/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "bxe.h" #include "bxe_elink.h" #include "ecore_mfw_req.h" #include "ecore_fw_defs.h" #include "ecore_hsi.h" #include "ecore_reg.h" #define MDIO_REG_BANK_CL73_IEEEB0 0x0 #define MDIO_CL73_IEEEB0_CL73_AN_CONTROL 0x0 #define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_RESTART_AN 0x0200 #define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN 0x1000 #define MDIO_CL73_IEEEB0_CL73_AN_CONTROL_MAIN_RST 0x8000 #define MDIO_REG_BANK_CL73_IEEEB1 0x10 #define MDIO_CL73_IEEEB1_AN_ADV1 0x00 #define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE 0x0400 #define MDIO_CL73_IEEEB1_AN_ADV1_ASYMMETRIC 0x0800 #define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_BOTH 0x0C00 #define MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK 0x0C00 #define MDIO_CL73_IEEEB1_AN_ADV2 0x01 #define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M 0x0000 #define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX 0x0020 #define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 0x0040 #define MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR 0x0080 #define MDIO_CL73_IEEEB1_AN_LP_ADV1 0x03 #define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE 0x0400 #define MDIO_CL73_IEEEB1_AN_LP_ADV1_ASYMMETRIC 0x0800 #define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_BOTH 0x0C00 #define MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_MASK 0x0C00 #define MDIO_CL73_IEEEB1_AN_LP_ADV2 0x04 #define MDIO_REG_BANK_RX0 0x80b0 #define MDIO_RX0_RX_STATUS 0x10 #define MDIO_RX0_RX_STATUS_SIGDET 0x8000 #define MDIO_RX0_RX_STATUS_RX_SEQ_DONE 0x1000 #define MDIO_RX0_RX_EQ_BOOST 0x1c #define MDIO_RX0_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7 #define MDIO_RX0_RX_EQ_BOOST_OFFSET_CTRL 0x10 #define MDIO_REG_BANK_RX1 0x80c0 #define MDIO_RX1_RX_EQ_BOOST 0x1c #define MDIO_RX1_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7 #define MDIO_RX1_RX_EQ_BOOST_OFFSET_CTRL 0x10 #define MDIO_REG_BANK_RX2 0x80d0 #define MDIO_RX2_RX_EQ_BOOST 0x1c #define MDIO_RX2_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7 #define MDIO_RX2_RX_EQ_BOOST_OFFSET_CTRL 0x10 #define MDIO_REG_BANK_RX3 0x80e0 #define MDIO_RX3_RX_EQ_BOOST 0x1c #define MDIO_RX3_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7 #define MDIO_RX3_RX_EQ_BOOST_OFFSET_CTRL 0x10 #define MDIO_REG_BANK_RX_ALL 0x80f0 #define MDIO_RX_ALL_RX_EQ_BOOST 0x1c #define MDIO_RX_ALL_RX_EQ_BOOST_EQUALIZER_CTRL_MASK 0x7 #define MDIO_RX_ALL_RX_EQ_BOOST_OFFSET_CTRL 0x10 #define MDIO_REG_BANK_TX0 0x8060 #define MDIO_TX0_TX_DRIVER 0x17 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12 #define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00 #define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4 #define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e #define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1 #define MDIO_TX0_TX_DRIVER_ICBUF1T 1 #define MDIO_REG_BANK_TX1 0x8070 #define MDIO_TX1_TX_DRIVER 0x17 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12 #define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00 #define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4 #define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e #define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1 #define MDIO_TX0_TX_DRIVER_ICBUF1T 1 #define MDIO_REG_BANK_TX2 0x8080 #define MDIO_TX2_TX_DRIVER 0x17 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12 #define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00 #define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4 #define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e #define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1 #define MDIO_TX0_TX_DRIVER_ICBUF1T 1 #define MDIO_REG_BANK_TX3 0x8090 #define MDIO_TX3_TX_DRIVER 0x17 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK 0xf000 #define MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT 12 #define MDIO_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00 #define MDIO_TX0_TX_DRIVER_IDRIVER_SHIFT 8 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_MASK 0x00f0 #define MDIO_TX0_TX_DRIVER_IPREDRIVER_SHIFT 4 #define MDIO_TX0_TX_DRIVER_IFULLSPD_MASK 0x000e #define MDIO_TX0_TX_DRIVER_IFULLSPD_SHIFT 1 #define MDIO_TX0_TX_DRIVER_ICBUF1T 1 #define MDIO_REG_BANK_XGXS_BLOCK0 0x8000 #define MDIO_BLOCK0_XGXS_CONTROL 0x10 #define MDIO_REG_BANK_XGXS_BLOCK1 0x8010 #define MDIO_BLOCK1_LANE_CTRL0 0x15 #define MDIO_BLOCK1_LANE_CTRL1 0x16 #define MDIO_BLOCK1_LANE_CTRL2 0x17 #define MDIO_BLOCK1_LANE_PRBS 0x19 #define MDIO_REG_BANK_XGXS_BLOCK2 0x8100 #define MDIO_XGXS_BLOCK2_RX_LN_SWAP 0x10 #define MDIO_XGXS_BLOCK2_RX_LN_SWAP_ENABLE 0x8000 #define MDIO_XGXS_BLOCK2_RX_LN_SWAP_FORCE_ENABLE 0x4000 #define MDIO_XGXS_BLOCK2_TX_LN_SWAP 0x11 #define MDIO_XGXS_BLOCK2_TX_LN_SWAP_ENABLE 0x8000 #define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G 0x14 #define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_CX4_XGXS 0x0001 #define MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_HIGIG_XGXS 0x0010 #define MDIO_XGXS_BLOCK2_TEST_MODE_LANE 0x15 #define MDIO_REG_BANK_GP_STATUS 0x8120 #define MDIO_GP_STATUS_TOP_AN_STATUS1 0x1B #define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE 0x0001 #define MDIO_GP_STATUS_TOP_AN_STATUS1_CL37_AUTONEG_COMPLETE 0x0002 #define MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS 0x0004 #define MDIO_GP_STATUS_TOP_AN_STATUS1_DUPLEX_STATUS 0x0008 #define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE 0x0010 #define MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_LP_NP_BAM_ABLE 0x0020 #define MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_TXSIDE 0x0040 #define MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_RXSIDE 0x0080 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_MASK 0x3f00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10M 0x0000 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_100M 0x0100 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G 0x0200 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_2_5G 0x0300 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_5G 0x0400 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_6G 0x0500 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_HIG 0x0600 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_CX4 0x0700 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12G_HIG 0x0800 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12_5G 0x0900 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_13G 0x0A00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_15G 0x0B00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_16G 0x0C00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G_KX 0x0D00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KX4 0x0E00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KR 0x0F00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_XFI 0x1B00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_DXGXS 0x1E00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_SFI 0x1F00 #define MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_KR2 0x3900 #define MDIO_REG_BANK_10G_PARALLEL_DETECT 0x8130 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS 0x10 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS_PD_LINK 0x8000 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL 0x11 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL_PARDET10G_EN 0x1 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK 0x13 #define MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK_CNT (0xb71<<1) #define MDIO_REG_BANK_SERDES_DIGITAL 0x8300 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1 0x10 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE 0x0001 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_TBI_IF 0x0002 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_SIGNAL_DETECT_EN 0x0004 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT 0x0008 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET 0x0010 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_MSTR_MODE 0x0020 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2 0x11 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN 0x0001 #define MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_AN_FST_TMR 0x0040 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1 0x14 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SGMII 0x0001 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_LINK 0x0002 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_DUPLEX 0x0004 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_MASK 0x0018 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_SHIFT 3 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_2_5G 0x0018 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_1G 0x0010 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_100M 0x0008 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS1_SPEED_10M 0x0000 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS2 0x15 #define MDIO_SERDES_DIGITAL_A_1000X_STATUS2_AN_DISABLED 0x0002 #define MDIO_SERDES_DIGITAL_MISC1 0x18 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_MASK 0xE000 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_25M 0x0000 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_100M 0x2000 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_125M 0x4000 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_156_25M 0x6000 #define MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_187_5M 0x8000 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL 0x0010 