |= CAM_REQ_CMP; break; case CISS_CMD_STATUS_TARGET_STATUS: csio->scsi_status = scsi_status; bzero(&csio->sense_data, SSD_FULL_SIZE); bcopy(&ce->sense_info[0], &csio->sense_data, ce->sense_length); if (csio->sense_len > ce->sense_length) csio->sense_resid = csio->sense_len - ce->sense_length; else csio->sense_resid = 0; csio->resid = ce->residual_count; csio->ccb_h.status |= CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID; break; case CISS_CMD_STATUS_DATA_OVERRUN: csio->ccb_h.status |= CAM_DATA_RUN_ERR; break; default: csio->ccb_h.status |= CAM_REQ_CMP_ERR; break; } /* handle post-command fixup */ ciss_cam_complete_fixup(sc, csio); ciss_release_request(cr); if (sc->ciss_flags & CISS_FLAG_BUSY) { sc->ciss_flags &= ~CISS_FLAG_BUSY; if (csio->ccb_h.status & CAM_RELEASE_SIMQ) xpt_release_simq(xpt_path_sim(csio->ccb_h.path), 0); else csio->ccb_h.status |= CAM_RELEASE_SIMQ; } xpt_done((union ccb *)csio); } /******************************************************************************** * Fix up the result of some commands here. */ static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio) { struct scsi_inquiry_data *inq; struct ciss_ldrive *cl; uint8_t *cdb; int bus, target; cdb = (csio->ccb_h.flags & CAM_CDB_POINTER) ? (uint8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes; if (cdb[0] == INQUIRY && (cdb[1] & SI_EVPD) == 0 && (csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN && csio->dxfer_len >= SHORT_INQUIRY_LENGTH) { inq = (struct scsi_inquiry_data *)csio->data_ptr; target = csio->ccb_h.target_id; bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path)); /* * If the controller is in JBOD mode, there are no logical volumes. * Let the disks be probed and dealt with via CAM. Else, mask off * the physical disks and setup the parts of the inq structure for * the logical volume. swb */ if( !(sc->ciss_id->PowerUPNvramFlags & PWR_UP_FLAG_JBOD_ENABLED)){ if (CISS_IS_PHYSICAL(bus)) { if (SID_TYPE(inq) == T_DIRECT) inq->device = (inq->device & 0xe0) | T_NODEVICE; return; } cl = &sc->ciss_logical[bus][target]; padstr(inq->vendor, "HP", SID_VENDOR_SIZE); padstr(inq->product, ciss_name_ldrive_org(cl->cl_ldrive->fault_tolerance), SID_PRODUCT_SIZE); padstr(inq->revision, ciss_name_ldrive_status(cl->cl_lstatus->status), SID_REVISION_SIZE); } } } /******************************************************************************** * Name the device at (target) * * XXX is this strictly correct? */ static int ciss_name_device(struct ciss_softc *sc, int bus, int target) { struct cam_periph *periph; struct cam_path *path; int status; if (CISS_IS_PHYSICAL(bus)) return (0); status = xpt_create_path(&path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]), target, 0); if (status == CAM_REQ_CMP) { xpt_path_lock(path); periph = cam_periph_find(path, NULL); xpt_path_unlock(path); xpt_free_path(path); if (periph != NULL) { sprintf(sc->ciss_logical[bus][target].cl_name, "%s%d", periph->periph_name, periph->unit_number); return(0); } } sc->ciss_logical[bus][target].cl_name[0] = 0; return(ENOENT); } /************************************************************************ * Periodic status monitoring. */ static void ciss_periodic(void *arg) { struct ciss_softc *sc; struct ciss_request *cr = NULL; struct ciss_command *cc = NULL; int error = 0; debug_called(1); sc = (struct ciss_softc *)arg; /* * Check the adapter heartbeat. */ if (sc->ciss_cfg->heartbeat == sc->ciss_heartbeat) { sc->ciss_heart_attack++; debug(0, "adapter heart attack in progress 0x%x/%d", sc->ciss_heartbeat, sc->ciss_heart_attack); if (sc->ciss_heart_attack == 3) { ciss_printf(sc, "ADAPTER HEARTBEAT FAILED\n"); ciss_disable_adapter(sc); return; } } else { sc->ciss_heartbeat = sc->ciss_cfg->heartbeat; sc->ciss_heart_attack = 0; debug(3, "new heartbeat 0x%x", sc->ciss_heartbeat); } /* * Send the NOP message and wait for a response. */ if (ciss_nop_message_heartbeat != 0 && (error = ciss_get_request(sc, &cr)) == 0) { cc = cr->cr_cc; cr->cr_complete = ciss_nop_complete; cc->cdb.cdb_length = 1; cc->cdb.type = CISS_CDB_TYPE_MESSAGE; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_WRITE; cc->cdb.timeout = 0; cc->cdb.cdb[0] = CISS_OPCODE_MESSAGE_NOP; if ((error = ciss_start(cr)) != 0) { ciss_printf(sc, "SENDING NOP MESSAGE FAILED\n"); } } /* * If the notify event request has died for some reason, or has * not started yet, restart it. */ if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) { debug(0, "(re)starting Event Notify chain"); ciss_notify_event(sc); } /* * Reschedule. */ callout_reset(&sc->ciss_periodic, CISS_HEARTBEAT_RATE * hz, ciss_periodic, sc); } static void ciss_nop_complete(struct ciss_request *cr) { struct ciss_softc *sc; static int first_time = 1; sc = cr->cr_sc; if (ciss_report_request(cr, NULL, NULL) != 0) { if (first_time == 1) { first_time = 0; ciss_printf(sc, "SENDING NOP MESSAGE FAILED (not logging anymore)\n"); } } ciss_release_request(cr); } /************************************************************************ * Disable the adapter. * * The all requests in completed queue is failed with hardware error. * This will cause failover in a multipath configuration. */ static void ciss_disable_adapter(struct ciss_softc *sc) { cr_qhead_t qh; struct ciss_request *cr; struct ciss_command *cc; struct ciss_error_info *ce; int i; CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc); pci_disable_busmaster(sc->ciss_dev); sc->ciss_flags &= ~CISS_FLAG_RUNNING; STAILQ_INIT(&qh); for (i = 1; i < sc->ciss_max_requests; i++) { cr = &sc->ciss_request[i]; if ((cr->cr_flags & CISS_REQ_BUSY) == 0) continue; cc = cr->cr_cc; ce = (struct ciss_error_info *)&(cc->sg[0]); ce->command_status = CISS_CMD_STATUS_HARDWARE_ERROR; ciss_enqueue_complete(cr, &qh); } for (;;) { if ((cr = ciss_dequeue_complete(sc, &qh)) == NULL) break; /* * If the request has a callback, invoke it. */ if (cr->cr_complete != NULL) { cr->cr_complete(cr); continue; } /* * If someone is sleeping on this request, wake them up. */ if (cr->cr_flags & CISS_REQ_SLEEP) { cr->cr_flags &= ~CISS_REQ_SLEEP; wakeup(cr); continue; } } } /************************************************************************ * Request a notification response from the adapter. * * If (cr) is NULL, this is the first request of the adapter, so * reset the adapter's message pointer and start with the oldest * message available. */ static void ciss_notify_event(struct ciss_softc *sc) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_notify_cdb *cnc; int error; debug_called(1); cr = sc->ciss_periodic_notify; /* get a request if we don't already have one */ if (cr == NULL) { if ((error = ciss_get_request(sc, &cr)) != 0) { debug(0, "can't get notify event request"); goto out; } sc->ciss_periodic_notify = cr; cr->cr_complete = ciss_notify_complete; debug(1, "acquired request %d", cr->cr_tag); } /* * Get a databuffer if we don't already have one, note that the * adapter command wants a larger buffer than the actual * structure. */ if (cr->cr_data == NULL) { if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) { debug(0, "can't get notify event request buffer"); error = ENOMEM; goto out; } cr->cr_length = CISS_NOTIFY_DATA_SIZE; } /* re-setup the request's command (since we never release it) XXX overkill*/ ciss_preen_command(cr); /* (re)build the notify event command */ cc = cr->cr_cc; cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; cc->header.address.physical.bus = 0; cc->header.address.physical.target = 0; cc->cdb.cdb_length = sizeof(*cnc); cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_READ; cc->cdb.timeout = 0; /* no timeout, we hope */ cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]); bzero(cr->cr_data, CISS_NOTIFY_DATA_SIZE); cnc->opcode = CISS_OPCODE_READ; cnc->command = CISS_COMMAND_NOTIFY_ON_EVENT; cnc->timeout = 0; /* no timeout, we hope */ cnc->synchronous = 0; cnc->ordered = 0; cnc->seek_to_oldest = 0; if ((sc->ciss_flags & CISS_FLAG_RUNNING) == 0) cnc->new_only = 1; else cnc->new_only = 0; cnc->length = htonl(CISS_NOTIFY_DATA_SIZE); /* submit the request */ error = ciss_start(cr); out: if (error) { if (cr != NULL) { if (cr->cr_data != NULL) free(cr->cr_data, CISS_MALLOC_CLASS); ciss_release_request(cr); } sc->ciss_periodic_notify = NULL; debug(0, "can't submit notify event request"); sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK; } else { debug(1, "notify event submitted"); sc->ciss_flags |= CISS_FLAG_NOTIFY_OK; } } static void ciss_notify_complete(struct ciss_request *cr) { struct ciss_notify *cn; struct ciss_softc *sc; int scsi_status; int command_status; debug_called(1); cn = (struct ciss_notify *)cr->cr_data; sc = cr->cr_sc; /* * Report request results, decode status. */ ciss_report_request(cr, &command_status, &scsi_status); /* * Abort the chain on a fatal error. * * XXX which of these are actually errors? */ if ((command_status != CISS_CMD_STATUS_SUCCESS) && (command_status != CISS_CMD_STATUS_TARGET_STATUS) && (command_status != CISS_CMD_STATUS_TIMEOUT)) { /* XXX timeout? */ ciss_printf(sc, "fatal error in Notify Event request (%s)\n", ciss_name_command_status(command_status)); ciss_release_request(cr); sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK; return; } /* * If the adapter gave us a text message, print it. */ if (cn->message[0] != 0) ciss_printf(sc, "*** %.80s\n", cn->message); debug(0, "notify event class %d subclass %d detail %d", cn->class, cn->subclass, cn->detail); /* * If the response indicates that the notifier has been aborted, * release the notifier command. */ if ((cn->class == CISS_NOTIFY_NOTIFIER) && (cn->subclass == CISS_NOTIFY_NOTIFIER_STATUS) && (cn->detail == 1)) { debug(0, "notifier exiting"); sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK; ciss_release_request(cr); sc->ciss_periodic_notify = NULL; wakeup(&sc->ciss_periodic_notify); } else { /* Handle notify events in a kernel thread */ ciss_enqueue_notify(cr); sc->ciss_periodic_notify = NULL; wakeup(&sc->ciss_periodic_notify); wakeup(&sc->ciss_notify); } /* * Send a new notify event command, if we're not aborting. */ if (!(sc->ciss_flags & CISS_FLAG_ABORTING)) { ciss_notify_event(sc); } } /************************************************************************ * Abort the Notify Event chain. * * Note that we can't just abort the command in progress; we have to * explicitly issue an Abort Notify Event command in order for the * adapter to clean up correctly. * * If we are called with CISS_FLAG_ABORTING set in the adapter softc, * the chain will not restart itself. */ static int ciss_notify_abort(struct ciss_softc *sc) { struct ciss_request *cr; struct ciss_command *cc; struct ciss_notify_cdb *cnc; int error, command_status, scsi_status; debug_called(1); cr = NULL; error = 0; /* verify that there's an outstanding command */ if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) goto out; /* get a command to issue the abort with */ if ((error = ciss_get_request(sc, &cr))) goto out; /* get a buffer for the result */ if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) { debug(0, "can't get notify event request buffer"); error = ENOMEM; goto out; } cr->cr_length = CISS_NOTIFY_DATA_SIZE; /* build the CDB */ cc = cr->cr_cc; cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; cc->header.address.physical.bus = 0; cc->header.address.physical.target = 0; cc->cdb.cdb_length = sizeof(*cnc); cc->cdb.type = CISS_CDB_TYPE_COMMAND; cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; cc->cdb.direction = CISS_CDB_DIRECTION_READ; cc->cdb.timeout = 0; /* no timeout, we hope */ cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]); bzero(cnc, sizeof(*cnc)); cnc->opcode = CISS_OPCODE_WRITE; cnc->command = CISS_COMMAND_ABORT_NOTIFY; cnc->length = htonl(CISS_NOTIFY_DATA_SIZE); #if 0 ciss_print_request(cr); #endif /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "Abort Notify Event command failed (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, &scsi_status); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: break; case CISS_CMD_STATUS_INVALID_COMMAND: /* * Some older adapters don't support the CISS version of this * command. Fall back to using the BMIC version. */ error = ciss_notify_abort_bmic(sc); if (error != 0) goto out; break; case CISS_CMD_STATUS_TARGET_STATUS: /* * This can happen if the adapter thinks there wasn't an outstanding * Notify Event command but we did. We clean up here. */ if (scsi_status == CISS_SCSI_STATUS_CHECK_CONDITION) { if (sc->ciss_periodic_notify != NULL) ciss_release_request(sc->ciss_periodic_notify); error = 0; goto out; } /* FALLTHROUGH */ default: ciss_printf(sc, "Abort Notify Event command failed (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } /* * Sleep waiting for the notifier command to complete. Note * that if it doesn't, we may end up in a bad situation, since * the adapter may deliver it later. Also note that the adapter * requires the Notify Event command to be cancelled in order to * maintain internal bookkeeping. */ while (sc->ciss_periodic_notify != NULL) { error = msleep(&sc->ciss_periodic_notify, &sc->ciss_mtx, PRIBIO, "cissNEA", hz * 5); if (error == EWOULDBLOCK) { ciss_printf(sc, "Notify Event command failed to abort, adapter may wedge.