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_MASK 0x000f #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_2_5G 0x0000 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_5G 0x0001 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_6G 0x0002 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_HIG 0x0003 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_CX4 0x0004 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_12G 0x0005 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_12_5G 0x0006 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_13G 0x0007 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_15G 0x0008 #define MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_16G 0x0009 #define MDIO_REG_BANK_OVER_1G 0x8320 #define MDIO_OVER_1G_DIGCTL_3_4 0x14 #define MDIO_OVER_1G_DIGCTL_3_4_MP_ID_MASK 0xffe0 #define MDIO_OVER_1G_DIGCTL_3_4_MP_ID_SHIFT 5 #define MDIO_OVER_1G_UP1 0x19 #define MDIO_OVER_1G_UP1_2_5G 0x0001 #define MDIO_OVER_1G_UP1_5G 0x0002 #define MDIO_OVER_1G_UP1_6G 0x0004 #define MDIO_OVER_1G_UP1_10G 0x0010 #define MDIO_OVER_1G_UP1_10GH 0x0008 #define MDIO_OVER_1G_UP1_12G 0x0020 #define MDIO_OVER_1G_UP1_12_5G 0x0040 #define MDIO_OVER_1G_UP1_13G 0x0080 #define MDIO_OVER_1G_UP1_15G 0x0100 #define MDIO_OVER_1G_UP1_16G 0x0200 #define MDIO_OVER_1G_UP2 0x1A #define MDIO_OVER_1G_UP2_IPREDRIVER_MASK 0x0007 #define MDIO_OVER_1G_UP2_IDRIVER_MASK 0x0038 #define MDIO_OVER_1G_UP2_PREEMPHASIS_MASK 0x03C0 #define MDIO_OVER_1G_UP3 0x1B #define MDIO_OVER_1G_UP3_HIGIG2 0x0001 #define MDIO_OVER_1G_LP_UP1 0x1C #define MDIO_OVER_1G_LP_UP2 0x1D #define MDIO_OVER_1G_LP_UP2_MR_ADV_OVER_1G_MASK 0x03ff #define MDIO_OVER_1G_LP_UP2_PREEMPHASIS_MASK 0x0780 #define MDIO_OVER_1G_LP_UP2_PREEMPHASIS_SHIFT 7 #define MDIO_OVER_1G_LP_UP3 0x1E #define MDIO_REG_BANK_REMOTE_PHY 0x8330 #define MDIO_REMOTE_PHY_MISC_RX_STATUS 0x10 #define MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG 0x0010 #define MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG 0x0600 #define MDIO_REG_BANK_BAM_NEXT_PAGE 0x8350 #define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL 0x10 #define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE 0x0001 #define MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN 0x0002 #define MDIO_REG_BANK_CL73_USERB0 0x8370 #define MDIO_CL73_USERB0_CL73_UCTRL 0x10 #define MDIO_CL73_USERB0_CL73_UCTRL_USTAT1_MUXSEL 0x0002 #define MDIO_CL73_USERB0_CL73_USTAT1 0x11 #define MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK 0x0100 #define MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37 0x0400 #define MDIO_CL73_USERB0_CL73_BAM_CTRL1 0x12 #define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_EN 0x8000 #define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_STATION_MNGR_EN 0x4000 #define MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_NP_AFTER_BP_EN 0x2000 #define MDIO_CL73_USERB0_CL73_BAM_CTRL3 0x14 #define MDIO_CL73_USERB0_CL73_BAM_CTRL3_USE_CL73_HCD_MR 0x0001 #define MDIO_REG_BANK_AER_BLOCK 0xFFD0 #define MDIO_AER_BLOCK_AER_REG 0x1E #define MDIO_REG_BANK_COMBO_IEEE0 0xFFE0 #define MDIO_COMBO_IEEE0_MII_CONTROL 0x10 #define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK 0x2040 #define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_10 0x0000 #define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_100 0x2000 #define MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_1000 0x0040 #define MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX 0x0100 #define MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN 0x0200 #define MDIO_COMBO_IEEO_MII_CONTROL_AN_EN 0x1000 #define MDIO_COMBO_IEEO_MII_CONTROL_LOOPBACK 0x4000 #define MDIO_COMBO_IEEO_MII_CONTROL_RESET 0x8000 #define MDIO_COMBO_IEEE0_MII_STATUS 0x11 #define MDIO_COMBO_IEEE0_MII_STATUS_LINK_PASS 0x0004 #define MDIO_COMBO_IEEE0_MII_STATUS_AUTONEG_COMPLETE 0x0020 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV 0x14 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_FULL_DUPLEX 0x0020 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_HALF_DUPLEX 0x0040 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK 0x0180 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE 0x0000 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC 0x0080 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC 0x0100 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH 0x0180 #define MDIO_COMBO_IEEE0_AUTO_NEG_ADV_NEXT_PAGE 0x8000 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1 0x15 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_NEXT_PAGE 0x8000 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_ACK 0x4000 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_MASK 0x0180 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_NONE 0x0000 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_PAUSE_BOTH 0x0180 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_HALF_DUP_CAP 0x0040 #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_FULL_DUP_CAP 0x0020 /*WhenthelinkpartnerisinSGMIImode(bit0=1),then bit15=link,bit12=duplex,bits11:10=speed,bit14=acknowledge. Theotherbitsarereservedandshouldbezero*/ #define MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1_SGMII_MODE 0x0001 #define MDIO_PMA_DEVAD 0x1 /*ieee*/ #define MDIO_PMA_REG_CTRL 0x0 #define MDIO_PMA_REG_STATUS 0x1 #define MDIO_PMA_REG_10G_CTRL2 0x7 #define MDIO_PMA_REG_TX_DISABLE 0x0009 #define MDIO_PMA_REG_RX_SD 0xa /*bcm*/ #define MDIO_PMA_REG_BCM_CTRL 0x0096 #define MDIO_PMA_REG_FEC_CTRL 0x00ab #define MDIO_PMA_LASI_RXCTRL 0x9000 #define MDIO_PMA_LASI_TXCTRL 0x9001 #define MDIO_PMA_LASI_CTRL 0x9002 #define MDIO_PMA_LASI_RXSTAT 0x9003 #define MDIO_PMA_LASI_TXSTAT 0x9004 #define MDIO_PMA_LASI_STAT 0x9005 #define MDIO_PMA_REG_PHY_IDENTIFIER 0xc800 #define MDIO_PMA_REG_DIGITAL_CTRL 0xc808 #define MDIO_PMA_REG_DIGITAL_STATUS 0xc809 #define MDIO_PMA_REG_TX_POWER_DOWN 0xca02 #define MDIO_PMA_REG_CMU_PLL_BYPASS 0xca09 #define MDIO_PMA_REG_MISC_CTRL 0xca0a #define MDIO_PMA_REG_GEN_CTRL 0xca10 #define MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP 0x0188 #define MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET 0x018a #define MDIO_PMA_REG_M8051_MSGIN_REG 0xca12 #define MDIO_PMA_REG_M8051_MSGOUT_REG 0xca13 #define MDIO_PMA_REG_ROM_VER1 0xca19 #define MDIO_PMA_REG_ROM_VER2 0xca1a #define MDIO_PMA_REG_EDC_FFE_MAIN 0xca1b #define MDIO_PMA_REG_PLL_BANDWIDTH 0xca1d #define MDIO_PMA_REG_PLL_CTRL 0xca1e #define MDIO_PMA_REG_MISC_CTRL0 0xca23 #define MDIO_PMA_REG_LRM_MODE 0xca3f #define MDIO_PMA_REG_CDR_BANDWIDTH 0xca46 #define MDIO_PMA_REG_MISC_CTRL1 0xca85 #define MDIO_PMA_REG_SFP_TWO_WIRE_CTRL 0x8000 #define MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK 0x000c #define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE 0x0000 #define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE 0x0004 #define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IN_PROGRESS 0x0008 #define MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_FAILED 0x000c #define MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT 0x8002 #define MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR 0x8003 #define MDIO_PMA_REG_8726_TWO_WIRE_DATA_BUF 0xc820 #define MDIO_PMA_REG_8726_TWO_WIRE_DATA_MASK 0xff #define MDIO_PMA_REG_8726_TX_CTRL1 0xca01 #define MDIO_PMA_REG_8726_TX_CTRL2 0xca05 #define MDIO_PMA_REG_8727_TWO_WIRE_SLAVE_ADDR 0x8005 #define MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF 0x8007 #define MDIO_PMA_REG_8727_TWO_WIRE_DATA_MASK 0xff #define MDIO_PMA_REG_8727_MISC_CTRL 0x8309 #define MDIO_PMA_REG_8727_TX_CTRL1 0xca02 #define MDIO_PMA_REG_8727_TX_CTRL2 0xca05 #define MDIO_PMA_REG_8727_PCS_OPT_CTRL 0xc808 #define MDIO_PMA_REG_8727_GPIO_CTRL 0xc80e #define MDIO_PMA_REG_8727_PCS_GP 0xc842 #define MDIO_PMA_REG_8727_OPT_CFG_REG 0xc8e4 #define MDIO_AN_REG_8727_MISC_CTRL 0x8309 #define MDIO_PMA_REG_8073_CHIP_REV 0xc801 #define MDIO_PMA_REG_8073_SPEED_LINK_STATUS 0xc820 #define MDIO_PMA_REG_8073_XAUI_WA 0xc841 #define MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL 0xcd08 #define MDIO_PMA_REG_7101_RESET 0xc000 #define MDIO_PMA_REG_7107_LED_CNTL 0xc007 #define MDIO_PMA_REG_7107_LINK_LED_CNTL 0xc009 #define MDIO_PMA_REG_7101_VER1 0xc026 #define MDIO_PMA_REG_7101_VER2 0xc027 #define MDIO_PMA_REG_8481_PMD_SIGNAL 0xa811 #define MDIO_PMA_REG_8481_LED1_MASK 0xa82c #define MDIO_PMA_REG_8481_LED2_MASK 0xa82f #define MDIO_PMA_REG_8481_LED3_MASK 0xa832 #define MDIO_PMA_REG_8481_LED3_BLINK 0xa834 #define MDIO_PMA_REG_8481_LED5_MASK 0xa838 #define MDIO_PMA_REG_8481_SIGNAL_MASK 0xa835 #define MDIO_PMA_REG_8481_LINK_SIGNAL 0xa83b #define MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_MASK 0x800 #define MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_SHIFT 11 #define MDIO_WIS_DEVAD 0x2 /*bcm*/ #define MDIO_WIS_REG_LASI_CNTL 0x9002 #define MDIO_WIS_REG_LASI_STATUS 0x9005 #define MDIO_PCS_DEVAD 0x3 #define MDIO_PCS_REG_STATUS 0x0020 #define MDIO_PCS_REG_LASI_STATUS 0x9005 #define MDIO_PCS_REG_7101_DSP_ACCESS 0xD000 #define MDIO_PCS_REG_7101_SPI_MUX 0xD008 #define MDIO_PCS_REG_7101_SPI_CTRL_ADDR 0xE12A #define MDIO_PCS_REG_7101_SPI_RESET_BIT (5) #define MDIO_PCS_REG_7101_SPI_FIFO_ADDR 0xE02A #define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_WRITE_ENABLE_CMD (6) #define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_BULK_ERASE_CMD (0xC7) #define MDIO_PCS_REG_7101_SPI_FIFO_ADDR_PAGE_PROGRAM_CMD (2) #define MDIO_PCS_REG_7101_SPI_BYTES_TO_TRANSFER_ADDR 0xE028 #define MDIO_XS_DEVAD 0x4 #define MDIO_XS_REG_STATUS 0x0001 #define MDIO_XS_PLL_SEQUENCER 0x8000 #define MDIO_XS_SFX7101_XGXS_TEST1 0xc00a #define MDIO_XS_8706_REG_BANK_RX0 0x80bc #define MDIO_XS_8706_REG_BANK_RX1 0x80cc #define MDIO_XS_8706_REG_BANK_RX2 0x80dc #define MDIO_XS_8706_REG_BANK_RX3 0x80ec #define MDIO_XS_8706_REG_BANK_RXA 0x80fc #define MDIO_XS_REG_8073_RX_CTRL_PCIE 0x80FA #define MDIO_AN_DEVAD 0x7 /*ieee*/ #define MDIO_AN_REG_CTRL 0x0000 #define MDIO_AN_REG_STATUS 0x0001 #define MDIO_AN_REG_STATUS_AN_COMPLETE 0x0020 #define MDIO_AN_REG_ADV_PAUSE 0x0010 #define MDIO_AN_REG_ADV_PAUSE_PAUSE 0x0400 #define MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC 0x0800 #define MDIO_AN_REG_ADV_PAUSE_BOTH 0x0C00 #define MDIO_AN_REG_ADV_PAUSE_MASK 0x0C00 #define MDIO_AN_REG_ADV 0x0011 #define MDIO_AN_REG_ADV2 0x0012 #define MDIO_AN_REG_LP_AUTO_NEG 0x0013 #define MDIO_AN_REG_LP_AUTO_NEG2 0x0014 #define MDIO_AN_REG_MASTER_STATUS 0x0021 #define MDIO_AN_REG_EEE_ADV 0x003c #define MDIO_AN_REG_LP_EEE_ADV 0x003d /*bcm*/ #define MDIO_AN_REG_LINK_STATUS 0x8304 #define MDIO_AN_REG_CL37_CL73 0x8370 #define MDIO_AN_REG_CL37_AN 0xffe0 #define MDIO_AN_REG_CL37_FC_LD 0xffe4 #define MDIO_AN_REG_CL37_FC_LP 0xffe5 #define MDIO_AN_REG_1000T_STATUS 0xffea #define MDIO_AN_REG_8073_2_5G 0x8329 #define MDIO_AN_REG_8073_BAM 0x8350 #define MDIO_AN_REG_8481_10GBASE_T_AN_CTRL 0x0020 #define MDIO_AN_REG_8481_LEGACY_MII_CTRL 0xffe0 #define MDIO_AN_REG_8481_MII_CTRL_FORCE_1G 0x40 #define MDIO_AN_REG_8481_LEGACY_MII_STATUS 0xffe1 #define MDIO_AN_REG_848xx_ID_MSB 0xffe2 #define BCM84858_PHY_ID 0x600d #define MDIO_AN_REG_848xx_ID_LSB 0xffe3 #define MDIO_AN_REG_8481_LEGACY_AN_ADV 0xffe4 #define MDIO_AN_REG_8481_LEGACY_AN_EXPANSION 0xffe6 #define MDIO_AN_REG_8481_1000T_CTRL 0xffe9 #define MDIO_AN_REG_8481_1G_100T_EXT_CTRL 0xfff0 #define MIDO_AN_REG_8481_EXT_CTRL_FORCE_LEDS_OFF 0x0008 #define MDIO_AN_REG_8481_EXPANSION_REG_RD_RW 0xfff5 #define MDIO_AN_REG_8481_EXPANSION_REG_ACCESS 0xfff7 #define MDIO_AN_REG_8481_AUX_CTRL 0xfff8 #define MDIO_AN_REG_8481_LEGACY_SHADOW 0xfffc /* BCM84823 only */ #define MDIO_CTL_DEVAD 0x1e #define MDIO_CTL_REG_84823_MEDIA 0x401a #define MDIO_CTL_REG_84823_MEDIA_MAC_MASK 0x0018 /* These pins configure the BCM84823 interface to MAC after reset. */ #define MDIO_CTL_REG_84823_CTRL_MAC_XFI 0x0008 #define MDIO_CTL_REG_84823_MEDIA_MAC_XAUI_M 0x0010 /* These pins configure the BCM84823 interface to Line after reset. */ #define MDIO_CTL_REG_84823_MEDIA_LINE_MASK 0x0060 #define MDIO_CTL_REG_84823_MEDIA_LINE_XAUI_L 0x0020 #define MDIO_CTL_REG_84823_MEDIA_LINE_XFI 0x0040 /* When this pin is active high during reset, 10GBASE-T core is power * down, When it is active low the 10GBASE-T is power up */ #define MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN 0x0080 #define MDIO_CTL_REG_84823_MEDIA_PRIORITY_MASK 0x0100 #define MDIO_CTL_REG_84823_MEDIA_PRIORITY_COPPER 0x0000 #define MDIO_CTL_REG_84823_MEDIA_PRIORITY_FIBER 0x0100 #define MDIO_CTL_REG_84823_MEDIA_FIBER_1G 0x1000 #define MDIO_CTL_REG_84823_USER_CTRL_REG 0x4005 #define MDIO_CTL_REG_84823_USER_CTRL_CMS 0x0080 #define MDIO_PMA_REG_84823_CTL_SLOW_CLK_CNT_HIGH 0xa82b #define MDIO_PMA_REG_84823_BLINK_RATE_VAL_15P9HZ 0x2f #define MDIO_PMA_REG_84823_CTL_LED_CTL_1 0xa8e3 #define MDIO_PMA_REG_84833_CTL_LED_CTL_1 0xa8ec #define MDIO_PMA_REG_84823_LED3_STRETCH_EN 0x0080 /* BCM84833 only */ #define MDIO_84833_TOP_CFG_FW_REV 0x400f #define MDIO_84833_TOP_CFG_FW_EEE 0x10b1 #define MDIO_84833_TOP_CFG_FW_NO_EEE 0x1f81 #define MDIO_84833_TOP_CFG_XGPHY_STRAP1 0x401a #define MDIO_84833_SUPER_ISOLATE 0x8000 /* These are mailbox register set used by 84833/84858. */ #define MDIO_848xx_TOP_CFG_SCRATCH_REG0 0x4005 #define MDIO_848xx_TOP_CFG_SCRATCH_REG1 0x4006 #define MDIO_848xx_TOP_CFG_SCRATCH_REG2 0x4007 #define MDIO_848xx_TOP_CFG_SCRATCH_REG3 0x4008 #define MDIO_848xx_TOP_CFG_SCRATCH_REG4 0x4009 #define MDIO_848xx_TOP_CFG_SCRATCH_REG26 0x4037 #define MDIO_848xx_TOP_CFG_SCRATCH_REG27 0x4038 #define MDIO_848xx_TOP_CFG_SCRATCH_REG28 0x4039 #define MDIO_848xx_TOP_CFG_SCRATCH_REG29 0x403a #define MDIO_848xx_TOP_CFG_SCRATCH_REG30 0x403b #define MDIO_848xx_TOP_CFG_SCRATCH_REG31 0x403c #define MDIO_848xx_CMD_HDLR_COMMAND (MDIO_848xx_TOP_CFG_SCRATCH_REG0) #define MDIO_848xx_CMD_HDLR_STATUS (MDIO_848xx_TOP_CFG_SCRATCH_REG26) #define MDIO_848xx_CMD_HDLR_DATA1 (MDIO_848xx_TOP_CFG_SCRATCH_REG27) #define MDIO_848xx_CMD_HDLR_DATA2 (MDIO_848xx_TOP_CFG_SCRATCH_REG28) #define MDIO_848xx_CMD_HDLR_DATA3 (MDIO_848xx_TOP_CFG_SCRATCH_REG29) #define MDIO_848xx_CMD_HDLR_DATA4 (MDIO_848xx_TOP_CFG_SCRATCH_REG30) #define MDIO_848xx_CMD_HDLR_DATA5 (MDIO_848xx_TOP_CFG_SCRATCH_REG31) /* Mailbox command set used by 84833/84858 */ #define PHY848xx_CMD_SET_PAIR_SWAP 0x8001 #define PHY848xx_CMD_GET_EEE_MODE 0x8008 #define PHY848xx_CMD_SET_EEE_MODE 0x8009 #define PHY848xx_CMD_GET_CURRENT_TEMP 0x8031 /* Mailbox status set used by 84833 only */ #define PHY84833_STATUS_CMD_RECEIVED 0x0001 #define PHY84833_STATUS_CMD_IN_PROGRESS 0x0002 #define PHY84833_STATUS_CMD_COMPLETE_PASS 0x0004 #define PHY84833_STATUS_CMD_COMPLETE_ERROR 0x0008 #define PHY84833_STATUS_CMD_OPEN_FOR_CMDS 0x0010 #define PHY84833_STATUS_CMD_SYSTEM_BOOT 0x0020 #define PHY84833_STATUS_CMD_NOT_OPEN_FOR_CMDS 0x0040 #define PHY84833_STATUS_CMD_CLEAR_COMPLETE 0x0080 #define PHY84833_STATUS_CMD_OPEN_OVERRIDE 0xa5a5 /* Mailbox Process */ #define PHY84833_MB_PROCESS1 1 #define PHY84833_MB_PROCESS2 2 #define PHY84833_MB_PROCESS3 3 /* Mailbox status set used by 84858 only */ #define PHY84858_STATUS_CMD_RECEIVED 0x0001 #define PHY84858_STATUS_CMD_IN_PROGRESS 0x0002 #define PHY84858_STATUS_CMD_COMPLETE_PASS 0x0004 #define PHY84858_STATUS_CMD_COMPLETE_ERROR 0x0008 #define PHY84858_STATUS_CMD_SYSTEM_BUSY 0xbbbb /* Warpcore clause 45 addressing */ #define MDIO_WC_DEVAD 0x3 #define MDIO_WC_REG_IEEE0BLK_MIICNTL 0x0 #define MDIO_WC_REG_IEEE0BLK_AUTONEGNP 0x7 #define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT0 0x10 #define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1 0x11 #define MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT2 0x12 #define MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_ABILITY 0x4000 #define MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_REQ 0x8000 #define MDIO_WC_REG_PCS_STATUS2 0x0021 #define MDIO_WC_REG_PMD_KR_CONTROL 0x0096 #define MDIO_WC_REG_XGXSBLK0_XGXSCONTROL 0x8000 #define MDIO_WC_REG_XGXSBLK0_MISCCONTROL1 0x800e #define MDIO_WC_REG_XGXSBLK1_DESKEW 0x8010 #define MDIO_WC_REG_XGXSBLK1_LANECTRL0 0x8015 #define MDIO_WC_REG_XGXSBLK1_LANECTRL1 0x8016 #define MDIO_WC_REG_XGXSBLK1_LANECTRL2 0x8017 #define MDIO_WC_REG_XGXSBLK1_LANECTRL3 0x8018 #define MDIO_WC_REG_XGXSBLK1_LANETEST0 0x801a #define MDIO_WC_REG_TX0_ANA_CTRL0 0x8061 #define MDIO_WC_REG_TX1_ANA_CTRL0 0x8071 #define MDIO_WC_REG_TX2_ANA_CTRL0 0x8081 #define MDIO_WC_REG_TX3_ANA_CTRL0 0x8091 #define MDIO_WC_REG_TX0_TX_DRIVER 0x8067 #define MDIO_WC_REG_TX0_TX_DRIVER_IFIR_OFFSET 0x01 #define MDIO_WC_REG_TX0_TX_DRIVER_IFIR_MASK 0x000e #define MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_OFFSET 0x04 #define MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_MASK 0x00f0 #define MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_OFFSET 0x08 #define MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_MASK 0x0f00 #define MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_OFFSET 0x0c #define MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_MASK 0x7000 #define MDIO_WC_REG_TX1_TX_DRIVER 0x8077 #define MDIO_WC_REG_TX2_TX_DRIVER 0x8087 #define MDIO_WC_REG_TX3_TX_DRIVER 0x8097 #define MDIO_WC_REG_RX0_ANARXCONTROL1G 0x80b9 #define MDIO_WC_REG_RX2_ANARXCONTROL1G 0x80d9 #define MDIO_WC_REG_RX0_PCI_CTRL 0x80ba #define MDIO_WC_REG_RX1_PCI_CTRL 0x80ca #define MDIO_WC_REG_RX2_PCI_CTRL 0x80da #define MDIO_WC_REG_RX3_PCI_CTRL 0x80ea #define MDIO_WC_REG_RXB_ANA_RX_CONTROL_PCI 0x80fa #define MDIO_WC_REG_XGXSBLK2_UNICORE_MODE_10G 0x8104 #define MDIO_WC_REG_XGXSBLK2_LANE_RESET 0x810a #define MDIO_WC_REG_XGXS_STATUS3 0x8129 #define MDIO_WC_REG_PAR_DET_10G_STATUS 0x8130 #define MDIO_WC_REG_PAR_DET_10G_CTRL 0x8131 #define MDIO_WC_REG_XGXS_STATUS4 0x813c #define MDIO_WC_REG_XGXS_X2_CONTROL2 0x8141 #define MDIO_WC_REG_XGXS_X2_CONTROL3 0x8142 #define MDIO_WC_REG_XGXS_RX_LN_SWAP1 0x816B #define MDIO_WC_REG_XGXS_TX_LN_SWAP1 0x8169 #define MDIO_WC_REG_GP2_STATUS_GP_2_0 0x81d0 #define MDIO_WC_REG_GP2_STATUS_GP_2_1 0x81d1 #define MDIO_WC_REG_GP2_STATUS_GP_2_2 0x81d2 #define MDIO_WC_REG_GP2_STATUS_GP_2_3 0x81d3 #define MDIO_WC_REG_GP2_STATUS_GP_2_4 0x81d4 #define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL73_AN_CMPL 0x1000 #define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_AN_CMPL 0x0100 #define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_LP_AN_CAP 0x0010 #define MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_AN_CAP 0x1 #define MDIO_WC_REG_UC_INFO_B0_DEAD_TRAP 0x81EE #define MDIO_WC_REG_UC_INFO_B1_VERSION 0x81F0 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE 0x81F2 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE0_OFFSET 0x0 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT 0x0 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_OPT_LR 0x1 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_DAC 0x2 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_XLAUI 0x3 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_LONG_CH_6G 0x4 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE1_OFFSET 0x4 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE2_OFFSET 0x8 #define MDIO_WC_REG_UC_INFO_B1_FIRMWARE_LANE3_OFFSET 0xc #define MDIO_WC_REG_UC_INFO_B1_CRC 0x81FE #define MDIO_WC_REG_DSC1B0_UC_CTRL 0x820e #define MDIO_WC_REG_DSC1B0_UC_CTRL_RDY4CMD (1<<7) #define MDIO_WC_REG_DSC_SMC 0x8213 #define MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0 0x821e #define MDIO_WC_REG_TX_FIR_TAP 0x82e2 #define MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_OFFSET 0x00 #define MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_MASK 0x000f #define MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_OFFSET 0x04 #define MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_MASK 0x03f0 #define MDIO_WC_REG_TX_FIR_TAP_POST_TAP_OFFSET 0x0a #define MDIO_WC_REG_TX_FIR_TAP_POST_TAP_MASK 0x7c00 #define MDIO_WC_REG_TX_FIR_TAP_ENABLE 0x8000 #define MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP 0x82e2 #define MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL 0x82e3 #define MDIO_WC_REG_CL72_USERB0_CL72_OS_DEF_CTRL 0x82e6 #define MDIO_WC_REG_CL72_USERB0_CL72_BR_DEF_CTRL 0x82e7 #define MDIO_WC_REG_CL72_USERB0_CL72_2P5_DEF_CTRL 0x82e8 #define MDIO_WC_REG_CL72_USERB0_CL72_MISC4_CONTROL 0x82ec #define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1 0x8300 #define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2 0x8301 #define MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3 0x8302 #define MDIO_WC_REG_SERDESDIGITAL_STATUS1000X1 0x8304 #define MDIO_WC_REG_SERDESDIGITAL_MISC1 0x8308 #define MDIO_WC_REG_SERDESDIGITAL_MISC2 0x8309 #define MDIO_WC_REG_DIGITAL3_UP1 0x8329 #define MDIO_WC_REG_DIGITAL3_LP_UP1 0x832c #define MDIO_WC_REG_DIGITAL4_MISC3 0x833c #define MDIO_WC_REG_DIGITAL4_MISC5 0x833e #define MDIO_WC_REG_DIGITAL5_MISC6 0x8345 #define MDIO_WC_REG_DIGITAL5_MISC7 0x8349 #define MDIO_WC_REG_DIGITAL5_LINK_STATUS 0x834d #define MDIO_WC_REG_DIGITAL5_ACTUAL_SPEED 0x834e #define MDIO_WC_REG_DIGITAL6_MP5_NEXTPAGECTRL 0x8350 #define MDIO_WC_REG_CL49_USERB0_CTRL 0x8368 #define MDIO_WC_REG_CL73_USERB0_CTRL 0x8370 #define MDIO_WC_REG_CL73_USERB0_USTAT 0x8371 #define MDIO_WC_REG_CL73_BAM_CTRL1 0x8372 #define MDIO_WC_REG_CL73_BAM_CTRL2 0x8373 #define MDIO_WC_REG_CL73_BAM_CTRL3 0x8374 #define MDIO_WC_REG_CL73_BAM_CODE_FIELD 0x837b #define MDIO_WC_REG_EEE_COMBO_CONTROL0 0x8390 #define MDIO_WC_REG_TX66_CONTROL 0x83b0 #define MDIO_WC_REG_RX66_CONTROL 0x83c0 #define MDIO_WC_REG_RX66_SCW0 0x83c2 #define MDIO_WC_REG_RX66_SCW1 0x83c3 #define MDIO_WC_REG_RX66_SCW2 0x83c4 #define MDIO_WC_REG_RX66_SCW3 0x83c5 #define MDIO_WC_REG_RX66_SCW0_MASK 0x83c6 #define MDIO_WC_REG_RX66_SCW1_MASK 0x83c7 #define MDIO_WC_REG_RX66_SCW2_MASK 0x83c8 #define MDIO_WC_REG_RX66_SCW3_MASK 0x83c9 #define MDIO_WC_REG_FX100_CTRL1 0x8400 #define MDIO_WC_REG_FX100_CTRL3 0x8402 #define MDIO_WC_REG_CL82_USERB1_TX_CTRL5 0x8436 #define MDIO_WC_REG_CL82_USERB1_TX_CTRL6 0x8437 #define MDIO_WC_REG_CL82_USERB1_TX_CTRL7 0x8438 #define MDIO_WC_REG_CL82_USERB1_TX_CTRL9 0x8439 #define MDIO_WC_REG_CL82_USERB1_RX_CTRL10 0x843a #define MDIO_WC_REG_CL82_USERB1_RX_CTRL11 0x843b #define MDIO_WC_REG_ETA_CL73_OUI1 0x8453 #define MDIO_WC_REG_ETA_CL73_OUI2 0x8454 #define MDIO_WC_REG_ETA_CL73_OUI3 0x8455 #define MDIO_WC_REG_ETA_CL73_LD_BAM_CODE 0x8456 #define MDIO_WC_REG_ETA_CL73_LD_UD_CODE 0x8457 #define MDIO_WC_REG_MICROBLK_CMD 0xffc2 #define MDIO_WC_REG_MICROBLK_DL_STATUS 0xffc5 #define MDIO_WC_REG_MICROBLK_CMD3 0xffcc #define MDIO_WC_REG_AERBLK_AER 0xffde #define MDIO_WC_REG_COMBO_IEEE0_MIICTRL 0xffe0 #define MDIO_WC_REG_COMBO_IEEE0_MIIISTAT 0xffe1 #define MDIO_WC0_XGXS_BLK2_LANE_RESET 0x810A #define MDIO_WC0_XGXS_BLK2_LANE_RESET_RX_BITSHIFT 0 #define MDIO_WC0_XGXS_BLK2_LANE_RESET_TX_BITSHIFT 4 #define MDIO_WC0_XGXS_BLK6_XGXS_X2_CONTROL2 0x8141 #define DIGITAL5_ACTUAL_SPEED_TX_MASK 0x003f /* 54618se */ #define MDIO_REG_GPHY_MII_STATUS 0x1 #define MDIO_REG_GPHY_PHYID_LSB 0x3 #define MDIO_REG_GPHY_CL45_ADDR_REG 0xd #define MDIO_REG_GPHY_CL45_REG_WRITE 0x4000 #define MDIO_REG_GPHY_CL45_REG_READ 0xc000 #define MDIO_REG_GPHY_CL45_DATA_REG 0xe #define MDIO_REG_GPHY_EEE_RESOLVED 0x803e #define MDIO_REG_GPHY_EXP_ACCESS_GATE 0x15 #define MDIO_REG_GPHY_EXP_ACCESS 0x17 #define MDIO_REG_GPHY_EXP_ACCESS_TOP 0xd00 #define MDIO_REG_GPHY_EXP_TOP_2K_BUF 0x40 #define MDIO_REG_GPHY_AUX_STATUS 0x19 #define MDIO_REG_INTR_STATUS 0x1a #define MDIO_REG_INTR_MASK 0x1b #define MDIO_REG_INTR_MASK_LINK_STATUS (0x1 << 1) #define MDIO_REG_GPHY_SHADOW 0x1c #define MDIO_REG_GPHY_SHADOW_LED_SEL1 (0x0d << 10) #define MDIO_REG_GPHY_SHADOW_LED_SEL2 (0x0e << 10) #define MDIO_REG_GPHY_SHADOW_WR_ENA (0x1 << 15) #define MDIO_REG_GPHY_SHADOW_AUTO_DET_MED (0x1e << 10) #define MDIO_REG_GPHY_SHADOW_INVERT_FIB_SD (0x1 << 8) typedef elink_status_t (*read_sfp_module_eeprom_func_p)(struct elink_phy *phy, struct elink_params *params, uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt, uint8_t *o_buf, uint8_t); /********************************************************/ #define ELINK_ETH_HLEN 14 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ #define ELINK_ETH_OVREHEAD (ELINK_ETH_HLEN + 8 + 8) #define ELINK_ETH_MIN_PACKET_SIZE 60 #define ELINK_ETH_MAX_PACKET_SIZE 1500 #define ELINK_ETH_MAX_JUMBO_PACKET_SIZE 9600 #define ELINK_MDIO_ACCESS_TIMEOUT 1000 #define WC_LANE_MAX 4 #define I2C_SWITCH_WIDTH 2 #define I2C_BSC0 0 #define I2C_BSC1 1 #define I2C_WA_RETRY_CNT 3 #define I2C_WA_PWR_ITER (I2C_WA_RETRY_CNT - 1) #define MCPR_IMC_COMMAND_READ_OP 1 #define MCPR_IMC_COMMAND_WRITE_OP 2 /* LED Blink rate that will achieve ~15.9Hz */ #define LED_BLINK_RATE_VAL_E3 354 #define LED_BLINK_RATE_VAL_E1X_E2 480 /***********************************************************/ /* Shortcut definitions */ /***********************************************************/ #define ELINK_NIG_LATCH_BC_ENABLE_MI_INT 0 #define ELINK_NIG_STATUS_EMAC0_MI_INT \ NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_EMAC0_MISC_MI_INT #define ELINK_NIG_STATUS_XGXS0_LINK10G \ NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK10G #define ELINK_NIG_STATUS_XGXS0_LINK_STATUS \ NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS #define ELINK_NIG_STATUS_XGXS0_LINK_STATUS_SIZE \ NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS_SIZE #define ELINK_NIG_STATUS_SERDES0_LINK_STATUS \ NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_SERDES0_LINK_STATUS #define ELINK_NIG_MASK_MI_INT \ NIG_MASK_INTERRUPT_PORT0_REG_MASK_EMAC0_MISC_MI_INT #define ELINK_NIG_MASK_XGXS0_LINK10G \ NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK10G #define ELINK_NIG_MASK_XGXS0_LINK_STATUS \ NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK_STATUS #define ELINK_NIG_MASK_SERDES0_LINK_STATUS \ NIG_MASK_INTERRUPT_PORT0_REG_MASK_SERDES0_LINK_STATUS #define ELINK_MDIO_AN_CL73_OR_37_COMPLETE \ (MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE | \ MDIO_GP_STATUS_TOP_AN_STATUS1_CL37_AUTONEG_COMPLETE) #define ELINK_XGXS_RESET_BITS \ (MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_RSTB_HW | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_IDDQ | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN_SD | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_TXD_FIFO_RSTB) #define ELINK_SERDES_RESET_BITS \ (MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_RSTB_HW | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_IDDQ | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN | \ MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN_SD) #define ELINK_AUTONEG_CL37 SHARED_HW_CFG_AN_ENABLE_CL37 #define ELINK_AUTONEG_CL73 SHARED_HW_CFG_AN_ENABLE_CL73 #define ELINK_AUTONEG_BAM SHARED_HW_CFG_AN_ENABLE_BAM #define ELINK_AUTONEG_PARALLEL \ SHARED_HW_CFG_AN_ENABLE_PARALLEL_DETECTION #define ELINK_AUTONEG_SGMII_FIBER_AUTODET \ SHARED_HW_CFG_AN_EN_SGMII_FIBER_AUTO_DETECT #define ELINK_AUTONEG_REMOTE_PHY SHARED_HW_CFG_AN_ENABLE_REMOTE_PHY #define ELINK_GP_STATUS_PAUSE_RSOLUTION_TXSIDE \ MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_TXSIDE #define ELINK_GP_STATUS_PAUSE_RSOLUTION_RXSIDE \ MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_RXSIDE #define ELINK_GP_STATUS_SPEED_MASK \ MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_MASK #define ELINK_GP_STATUS_10M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10M #define ELINK_GP_STATUS_100M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_100M #define ELINK_GP_STATUS_1G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G #define ELINK_GP_STATUS_2_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_2_5G #define ELINK_GP_STATUS_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_5G #define ELINK_GP_STATUS_6G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_6G #define ELINK_GP_STATUS_10G_HIG \ MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_HIG #define ELINK_GP_STATUS_10G_CX4 \ MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_CX4 #define ELINK_GP_STATUS_1G_KX MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G_KX #define ELINK_GP_STATUS_10G_KX4 \ MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KX4 #define ELINK_GP_STATUS_10G_KR MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KR #define ELINK_GP_STATUS_10G_XFI MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_XFI #define ELINK_GP_STATUS_20G_DXGXS MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_DXGXS #define ELINK_GP_STATUS_10G_SFI MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_SFI #define ELINK_GP_STATUS_20G_KR2 MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_20G_KR2 #define ELINK_LINK_10THD LINK_STATUS_SPEED_AND_DUPLEX_10THD #define ELINK_LINK_10TFD LINK_STATUS_SPEED_AND_DUPLEX_10TFD #define ELINK_LINK_100TXHD LINK_STATUS_SPEED_AND_DUPLEX_100TXHD #define ELINK_LINK_100T4 LINK_STATUS_SPEED_AND_DUPLEX_100T4 #define ELINK_LINK_100TXFD LINK_STATUS_SPEED_AND_DUPLEX_100TXFD #define ELINK_LINK_1000THD