\n"); break; } } out: /* release the cancel request */ if (cr != NULL) { if (cr->cr_data != NULL) free(cr->cr_data, CISS_MALLOC_CLASS); ciss_release_request(cr); } if (error == 0) sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK; return(error); } /************************************************************************ * Abort the Notify Event chain using a BMIC command. */ static int ciss_notify_abort_bmic(struct ciss_softc *sc) { struct ciss_request *cr; int error, command_status; debug_called(1); cr = NULL; error = 0; /* verify that there's an outstanding command */ if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) goto out; /* * Build a BMIC command to cancel the Notify on Event command. * * Note that we are sending a CISS opcode here. Odd. */ if ((error = ciss_get_bmic_request(sc, &cr, CISS_COMMAND_ABORT_NOTIFY, NULL, 0)) != 0) goto out; /* * Submit the request and wait for it to complete. */ if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) { ciss_printf(sc, "error sending BMIC Cancel Notify on Event command (%d)\n", error); goto out; } /* * Check response. */ ciss_report_request(cr, &command_status, NULL); switch(command_status) { case CISS_CMD_STATUS_SUCCESS: break; default: ciss_printf(sc, "error cancelling Notify on Event (%s)\n", ciss_name_command_status(command_status)); error = EIO; goto out; } out: if (cr != NULL) ciss_release_request(cr); return(error); } /************************************************************************ * Handle rescanning all the logical volumes when a notify event * causes the drives to come online or offline. */ static void ciss_notify_rescan_logical(struct ciss_softc *sc) { struct ciss_lun_report *cll; struct ciss_ldrive *ld; int i, j, ndrives; /* * We must rescan all logical volumes to get the right logical * drive address. */ cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS, sc->ciss_cfg->max_logical_supported); if (cll == NULL) return; ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address)); /* * Delete any of the drives which were destroyed by the * firmware. */ for (i = 0; i < sc->ciss_max_logical_bus; i++) { for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) { ld = &sc->ciss_logical[i][j]; if (ld->cl_update == 0) continue; if (ld->cl_status != CISS_LD_ONLINE) { ciss_cam_rescan_target(sc, i, j); ld->cl_update = 0; if (ld->cl_ldrive) free(ld->cl_ldrive, CISS_MALLOC_CLASS); if (ld->cl_lstatus) free(ld->cl_lstatus, CISS_MALLOC_CLASS); ld->cl_ldrive = NULL; ld->cl_lstatus = NULL; } } } /* * Scan for new drives. */ for (i = 0; i < ndrives; i++) { int bus, target; bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun); target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun); ld = &sc->ciss_logical[bus][target]; if (ld->cl_update == 0) continue; ld->cl_update = 0; ld->cl_address = cll->lun[i]; ld->cl_controller = &sc->ciss_controllers[bus]; if (ciss_identify_logical(sc, ld) == 0) { ciss_cam_rescan_target(sc, bus, target); } } free(cll, CISS_MALLOC_CLASS); } /************************************************************************ * Handle a notify event relating to the status of a logical drive. * * XXX need to be able to defer some of these to properly handle * calling the "ID Physical drive" command, unless the 'extended' * drive IDs are always in BIG_MAP format. */ static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn) { struct ciss_ldrive *ld; int ostatus, bus, target; debug_called(2); bus = cn->device.physical.bus; target = cn->data.logical_status.logical_drive; ld = &sc->ciss_logical[bus][target]; switch (cn->subclass) { case CISS_NOTIFY_LOGICAL_STATUS: switch (cn->detail) { case 0: ciss_name_device(sc, bus, target); ciss_printf(sc, "logical drive %d (%s) changed status %s->%s, spare status 0x%b\n", cn->data.logical_status.logical_drive, ld->cl_name, ciss_name_ldrive_status(cn->data.logical_status.previous_state), ciss_name_ldrive_status(cn->data.logical_status.new_state), cn->data.logical_status.spare_state, "\20\1configured\2rebuilding\3failed\4in use\5available\n"); /* * Update our idea of the drive's status. */ ostatus = ciss_decode_ldrive_status(cn->data.logical_status.previous_state); ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state); if (ld->cl_lstatus != NULL) ld->cl_lstatus->status = cn->data.logical_status.new_state; /* * Have CAM rescan the drive if its status has changed. */ if (ostatus != ld->cl_status) { ld->cl_update = 1; ciss_notify_rescan_logical(sc); } break; case 1: /* logical drive has recognised new media, needs Accept Media Exchange */ ciss_name_device(sc, bus, target); ciss_printf(sc, "logical drive %d (%s) media exchanged, ready to go online\n", cn->data.logical_status.logical_drive, ld->cl_name); ciss_accept_media(sc, ld); ld->cl_update = 1; ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state); ciss_notify_rescan_logical(sc); break; case 2: case 3: ciss_printf(sc, "rebuild of logical drive %d (%s) failed due to %s error\n", cn->data.rebuild_aborted.logical_drive, ld->cl_name, (cn->detail == 2) ? "read" : "write"); break; } break; case CISS_NOTIFY_LOGICAL_ERROR: if (cn->detail == 0) { ciss_printf(sc, "FATAL I/O ERROR on logical drive %d (%s), SCSI port %d ID %d\n", cn->data.io_error.logical_drive, ld->cl_name, cn->data.io_error.failure_bus, cn->data.io_error.failure_drive); /* XXX should we take the drive down at this point, or will we be told? */ } break; case CISS_NOTIFY_LOGICAL_SURFACE: if (cn->detail == 0) ciss_printf(sc, "logical drive %d (%s) completed consistency initialisation\n", cn->data.consistency_completed.logical_drive, ld->cl_name); break; } } /************************************************************************ * Handle a notify event relating to the status of a physical drive. */ static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn) { } /************************************************************************ * Handle a notify event relating to the status of a physical drive. */ static void ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn) { struct ciss_lun_report *cll = NULL; int bus, target; switch (cn->subclass) { case CISS_NOTIFY_HOTPLUG_PHYSICAL: case CISS_NOTIFY_HOTPLUG_NONDISK: bus = CISS_BIG_MAP_BUS(sc, cn->data.drive.big_physical_drive_number); target = CISS_BIG_MAP_TARGET(sc, cn->data.drive.big_physical_drive_number); if (cn->detail == 0) { /* * Mark the device offline so that it'll start producing selection * timeouts to the upper layer. */ if ((bus >= 0) && (target >= 0)) sc->ciss_physical[bus][target].cp_online = 0; } else { /* * Rescan the physical lun list for new items */ cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS, sc->ciss_cfg->max_physical_supported); if (cll == NULL) { ciss_printf(sc, "Warning, cannot get physical lun list\n"); break; } ciss_filter_physical(sc, cll); } break; default: ciss_printf(sc, "Unknown hotplug event %d\n", cn->subclass); return; } if (cll != NULL) free(cll, CISS_MALLOC_CLASS); } /************************************************************************ * Handle deferred processing of notify events. Notify events may need * sleep which is unsafe during an interrupt. */ static void ciss_notify_thread(void *arg) { struct ciss_softc *sc; struct ciss_request *cr; struct ciss_notify *cn; sc = (struct ciss_softc *)arg; mtx_lock(&sc->ciss_mtx); for (;;) { if (STAILQ_EMPTY(&sc->ciss_notify) != 0 && (sc->ciss_flags & CISS_FLAG_THREAD_SHUT) == 0) { msleep(&sc->ciss_notify, &sc->ciss_mtx, PUSER, "idle", 0); } if (sc->ciss_flags & CISS_FLAG_THREAD_SHUT) break; cr = ciss_dequeue_notify(sc); if (cr == NULL) panic("cr null"); cn = (struct ciss_notify *)cr->cr_data; switch (cn->class) { case CISS_NOTIFY_HOTPLUG: ciss_notify_hotplug(sc, cn); break; case CISS_NOTIFY_LOGICAL: ciss_notify_logical(sc, cn); break; case CISS_NOTIFY_PHYSICAL: ciss_notify_physical(sc, cn); break; } ciss_release_request(cr); } sc->ciss_notify_thread = NULL; wakeup(&sc->ciss_notify_thread); mtx_unlock(&sc->ciss_mtx); kproc_exit(0); } /************************************************************************ * Start the notification kernel thread. */ static void ciss_spawn_notify_thread(struct ciss_softc *sc) { if (kproc_create((void(*)(void *))ciss_notify_thread, sc, &sc->ciss_notify_thread, 0, 0, "ciss_notify%d", device_get_unit(sc->ciss_dev))) panic("Could not create notify thread\n"); } /************************************************************************ * Kill the notification kernel thread. */ static void ciss_kill_notify_thread(struct ciss_softc *sc) { if (sc->ciss_notify_thread == NULL) return; sc->ciss_flags |= CISS_FLAG_THREAD_SHUT; wakeup(&sc->ciss_notify); msleep(&sc->ciss_notify_thread, &sc->ciss_mtx, PUSER, "thtrm", 0); } /************************************************************************ * Print a request. */ #ifdef DDB static void ciss_print_request(struct ciss_request *cr) { struct ciss_softc *sc; struct ciss_command *cc; int i; sc = cr->cr_sc; cc = cr->cr_cc; ciss_printf(sc, "REQUEST @ %p\n", cr); ciss_printf(sc, " data %p/%d tag %d flags %b\n", cr->cr_data, cr->cr_length, cr->cr_tag, cr->cr_flags, "\20\1mapped\2sleep\3poll\4dataout\5datain\n"); ciss_printf(sc, " sg list/total %d/%d host tag 0x%x\n", cc->header.sg_in_list, cc->header.sg_total, cc->header.host_tag); switch(cc->header.address.mode.mode) { case CISS_HDR_ADDRESS_MODE_PERIPHERAL: case CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL: ciss_printf(sc, " physical bus %d target %d\n", cc->header.address.physical.bus, cc->header.address.physical.target); break; case CISS_HDR_ADDRESS_MODE_LOGICAL: ciss_printf(sc, " logical unit %d\n", cc->header.address.logical.lun); break; } ciss_printf(sc, " %s cdb length %d type %s attribute %s\n", (cc->cdb.direction == CISS_CDB_DIRECTION_NONE) ? "no-I/O" : (cc->cdb.direction == CISS_CDB_DIRECTION_READ) ? "READ" : (cc->cdb.direction == CISS_CDB_DIRECTION_WRITE) ? "WRITE" : "??", cc->cdb.cdb_length, (cc->cdb.type == CISS_CDB_TYPE_COMMAND) ? "command" : (cc->cdb.type == CISS_CDB_TYPE_MESSAGE) ? "message" : "??", (cc->cdb.attribute == CISS_CDB_ATTRIBUTE_UNTAGGED) ? "untagged" : (cc->cdb.attribute == CISS_CDB_ATTRIBUTE_SIMPLE) ? "simple" : (cc->cdb.attribute == CISS_CDB_ATTRIBUTE_HEAD_OF_QUEUE) ? "head-of-queue" : (cc->cdb.attribute == CISS_CDB_ATTRIBUTE_ORDERED) ? "ordered" : (cc->cdb.attribute == CISS_CDB_ATTRIBUTE_AUTO_CONTINGENT) ? "auto-contingent" : "??"); ciss_printf(sc, " %*D\n", cc->cdb.cdb_length, &cc->cdb.cdb[0], " "); if (cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) { /* XXX print error info */ } else { /* since we don't use chained s/g, don't support it here */ for (i = 0; i < cc->header.sg_in_list; i++) { if ((i % 4) == 0) ciss_printf(sc, " "); printf("0x%08x/%d ", (u_int32_t)cc->sg[i].address, cc->sg[i].length); if ((((i + 1) % 4) == 0) || (i == (cc->header.sg_in_list - 1))) printf("\n"); } } } #endif /************************************************************************ * Print information about the status of a logical drive. */ static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld) { int bus, target, i; if (ld->cl_lstatus == NULL) { printf("does not exist\n"); return; } /* print drive status */ switch(ld->cl_lstatus->status) { case CISS_LSTATUS_OK: printf("online\n"); break; case CISS_LSTATUS_INTERIM_RECOVERY: printf("in interim recovery mode\n"); break; case CISS_LSTATUS_READY_RECOVERY: printf("ready to begin recovery\n"); break; case CISS_LSTATUS_RECOVERING: bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding); target = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding); printf("being recovered, working on physical drive %d.%d, %u blocks remaining\n", bus, target, ld->cl_lstatus->blocks_to_recover); break; case CISS_LSTATUS_EXPANDING: printf("being expanded, %u blocks remaining\n", ld->cl_lstatus->blocks_to_recover); break; case CISS_LSTATUS_QUEUED_FOR_EXPANSION: printf("queued for expansion\n"); break; case CISS_LSTATUS_FAILED: printf("queued for expansion\n"); break; case CISS_LSTATUS_WRONG_PDRIVE: printf("wrong physical drive inserted\n"); break; case CISS_LSTATUS_MISSING_PDRIVE: printf("missing a needed physical drive\n"); break; case CISS_LSTATUS_BECOMING_READY: printf("becoming ready\n"); break; } /* print failed physical drives */ for (i = 0; i < CISS_BIG_MAP_ENTRIES / 8; i++) { bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_failure_map[i]); target = CISS_BIG_MAP_TARGET(sc, ld->cl_lstatus->drive_failure_map[i]); if (bus == -1) continue; ciss_printf(sc, "physical drive %d:%d (%x) failed\n", bus, target, ld->cl_lstatus->drive_failure_map[i]); } } #ifdef DDB #include /************************************************************************ * Print information about the controller/driver. */ static void ciss_print_adapter(struct ciss_softc *sc) { int i, j; ciss_printf(sc, "ADAPTER:\n"); for (i = 0; i < CISSQ_COUNT; i++) { ciss_printf(sc, "%s %d/%d\n", i == 0 ? "free" : i == 1 ? "busy" : "complete", sc->ciss_qstat[i].q_length, sc->ciss_qstat[i].q_max); } ciss_printf(sc, "max_requests %d\n", sc->ciss_max_requests); ciss_printf(sc, "flags %b\n", sc->ciss_flags, "\20\1notify_ok\2control_open\3aborting\4running\21fake_synch\22bmic_abort\n"); for (i = 0; i < sc->ciss_max_logical_bus; i++) { for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) { ciss_printf(sc, "LOGICAL DRIVE %d: ", i); ciss_print_ldrive(sc, &sc->ciss_logical[i][j]); } } /* XXX Should physical drives be printed out here? */ for (i = 1; i < sc->ciss_max_requests; i++) ciss_print_request(sc->ciss_request + i); } /* DDB hook */ DB_COMMAND(ciss_prt, db_ciss_prt) { struct ciss_softc *sc; devclass_t dc; int maxciss, i; dc = devclass_find("ciss"); if ( dc == NULL ) { printf("%s: can't find devclass!\n", __func__); return; } maxciss = devclass_get_maxunit(dc); for (i = 0; i < maxciss; i++) { sc = devclass_get_softc(dc, i); ciss_print_adapter(sc); } } #endif /************************************************************************ * Return a name for a logical drive status value. */ static const char * ciss_name_ldrive_status(int status) { switch (status) { case CISS_LSTATUS_OK: return("OK"); case CISS_LSTATUS_FAILED: return("failed"); case CISS_LSTATUS_NOT_CONFIGURED: return("not configured"); case CISS_LSTATUS_INTERIM_RECOVERY: return("interim recovery"); case CISS_LSTATUS_READY_RECOVERY: return("ready for recovery"); case CISS_LSTATUS_RECOVERING: return("recovering"); case CISS_LSTATUS_WRONG_PDRIVE: return("wrong physical drive inserted"); case CISS_LSTATUS_MISSING_PDRIVE: return("missing physical drive"); case CISS_LSTATUS_EXPANDING: return("expanding"); case CISS_LSTATUS_BECOMING_READY: return("becoming ready"); case CISS_LSTATUS_QUEUED_FOR_EXPANSION: return("queued for expansion"); } return("unknown status"); } /************************************************************************ * Return an online/offline/nonexistent value for a logical drive * status value. */ static int ciss_decode_ldrive_status(int status) { switch(status) { case CISS_LSTATUS_NOT_CONFIGURED: return(CISS_LD_NONEXISTENT); case CISS_LSTATUS_OK: case CISS_LSTATUS_INTERIM_RECOVERY: case CISS_LSTATUS_READY_RECOVERY: case CISS_LSTATUS_RECOVERING: case CISS_LSTATUS_EXPANDING: case CISS_LSTATUS_QUEUED_FOR_EXPANSION: return(CISS_LD_ONLINE); case CISS_LSTATUS_FAILED: case CISS_LSTATUS_WRONG_PDRIVE: case CISS_LSTATUS_MISSING_PDRIVE: case CISS_LSTATUS_BECOMING_READY: default: return(CISS_LD_OFFLINE); } } /************************************************************************ * Return a name for a logical drive's organisation. */ static const char * ciss_name_ldrive_org(int org) { switch(org) { case CISS_LDRIVE_RAID0: return("RAID 0"); case CISS_LDRIVE_RAID1: return("RAID 1(1+0)"); case CISS_LDRIVE_RAID4: return("RAID 4"); case CISS_LDRIVE_RAID5: return("RAID 5"); case CISS_LDRIVE_RAID51: return("RAID 5+1"); case CISS_LDRIVE_RAIDADG: return("RAID ADG"); } return("unknown"); } /************************************************************************ * Return a name for a command status value. */ static const char * ciss_name_command_status(int status) { switch(status) { case CISS_CMD_STATUS_SUCCESS: return("success"); case CISS_CMD_STATUS_TARGET_STATUS: return("target status"); case CISS_CMD_STATUS_DATA_UNDERRUN: return("data underrun"); case CISS_CMD_STATUS_DATA_OVERRUN: return("data overrun"); case CISS_CMD_STATUS_INVALID_COMMAND: return("invalid command"); case CISS_CMD_STATUS_PROTOCOL_ERROR: return("protocol error"); case CISS_CMD_STATUS_HARDWARE_ERROR: return("hardware error"); case CISS_CMD_STATUS_CONNECTION_LOST: return("connection lost"); case CISS_CMD_STATUS_ABORTED: return("aborted"); case CISS_CMD_STATUS_ABORT_FAILED: return("abort failed"); case CISS_CMD_STATUS_UNSOLICITED_ABORT: return("unsolicited abort"); case CISS_CMD_STATUS_TIMEOUT: return("timeout"); case CISS_CMD_STATUS_UNABORTABLE: return("unabortable"); } return("unknown status"); } /************************************************************************ * Handle an open on the control device. */ static int ciss_open(struct cdev *dev, int flags, int fmt, struct thread *p) { struct ciss_softc *sc; debug_called(1); sc = (struct ciss_softc *)dev->si_drv1; /* we might want to veto if someone already has us open */ mtx_lock(&sc->ciss_mtx); sc->ciss_flags |= CISS_FLAG_CONTROL_OPEN; mtx_unlock(&sc->ciss_mtx); return(0); } /************************************************************************ * Handle the last close on the control device. */ static int ciss_close(struct cdev *dev, int flags, int fmt, struct thread *p) { struct ciss_softc *sc; debug_called(1); sc = (struct ciss_softc *)dev->si_drv1; mtx_lock(&sc->ciss_mtx); sc->ciss_flags &= ~CISS_FLAG_CONTROL_OPEN; mtx_unlock(&sc->ciss_mtx); return (0); } /******************************************************************************** * Handle adapter-specific control operations. * * Note that the API here is compatible with the Linux driver, in order to * simplify the porting of Compaq's userland tools. */ static int ciss_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *p) { struct ciss_softc *sc; IOCTL_Command_struct *ioc = (IOCTL_Command_struct *)addr; #ifdef __amd64__ IOCTL_Command_struct32 *ioc32 = (IOCTL_Command_struct32 *)addr; IOCTL_Command_struct ioc_swab; #endif int error; debug_called(1); sc = (struct ciss_softc *)dev->si_drv1; error = 0; mtx_lock(&sc->ciss_mtx); switch(cmd) { case CCISS_GETQSTATS: { union ciss_statrequest *cr = (union ciss_statrequest *)addr; switch (cr->cs_item) { case CISSQ_FREE: case CISSQ_NOTIFY: bcopy(&sc->ciss_qstat[cr->cs_item], &cr->cs_qstat, sizeof(struct ciss_qstat)); break; default: error = ENOIOCTL; break; } break; } case CCISS_GETPCIINFO: { cciss_pci_info_struct *pis = (cciss_pci_info_struct *)addr; pis->bus = pci_get_bus(sc->ciss_dev); pis->dev_fn = pci_get_slot(sc->ciss_dev); pis->board_id = (pci_get_subvendor(sc->ciss_dev) << 16) | pci_get_subdevice(sc->ciss_dev); break; } case CCISS_GETINTINFO: { cciss_coalint_struct *cis = (cciss_coalint_struct *)addr; cis->delay = sc->ciss_cfg->interrupt_coalesce_delay; cis->count = sc->ciss_cfg->interrupt_coalesce_count; break; } case CCISS_SETINTINFO: { cciss_coalint_struct *cis = (cciss_coalint_struct *)addr; if ((cis->delay == 0) && (cis->count == 0)) { error = EINVAL; break; } /* * XXX apparently this is only safe if the controller is idle, * we should suspend it before doing this. */ sc->ciss_cfg->interrupt_coalesce_delay = cis->delay; sc->ciss_cfg->interrupt_coalesce_count = cis->count; if (ciss_update_config(sc)) error = EIO; /* XXX resume the controller here */ break; } case CCISS_GETNODENAME: bcopy(sc->ciss_cfg->server_name, (NodeName_type *)addr, sizeof(NodeName_type)); break; case CCISS_SETNODENAME: bcopy((NodeName_type *)addr, sc->ciss_cfg->server_name, sizeof(NodeName_type)); if (ciss_update_config(sc)) error = EIO; break; case CCISS_GETHEARTBEAT: *(Heartbeat_type *)addr = sc->ciss_cfg->heartbeat; break; case CCISS_GETBUSTYPES: *(BusTypes_type *)addr = sc->ciss_cfg->bus_types; break; case CCISS_GETFIRMVER: bcopy(sc->ciss_id->running_firmware_revision, (FirmwareVer_type *)addr, sizeof(FirmwareVer_type)); break; case CCISS_GETDRIVERVER: *(DriverVer_type *)addr = CISS_DRIVER_VERSION; break; case CCISS_REVALIDVOLS: /* * This is a bit ugly; to do it "right" we really need * to find any disks that have changed, kick CAM off them, * then rescan only these disks. It'd be nice if they * a) told us which disk(s) they were going to play with, * and b) which ones had arrived. 8( */ break; #ifdef __amd64__ case CCISS_PASSTHRU32: ioc_swab.LUN_info = ioc32->LUN_info; ioc_swab.Request = ioc32->Request; ioc_swab.error_info = ioc32->error_info; ioc_swab.buf_size = ioc32->buf_size; ioc_swab.buf = (u_int8_t *)(uintptr_t)ioc32->buf; ioc = &ioc_swab; /* FALLTHROUGH */ #endif case CCISS_PASSTHRU: error = ciss_user_command(sc, ioc); break; default: debug(0, "unknown ioctl 0x%lx", cmd); debug(1, "CCISS_GETPCIINFO: 0x%lx", CCISS_GETPCIINFO); debug(1, "CCISS_GETINTINFO: 0x%lx", CCISS_GETINTINFO); debug(1, "CCISS_SETINTINFO: 0x%lx", CCISS_SETINTINFO); debug(1, "CCISS_GETNODENAME: 0x%lx", CCISS_GETNODENAME); debug(1, "CCISS_SETNODENAME: 0x%lx", CCISS_SETNODENAME); debug(1, "CCISS_GETHEARTBEAT: 0x%lx", CCISS_GETHEARTBEAT); debug(1, "CCISS_GETBUSTYPES: 0x%lx", CCISS_GETBUSTYPES); debug(1, "CCISS_GETFIRMVER: 0x%lx", CCISS_GETFIRMVER); debug(1, "CCISS_GETDRIVERVER: 0x%lx", CCISS_GETDRIVERVER); debug(1, "CCISS_REVALIDVOLS: 0x%lx", CCISS_REVALIDVOLS); debug(1, "CCISS_PASSTHRU: 0x%lx", CCISS_PASSTHRU); error = ENOIOCTL; break; } mtx_unlock(&sc->ciss_mtx); return(error); }