LINK_STATUS_SPEED_AND_DUPLEX_1000THD #define ELINK_LINK_1000TFD LINK_STATUS_SPEED_AND_DUPLEX_1000TFD #define ELINK_LINK_1000XFD LINK_STATUS_SPEED_AND_DUPLEX_1000XFD #define ELINK_LINK_2500THD LINK_STATUS_SPEED_AND_DUPLEX_2500THD #define ELINK_LINK_2500TFD LINK_STATUS_SPEED_AND_DUPLEX_2500TFD #define ELINK_LINK_2500XFD LINK_STATUS_SPEED_AND_DUPLEX_2500XFD #define ELINK_LINK_10GTFD LINK_STATUS_SPEED_AND_DUPLEX_10GTFD #define ELINK_LINK_10GXFD LINK_STATUS_SPEED_AND_DUPLEX_10GXFD #define ELINK_LINK_20GTFD LINK_STATUS_SPEED_AND_DUPLEX_20GTFD #define ELINK_LINK_20GXFD LINK_STATUS_SPEED_AND_DUPLEX_20GXFD #define ELINK_LINK_UPDATE_MASK \ (LINK_STATUS_SPEED_AND_DUPLEX_MASK | \ LINK_STATUS_LINK_UP | \ LINK_STATUS_PHYSICAL_LINK_FLAG | \ LINK_STATUS_AUTO_NEGOTIATE_COMPLETE | \ LINK_STATUS_RX_FLOW_CONTROL_FLAG_MASK | \ LINK_STATUS_TX_FLOW_CONTROL_FLAG_MASK | \ LINK_STATUS_PARALLEL_DETECTION_FLAG_MASK | \ LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE | \ LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE) #define ELINK_SFP_EEPROM_CON_TYPE_ADDR 0x2 #define ELINK_SFP_EEPROM_CON_TYPE_VAL_UNKNOWN 0x0 #define ELINK_SFP_EEPROM_CON_TYPE_VAL_LC 0x7 #define ELINK_SFP_EEPROM_CON_TYPE_VAL_COPPER 0x21 #define ELINK_SFP_EEPROM_CON_TYPE_VAL_RJ45 0x22 #define ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR 0x3 #define ELINK_SFP_EEPROM_10G_COMP_CODE_SR_MASK (1<<4) #define ELINK_SFP_EEPROM_10G_COMP_CODE_LR_MASK (1<<5) #define ELINK_SFP_EEPROM_10G_COMP_CODE_LRM_MASK (1<<6) #define ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR 0x6 #define ELINK_SFP_EEPROM_1G_COMP_CODE_SX (1<<0) #define ELINK_SFP_EEPROM_1G_COMP_CODE_LX (1<<1) #define ELINK_SFP_EEPROM_1G_COMP_CODE_CX (1<<2) #define ELINK_SFP_EEPROM_1G_COMP_CODE_BASE_T (1<<3) #define ELINK_SFP_EEPROM_FC_TX_TECH_ADDR 0x8 #define ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE 0x4 #define ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE 0x8 #define ELINK_SFP_EEPROM_OPTIONS_ADDR 0x40 #define ELINK_SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK 0x1 #define ELINK_SFP_EEPROM_OPTIONS_SIZE 2 #define ELINK_EDC_MODE_LINEAR 0x0022 #define ELINK_EDC_MODE_LIMITING 0x0044 #define ELINK_EDC_MODE_PASSIVE_DAC 0x0055 #define ELINK_EDC_MODE_ACTIVE_DAC 0x0066 /* ETS defines*/ #define DCBX_INVALID_COS (0xFF) #define ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND (0x5000) #define ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT (0x5000) #define ELINK_ETS_E3B0_NIG_MIN_W_VAL_UP_TO_10GBPS (1360) #define ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS (2720) #define ELINK_ETS_E3B0_PBF_MIN_W_VAL (10000) #define ELINK_MAX_PACKET_SIZE (9700) #define MAX_KR_LINK_RETRY 4 #define DEFAULT_TX_DRV_BRDCT 2 #define DEFAULT_TX_DRV_IFIR 0 #define DEFAULT_TX_DRV_POST2 3 #define DEFAULT_TX_DRV_IPRE_DRIVER 6 /**********************************************************/ /* INTERFACE */ /**********************************************************/ #define CL22_WR_OVER_CL45(_sc, _phy, _bank, _addr, _val) \ elink_cl45_write(_sc, _phy, \ (_phy)->def_md_devad, \ (_bank + (_addr & 0xf)), \ _val) #define CL22_RD_OVER_CL45(_sc, _phy, _bank, _addr, _val) \ elink_cl45_read(_sc, _phy, \ (_phy)->def_md_devad, \ (_bank + (_addr & 0xf)), \ _val) static elink_status_t elink_check_half_open_conn(struct elink_params *params, struct elink_vars *vars, uint8_t notify); static elink_status_t elink_sfp_module_detection(struct elink_phy *phy, struct elink_params *params); static uint32_t elink_bits_en(struct bxe_softc *sc, uint32_t reg, uint32_t bits) { uint32_t val = REG_RD(sc, reg); val |= bits; REG_WR(sc, reg, val); return val; } static uint32_t elink_bits_dis(struct bxe_softc *sc, uint32_t reg, uint32_t bits) { uint32_t val = REG_RD(sc, reg); val &= ~bits; REG_WR(sc, reg, val); return val; } /* * elink_check_lfa - This function checks if link reinitialization is required, * or link flap can be avoided. * * @params: link parameters * Returns 0 if Link Flap Avoidance conditions are met otherwise, the failed * condition code. */ static int elink_check_lfa(struct elink_params *params) { uint32_t link_status, cfg_idx, lfa_mask, cfg_size; uint32_t cur_speed_cap_mask, cur_req_fc_auto_adv, additional_config; uint32_t saved_val, req_val, eee_status; struct bxe_softc *sc = params->sc; additional_config = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, additional_config)); /* NOTE: must be first condition checked - * to verify DCC bit is cleared in any case! */ if (additional_config & NO_LFA_DUE_TO_DCC_MASK) { ELINK_DEBUG_P0(sc, "No LFA due to DCC flap after clp exit\n"); REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, additional_config), additional_config & ~NO_LFA_DUE_TO_DCC_MASK); return LFA_DCC_LFA_DISABLED; } /* Verify that link is up */ link_status = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, port_mb[params->port].link_status)); if (!(link_status & LINK_STATUS_LINK_UP)) return LFA_LINK_DOWN; /* if loaded after BOOT from SAN, don't flap the link in any case and * rely on link set by preboot driver */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BOOT_FROM_SAN) return 0; /* Verify that loopback mode is not set */ if (params->loopback_mode) return LFA_LOOPBACK_ENABLED; /* Verify that MFW supports LFA */ if (!params->lfa_base) return LFA_MFW_IS_TOO_OLD; if (params->num_phys == 3) { cfg_size = 2; lfa_mask = 0xffffffff; } else { cfg_size = 1; lfa_mask = 0xffff; } /* Compare Duplex */ saved_val = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, req_duplex)); req_val = params->req_duplex[0] | (params->req_duplex[1] << 16); if ((saved_val & lfa_mask) != (req_val & lfa_mask)) { ELINK_DEBUG_P2(sc, "Duplex mismatch %x vs. %x\n", (saved_val & lfa_mask), (req_val & lfa_mask)); return LFA_DUPLEX_MISMATCH; } /* Compare Flow Control */ saved_val = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, req_flow_ctrl)); req_val = params->req_flow_ctrl[0] | (params->req_flow_ctrl[1] << 16); if ((saved_val & lfa_mask) != (req_val & lfa_mask)) { ELINK_DEBUG_P2(sc, "Flow control mismatch %x vs. %x\n", (saved_val & lfa_mask), (req_val & lfa_mask)); return LFA_FLOW_CTRL_MISMATCH; } /* Compare Link Speed */ saved_val = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, req_line_speed)); req_val = params->req_line_speed[0] | (params->req_line_speed[1] << 16); if ((saved_val & lfa_mask) != (req_val & lfa_mask)) { ELINK_DEBUG_P2(sc, "Link speed mismatch %x vs. %x\n", (saved_val & lfa_mask), (req_val & lfa_mask)); return LFA_LINK_SPEED_MISMATCH; } for (cfg_idx = 0; cfg_idx < cfg_size; cfg_idx++) { cur_speed_cap_mask = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, speed_cap_mask[cfg_idx])); if (cur_speed_cap_mask != params->speed_cap_mask[cfg_idx]) { ELINK_DEBUG_P2(sc, "Speed Cap mismatch %x vs. %x\n", cur_speed_cap_mask, params->speed_cap_mask[cfg_idx]); return LFA_SPEED_CAP_MISMATCH; } } cur_req_fc_auto_adv = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, additional_config)) & REQ_FC_AUTO_ADV_MASK; if ((uint16_t)cur_req_fc_auto_adv != params->req_fc_auto_adv) { ELINK_DEBUG_P2(sc, "Flow Ctrl AN mismatch %x vs. %x\n", cur_req_fc_auto_adv, params->req_fc_auto_adv); return LFA_FLOW_CTRL_MISMATCH; } eee_status = REG_RD(sc, params->shmem2_base + offsetof(struct shmem2_region, eee_status[params->port])); if (((eee_status & SHMEM_EEE_LPI_REQUESTED_BIT) ^ (params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI)) || ((eee_status & SHMEM_EEE_REQUESTED_BIT) ^ (params->eee_mode & ELINK_EEE_MODE_ADV_LPI))) { ELINK_DEBUG_P2(sc, "EEE mismatch %x vs. %x\n", params->eee_mode, eee_status); return LFA_EEE_MISMATCH; } /* LFA conditions are met */ return 0; } /******************************************************************/ /* EPIO/GPIO section */ /******************************************************************/ static void elink_get_epio(struct bxe_softc *sc, uint32_t epio_pin, uint32_t *en) { uint32_t epio_mask, gp_oenable; *en = 0; /* Sanity check */ if (epio_pin > 31) { ELINK_DEBUG_P1(sc, "Invalid EPIO pin %d to get\n", epio_pin); return; } epio_mask = 1 << epio_pin; /* Set this EPIO to output */ gp_oenable = REG_RD(sc, MCP_REG_MCPR_GP_OENABLE); REG_WR(sc, MCP_REG_MCPR_GP_OENABLE, gp_oenable & ~epio_mask); *en = (REG_RD(sc, MCP_REG_MCPR_GP_INPUTS) & epio_mask) >> epio_pin; } static void elink_set_epio(struct bxe_softc *sc, uint32_t epio_pin, uint32_t en) { uint32_t epio_mask, gp_output, gp_oenable; /* Sanity check */ if (epio_pin > 31) { ELINK_DEBUG_P1(sc, "Invalid EPIO pin %d to set\n", epio_pin); return; } ELINK_DEBUG_P2(sc, "Setting EPIO pin %d to %d\n", epio_pin, en); epio_mask = 1 << epio_pin; /* Set this EPIO to output */ gp_output = REG_RD(sc, MCP_REG_MCPR_GP_OUTPUTS); if (en) gp_output |= epio_mask; else gp_output &= ~epio_mask; REG_WR(sc, MCP_REG_MCPR_GP_OUTPUTS, gp_output); /* Set the value for this EPIO */ gp_oenable = REG_RD(sc, MCP_REG_MCPR_GP_OENABLE); REG_WR(sc, MCP_REG_MCPR_GP_OENABLE, gp_oenable | epio_mask); } static void elink_set_cfg_pin(struct bxe_softc *sc, uint32_t pin_cfg, uint32_t val) { if (pin_cfg == PIN_CFG_NA) return; if (pin_cfg >= PIN_CFG_EPIO0) { elink_set_epio(sc, pin_cfg - PIN_CFG_EPIO0, val); } else { uint8_t gpio_num = (pin_cfg - PIN_CFG_GPIO0_P0) & 0x3; uint8_t gpio_port = (pin_cfg - PIN_CFG_GPIO0_P0) >> 2; elink_cb_gpio_write(sc, gpio_num, (uint8_t)val, gpio_port); } } static uint32_t elink_get_cfg_pin(struct bxe_softc *sc, uint32_t pin_cfg, uint32_t *val) { if (pin_cfg == PIN_CFG_NA) return ELINK_STATUS_ERROR; if (pin_cfg >= PIN_CFG_EPIO0) { elink_get_epio(sc, pin_cfg - PIN_CFG_EPIO0, val); } else { uint8_t gpio_num = (pin_cfg - PIN_CFG_GPIO0_P0) & 0x3; uint8_t gpio_port = (pin_cfg - PIN_CFG_GPIO0_P0) >> 2; *val = elink_cb_gpio_read(sc, gpio_num, gpio_port); } return ELINK_STATUS_OK; } /******************************************************************/ /* ETS section */ /******************************************************************/ static void elink_ets_e2e3a0_disabled(struct elink_params *params) { /* ETS disabled configuration*/ struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "ETS E2E3 disabled configuration\n"); /* mapping between entry priority to client number (0,1,2 -debug and * management clients, 3 - COS0 client, 4 - COS client)(HIGHEST) * 3bits client num. * PRI4 | PRI3 | PRI2 | PRI1 | PRI0 * cos1-100 cos0-011 dbg1-010 dbg0-001 MCP-000 */ REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT, 0x4688); /* Bitmap of 5bits length. Each bit specifies whether the entry behaves * as strict. Bits 0,1,2 - debug and management entries, 3 - * COS0 entry, 4 - COS1 entry. * COS1 | COS0 | DEBUG1 | DEBUG0 | MGMT * bit4 bit3 bit2 bit1 bit0 * MCP and debug are strict */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x7); /* defines which entries (clients) are subjected to WFQ arbitration */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0); /* For strict priority entries defines the number of consecutive * slots for the highest priority. */ REG_WR(sc, NIG_REG_P0_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100); /* mapping between the CREDIT_WEIGHT registers and actual client * numbers */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP, 0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, 0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, 0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0, 0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1, 0); REG_WR(sc, PBF_REG_HIGH_PRIORITY_COS_NUM, 0); /* ETS mode disable */ REG_WR(sc, PBF_REG_ETS_ENABLED, 0); /* If ETS mode is enabled (there is no strict priority) defines a WFQ * weight for COS0/COS1. */ REG_WR(sc, PBF_REG_COS0_WEIGHT, 0x2710); REG_WR(sc, PBF_REG_COS1_WEIGHT, 0x2710); /* Upper bound that COS0_WEIGHT can reach in the WFQ arbiter */ REG_WR(sc, PBF_REG_COS0_UPPER_BOUND, 0x989680); REG_WR(sc, PBF_REG_COS1_UPPER_BOUND, 0x989680); /* Defines the number of consecutive slots for the strict priority */ REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0); } /****************************************************************************** * Description: * Getting min_w_val will be set according to line speed . *. ******************************************************************************/ static uint32_t elink_ets_get_min_w_val_nig(const struct elink_vars *vars) { uint32_t min_w_val = 0; /* Calculate min_w_val.*/ if (vars->link_up) { if (vars->line_speed == ELINK_SPEED_20000) min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS; else min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_UP_TO_10GBPS; } else min_w_val = ELINK_ETS_E3B0_NIG_MIN_W_VAL_20GBPS; /* If the link isn't up (static configuration for example ) The * link will be according to 20GBPS. */ return min_w_val; } /****************************************************************************** * Description: * Getting credit upper bound form min_w_val. *. ******************************************************************************/ static uint32_t elink_ets_get_credit_upper_bound(const uint32_t min_w_val) { const uint32_t credit_upper_bound = (uint32_t)ELINK_MAXVAL((150 * min_w_val), ELINK_MAX_PACKET_SIZE); return credit_upper_bound; } /****************************************************************************** * Description: * Set credit upper bound for NIG. *. ******************************************************************************/ static void elink_ets_e3b0_set_credit_upper_bound_nig( const struct elink_params *params, const uint32_t min_w_val) { struct bxe_softc *sc = params->sc; const uint8_t port = params->port; const uint32_t credit_upper_bound = elink_ets_get_credit_upper_bound(min_w_val); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0, credit_upper_bound); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_1 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1, credit_upper_bound); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_2 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_2, credit_upper_bound); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_3 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_3, credit_upper_bound); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_4 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_4, credit_upper_bound); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_UPPER_BOUND_5 : NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_5, credit_upper_bound); if (!port) { REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_6, credit_upper_bound); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_7, credit_upper_bound); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_8, credit_upper_bound); } } /****************************************************************************** * Description: * Will return the NIG ETS registers to init values.Except * credit_upper_bound. * That isn't used in this configuration (No WFQ is enabled) and will be * configured according to spec. *. ******************************************************************************/ static void elink_ets_e3b0_nig_disabled(const struct elink_params *params, const struct elink_vars *vars) { struct bxe_softc *sc = params->sc; const uint8_t port = params->port; const uint32_t min_w_val = elink_ets_get_min_w_val_nig(vars); /* Mapping between entry priority to client number (0,1,2 -debug and * management clients, 3 - COS0 client, 4 - COS1, ... 8 - * COS5)(HIGHEST) 4bits client num.TODO_ETS - Should be done by * reset value or init tool */ if (port) { REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_LSB, 0x543210); REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_MSB, 0x0); } else { REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_LSB, 0x76543210); REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_MSB, 0x8); } /* For strict priority entries defines the number of consecutive * slots for the highest priority. */ REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_NUM_STRICT_ARB_SLOTS : NIG_REG_P1_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100); /* Mapping between the CREDIT_WEIGHT registers and actual client * numbers */ if (port) { /*Port 1 has 6 COS*/ REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_CREDIT_MAP2_LSB, 0x210543); REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_CREDIT_MAP2_MSB, 0x0); } else { /*Port 0 has 9 COS*/ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP2_LSB, 0x43210876); REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP2_MSB, 0x5); } /* Bitmap of 5bits length. Each bit specifies whether the entry behaves * as strict. Bits 0,1,2 - debug and management entries, 3 - * COS0 entry, 4 - COS1 entry. * COS1 | COS0 | DEBUG1 | DEBUG0 | MGMT * bit4 bit3 bit2 bit1 bit0 * MCP and debug are strict */ if (port) REG_WR(sc, NIG_REG_P1_TX_ARB_CLIENT_IS_STRICT, 0x3f); else REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x1ff); /* defines which entries (clients) are subjected to WFQ arbitration */ REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0); /* Please notice the register address are note continuous and a * for here is note appropriate.In 2 port mode port0 only COS0-5 * can be used. DEBUG1,DEBUG1,MGMT are never used for WFQ* In 4 * port mode port1 only COS0-2 can be used. DEBUG1,DEBUG1,MGMT * are never used for WFQ */ REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_0 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, 0x0); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_1 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, 0x0); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_2 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_2, 0x0); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_3 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_3, 0x0); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_4 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_4, 0x0); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_5 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_5, 0x0); if (!port) { REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_6, 0x0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_7, 0x0); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_8, 0x0); } elink_ets_e3b0_set_credit_upper_bound_nig(params, min_w_val); } /****************************************************************************** * Description: * Set credit upper bound for PBF. *. ******************************************************************************/ static void elink_ets_e3b0_set_credit_upper_bound_pbf( const struct elink_params *params, const uint32_t min_w_val) { struct bxe_softc *sc = params->sc; const uint32_t credit_upper_bound = elink_ets_get_credit_upper_bound(min_w_val); const uint8_t port = params->port; uint32_t base_upper_bound = 0; uint8_t max_cos = 0; uint8_t i = 0; /* In 2 port mode port0 has COS0-5 that can be used for WFQ.In 4 * port mode port1 has COS0-2 that can be used for WFQ. */ if (!port) { base_upper_bound = PBF_REG_COS0_UPPER_BOUND_P0; max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0; } else { base_upper_bound = PBF_REG_COS0_UPPER_BOUND_P1; max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1; } for (i = 0; i < max_cos; i++) REG_WR(sc, base_upper_bound + (i << 2), credit_upper_bound); } /****************************************************************************** * Description: * Will return the PBF ETS registers to init values.Except * credit_upper_bound. * That isn't used in this configuration (No WFQ is enabled) and will be * configured according to spec. *. ******************************************************************************/ static void elink_ets_e3b0_pbf_disabled(const struct elink_params *params) { struct bxe_softc *sc = params->sc; const uint8_t port = params->port; const uint32_t min_w_val_pbf = ELINK_ETS_E3B0_PBF_MIN_W_VAL; uint8_t i = 0; uint32_t base_weight = 0; uint8_t max_cos = 0; /* Mapping between entry priority to client number 0 - COS0 * client, 2 - COS1, ... 5 - COS5)(HIGHEST) 4bits client num. * TODO_ETS - Should be done by reset value or init tool */ if (port) /* 0x688 (|011|0 10|00 1|000) */ REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P1 , 0x688); else /* (10 1|100 |011|0 10|00 1|000) */ REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P0 , 0x2C688); /* TODO_ETS - Should be done by reset value or init tool */ if (port) /* 0x688 (|011|0 10|00 1|000)*/ REG_WR(sc, PBF_REG_ETS_ARB_CLIENT_CREDIT_MAP_P1, 0x688); else /* 0x2C688 (10 1|100 |011|0 10|00 1|000) */ REG_WR(sc, PBF_REG_ETS_ARB_CLIENT_CREDIT_MAP_P0, 0x2C688); REG_WR(sc, (port) ? PBF_REG_ETS_ARB_NUM_STRICT_ARB_SLOTS_P1 : PBF_REG_ETS_ARB_NUM_STRICT_ARB_SLOTS_P0 , 0x100); REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P1 : PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P0 , 0); REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P1 : PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P0 , 0); /* In 2 port mode port0 has COS0-5 that can be used for WFQ. * In 4 port mode port1 has COS0-2 that can be used for WFQ. */ if (!port) { base_weight = PBF_REG_COS0_WEIGHT_P0; max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0; } else { base_weight = PBF_REG_COS0_WEIGHT_P1; max_cos = ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1; } for (i = 0; i < max_cos; i++) REG_WR(sc, base_weight + (0x4 * i), 0); elink_ets_e3b0_set_credit_upper_bound_pbf(params, min_w_val_pbf); } /****************************************************************************** * Description: * E3B0 disable will return basically the values to init values. *. ******************************************************************************/ static elink_status_t elink_ets_e3b0_disabled(const struct elink_params *params, const struct elink_vars *vars) { struct bxe_softc *sc = params->sc; if (!CHIP_IS_E3B0(sc)) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_disabled the chip isn't E3B0\n"); return ELINK_STATUS_ERROR; } elink_ets_e3b0_nig_disabled(params, vars); elink_ets_e3b0_pbf_disabled(params); return ELINK_STATUS_OK; } /****************************************************************************** * Description: * Disable will return basically the values to init values. * ******************************************************************************/ elink_status_t elink_ets_disabled(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; elink_status_t elink_status = ELINK_STATUS_OK; if ((CHIP_IS_E2(sc)) || (CHIP_IS_E3A0(sc))) elink_ets_e2e3a0_disabled(params); else if (CHIP_IS_E3B0(sc)) elink_status = elink_ets_e3b0_disabled(params, vars); else { ELINK_DEBUG_P0(sc, "elink_ets_disabled - chip not supported\n"); return ELINK_STATUS_ERROR; } return elink_status; } /****************************************************************************** * Description * Set the COS mappimg to SP and BW until this point all the COS are not * set as SP or BW. ******************************************************************************/ static elink_status_t elink_ets_e3b0_cli_map(const struct elink_params *params, const struct elink_ets_params *ets_params, const uint8_t cos_sp_bitmap, const uint8_t cos_bw_bitmap) { struct bxe_softc *sc = params->sc; const uint8_t port = params->port; const uint8_t nig_cli_sp_bitmap = 0x7 | (cos_sp_bitmap << 3); const uint8_t pbf_cli_sp_bitmap = cos_sp_bitmap; const uint8_t nig_cli_subject2wfq_bitmap = cos_bw_bitmap << 3; const uint8_t pbf_cli_subject2wfq_bitmap = cos_bw_bitmap; REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_STRICT : NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, nig_cli_sp_bitmap); REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P1 : PBF_REG_ETS_ARB_CLIENT_IS_STRICT_P0 , pbf_cli_sp_bitmap); REG_WR(sc, (port) ? NIG_REG_P1_TX_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, nig_cli_subject2wfq_bitmap); REG_WR(sc, (port) ? PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P1 : PBF_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ_P0, pbf_cli_subject2wfq_bitmap); return ELINK_STATUS_OK; } /****************************************************************************** * Description: * This function is needed because NIG ARB_CREDIT_WEIGHT_X are * not continues and ARB_CREDIT_WEIGHT_0 + offset is suitable. ******************************************************************************/ static elink_status_t elink_ets_e3b0_set_cos_bw(struct bxe_softc *sc, const uint8_t cos_entry, const uint32_t min_w_val_nig, const uint32_t min_w_val_pbf, const uint16_t total_bw, const uint8_t bw, const uint8_t port) { uint32_t nig_reg_adress_crd_weight = 0; uint32_t pbf_reg_adress_crd_weight = 0; /* Calculate and set BW for this COS - use 1 instead of 0 for BW */ const uint32_t cos_bw_nig = ((bw ? bw : 1) * min_w_val_nig) / total_bw; const uint32_t cos_bw_pbf = ((bw ? bw : 1) * min_w_val_pbf) / total_bw; switch (cos_entry) { case 0: nig_reg_adress_crd_weight = (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_0 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0; pbf_reg_adress_crd_weight = (port) ? PBF_REG_COS0_WEIGHT_P1 : PBF_REG_COS0_WEIGHT_P0; break; case 1: nig_reg_adress_crd_weight = (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_1 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1; pbf_reg_adress_crd_weight = (port) ? PBF_REG_COS1_WEIGHT_P1 : PBF_REG_COS1_WEIGHT_P0; break; case 2: nig_reg_adress_crd_weight = (port) ? NIG_REG_P1_TX_ARB_CREDIT_WEIGHT_2 : NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_2; pbf_reg_adress_crd_weight = (port) ? PBF_REG_COS2_WEIGHT_P1 : PBF_REG_COS2_WEIGHT_P0; break; case 3: if (port) return ELINK_STATUS_ERROR; nig_reg_adress_crd_weight = NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_3; pbf_reg_adress_crd_weight = PBF_REG_COS3_WEIGHT_P0; break; case 4: if (port) return ELINK_STATUS_ERROR; nig_reg_adress_crd_weight = NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_4; pbf_reg_adress_crd_weight = PBF_REG_COS4_WEIGHT_P0; break; case 5: if (port) return ELINK_STATUS_ERROR; nig_reg_adress_crd_weight = NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_5; pbf_reg_adress_crd_weight = PBF_REG_COS5_WEIGHT_P0; break; } REG_WR(sc, nig_reg_adress_crd_weight, cos_bw_nig); REG_WR(sc, pbf_reg_adress_crd_weight, cos_bw_pbf); return ELINK_STATUS_OK; } /****************************************************************************** * Description: * Calculate the total BW.A value of 0 isn't legal. * ******************************************************************************/ static elink_status_t elink_ets_e3b0_get_total_bw( const struct elink_params *params, struct elink_ets_params *ets_params, uint16_t *total_bw) { struct bxe_softc *sc = params->sc; uint8_t cos_idx = 0; uint8_t is_bw_cos_exist = 0; *total_bw = 0 ; /* Calculate total BW requested */ for (cos_idx = 0; cos_idx < ets_params->num_of_cos; cos_idx++) { if (ets_params->cos[cos_idx].state == elink_cos_state_bw) { is_bw_cos_exist = 1; if (!ets_params->cos[cos_idx].params.bw_params.bw) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config BW" "was set to 0\n"); /* This is to prevent a state when ramrods * can't be sent */ ets_params->cos[cos_idx].params.bw_params.bw = 1; } *total_bw += ets_params->cos[cos_idx].params.bw_params.bw; } } /* Check total BW is valid */ if ((is_bw_cos_exist == 1) && (*total_bw != 100)) { if (*total_bw == 0) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config total BW shouldn't be 0\n"); return ELINK_STATUS_ERROR; } ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config total BW should be 100\n"); /* We can handle a case whre the BW isn't 100 this can happen * if the TC are joined. */ } return ELINK_STATUS_OK; } /****************************************************************************** * Description: * Invalidate all the sp_pri_to_cos. * ******************************************************************************/ static void elink_ets_e3b0_sp_pri_to_cos_init(uint8_t *sp_pri_to_cos) { uint8_t pri = 0; for (pri = 0; pri < ELINK_DCBX_MAX_NUM_COS; pri++) sp_pri_to_cos[pri] = DCBX_INVALID_COS; } /****************************************************************************** * Description: * Calculate and set the SP (ARB_PRIORITY_CLIENT) NIG and PBF registers * according to sp_pri_to_cos. * ******************************************************************************/ static elink_status_t elink_ets_e3b0_sp_pri_to_cos_set(const struct elink_params *params, uint8_t *sp_pri_to_cos, const uint8_t pri, const uint8_t cos_entry) { struct bxe_softc *sc = params->sc; const uint8_t port = params->port; const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 : ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0; if (pri >= max_num_of_cos) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_pri_to_cos_set invalid " "parameter Illegal strict priority\n"); return ELINK_STATUS_ERROR; } if (sp_pri_to_cos[pri] != DCBX_INVALID_COS) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_pri_to_cos_set invalid " "parameter There can't be two COS's with " "the same strict pri\n"); return ELINK_STATUS_ERROR; } sp_pri_to_cos[pri] = cos_entry; return ELINK_STATUS_OK; } /****************************************************************************** * Description: * Returns the correct value according to COS and priority in * the sp_pri_cli register. * ******************************************************************************/ static uint64_t elink_e3b0_sp_get_pri_cli_reg(const uint8_t cos, const uint8_t cos_offset, const uint8_t pri_set, const uint8_t pri_offset, const uint8_t entry_size) { uint64_t pri_cli_nig = 0; pri_cli_nig = ((uint64_t)(cos + cos_offset)) << (entry_size * (pri_set + pri_offset)); return pri_cli_nig; } /****************************************************************************** * Description: * Returns the correct value according to COS and priority in the * sp_pri_cli register for NIG. * ******************************************************************************/ static uint64_t elink_e3b0_sp_get_pri_cli_reg_nig(const uint8_t cos, const uint8_t pri_set) { /* MCP Dbg0 and dbg1 are always with higher strict pri*/ const uint8_t nig_cos_offset = 3; const uint8_t nig_pri_offset = 3; return elink_e3b0_sp_get_pri_cli_reg(cos, nig_cos_offset, pri_set, nig_pri_offset, 4); } /****************************************************************************** * Description: * Returns the correct value according to COS and priority in the * sp_pri_cli register for PBF. * ******************************************************************************/ static uint64_t elink_e3b0_sp_get_pri_cli_reg_pbf(const uint8_t cos, const uint8_t pri_set) { const uint8_t pbf_cos_offset = 0; const uint8_t pbf_pri_offset = 0; return elink_e3b0_sp_get_pri_cli_reg(cos, pbf_cos_offset, pri_set, pbf_pri_offset, 3); } /****************************************************************************** * Description: * Calculate and set the SP (ARB_PRIORITY_CLIENT) NIG and PBF registers * according to sp_pri_to_cos.(which COS has higher priority) * ******************************************************************************/ static elink_status_t elink_ets_e3b0_sp_set_pri_cli_reg(const struct elink_params *params, uint8_t *sp_pri_to_cos) { struct bxe_softc *sc = params->sc; uint8_t i = 0; const uint8_t port = params->port; /* MCP Dbg0 and dbg1 are always with higher strict pri*/ uint64_t pri_cli_nig = 0x210; uint32_t pri_cli_pbf = 0x0; uint8_t pri_set = 0; uint8_t pri_bitmask = 0; const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 : ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0; uint8_t cos_bit_to_set = (1 << max_num_of_cos) - 1; /* Set all the strict priority first */ for (i = 0; i < max_num_of_cos; i++) { if (sp_pri_to_cos[i] != DCBX_INVALID_COS) { if (sp_pri_to_cos[i] >= ELINK_DCBX_MAX_NUM_COS) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_set_pri_cli_reg " "invalid cos entry\n"); return ELINK_STATUS_ERROR; } pri_cli_nig |= elink_e3b0_sp_get_pri_cli_reg_nig( sp_pri_to_cos[i], pri_set); pri_cli_pbf |= elink_e3b0_sp_get_pri_cli_reg_pbf( sp_pri_to_cos[i], pri_set); pri_bitmask = 1 << sp_pri_to_cos[i]; /* COS is used remove it from bitmap.*/ if (!(pri_bitmask & cos_bit_to_set)) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_set_pri_cli_reg " "invalid There can't be two COS's with" " the same strict pri\n"); return ELINK_STATUS_ERROR; } cos_bit_to_set &= ~pri_bitmask; pri_set++; } } /* Set all the Non strict priority i= COS*/ for (i = 0; i < max_num_of_cos; i++) { pri_bitmask = 1 << i; /* Check if COS was already used for SP */ if (pri_bitmask & cos_bit_to_set) { /* COS wasn't used for SP */ pri_cli_nig |= elink_e3b0_sp_get_pri_cli_reg_nig( i, pri_set); pri_cli_pbf |= elink_e3b0_sp_get_pri_cli_reg_pbf( i, pri_set); /* COS is used remove it from bitmap.*/ cos_bit_to_set &= ~pri_bitmask; pri_set++; } } if (pri_set != max_num_of_cos) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_sp_set_pri_cli_reg not all " "entries were set\n"); return ELINK_STATUS_ERROR; } if (port) { /* Only 6 usable clients*/ REG_WR(sc, NIG_REG_P1_TX_ARB_PRIORITY_CLIENT2_LSB, (uint32_t)pri_cli_nig); REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P1 , pri_cli_pbf); } else { /* Only 9 usable clients*/ const uint32_t pri_cli_nig_lsb = (uint32_t) (pri_cli_nig); const uint32_t pri_cli_nig_msb = (uint32_t) ((pri_cli_nig >> 32) & 0xF); REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_LSB, pri_cli_nig_lsb); REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT2_MSB, pri_cli_nig_msb); REG_WR(sc, PBF_REG_ETS_ARB_PRIORITY_CLIENT_P0 , pri_cli_pbf); } return ELINK_STATUS_OK; } /****************************************************************************** * Description: * Configure the COS to ETS according to BW and SP settings. ******************************************************************************/ elink_status_t elink_ets_e3b0_config(const struct elink_params *params, const struct elink_vars *vars, struct elink_ets_params *ets_params) { struct bxe_softc *sc = params->sc; elink_status_t elink_status = ELINK_STATUS_OK; const uint8_t port = params->port; uint16_t total_bw = 0; const uint32_t min_w_val_nig = elink_ets_get_min_w_val_nig(vars); const uint32_t min_w_val_pbf = ELINK_ETS_E3B0_PBF_MIN_W_VAL; uint8_t cos_bw_bitmap = 0; uint8_t cos_sp_bitmap = 0; uint8_t sp_pri_to_cos[ELINK_DCBX_MAX_NUM_COS] = {0}; const uint8_t max_num_of_cos = (port) ? ELINK_DCBX_E3B0_MAX_NUM_COS_PORT1 : ELINK_DCBX_E3B0_MAX_NUM_COS_PORT0; uint8_t cos_entry = 0; if (!CHIP_IS_E3B0(sc)) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_disabled the chip isn't E3B0\n"); return ELINK_STATUS_ERROR; } if ((ets_params->num_of_cos > max_num_of_cos)) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config the number of COS " "isn't supported\n"); return ELINK_STATUS_ERROR; } /* Prepare sp strict priority parameters*/ elink_ets_e3b0_sp_pri_to_cos_init(sp_pri_to_cos); /* Prepare BW parameters*/ elink_status = elink_ets_e3b0_get_total_bw(params, ets_params, &total_bw); if (elink_status != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config get_total_bw failed\n"); return ELINK_STATUS_ERROR; } /* Upper bound is set according to current link speed (min_w_val * should be the same for upper bound and COS credit val). */ elink_ets_e3b0_set_credit_upper_bound_nig(params, min_w_val_nig); elink_ets_e3b0_set_credit_upper_bound_pbf(params, min_w_val_pbf); for (cos_entry = 0; cos_entry < ets_params->num_of_cos; cos_entry++) { if (elink_cos_state_bw == ets_params->cos[cos_entry].state) { cos_bw_bitmap |= (1 << cos_entry); /* The function also sets the BW in HW(not the mappin * yet) */ elink_status = elink_ets_e3b0_set_cos_bw( sc, cos_entry, min_w_val_nig, min_w_val_pbf, total_bw, ets_params->cos[cos_entry].params.bw_params.bw, port); } else if (elink_cos_state_strict == ets_params->cos[cos_entry].state){ cos_sp_bitmap |= (1 << cos_entry); elink_status = elink_ets_e3b0_sp_pri_to_cos_set( params, sp_pri_to_cos, ets_params->cos[cos_entry].params.sp_params.pri, cos_entry); } else { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_config cos state not valid\n"); return ELINK_STATUS_ERROR; } if (elink_status != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "elink_ets_e3b0_config set cos bw failed\n"); return elink_status; } } /* Set SP register (which COS has higher priority) */ elink_status = elink_ets_e3b0_sp_set_pri_cli_reg(params, sp_pri_to_cos); if (elink_status != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config set_pri_cli_reg failed\n"); return elink_status; } /* Set client mapping of BW and strict */ elink_status = elink_ets_e3b0_cli_map(params, ets_params, cos_sp_bitmap, cos_bw_bitmap); if (elink_status != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "elink_ets_E3B0_config SP failed\n"); return elink_status; } return ELINK_STATUS_OK; } static void elink_ets_bw_limit_common(const struct elink_params *params) { /* ETS disabled configuration */ struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "ETS enabled BW limit configuration\n"); /* Defines which entries (clients) are subjected to WFQ arbitration * COS0 0x8 * COS1 0x10 */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_SUBJECT2WFQ, 0x18); /* Mapping between the ARB_CREDIT_WEIGHT registers and actual * client numbers (WEIGHT_0 does not actually have to represent * client 0) * PRI4 | PRI3 | PRI2 | PRI1 | PRI0 * cos1-001 cos0-000 dbg1-100 dbg0-011 MCP-010 */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_CREDIT_MAP, 0x111A); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_0, ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_UPPER_BOUND_1, ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND); /* ETS mode enabled*/ REG_WR(sc, PBF_REG_ETS_ENABLED, 1); /* Defines the number of consecutive slots for the strict priority */ REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0); /* Bitmap of 5bits length. Each bit specifies whether the entry behaves * as strict. Bits 0,1,2 - debug and management entries, 3 - COS0 * entry, 4 - COS1 entry. * COS1 | COS0 | DEBUG21 | DEBUG0 | MGMT * bit4 bit3 bit2 bit1 bit0 * MCP and debug are strict */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x7); /* Upper bound that COS0_WEIGHT can reach in the WFQ arbiter.*/ REG_WR(sc, PBF_REG_COS0_UPPER_BOUND, ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND); REG_WR(sc, PBF_REG_COS1_UPPER_BOUND, ELINK_ETS_BW_LIMIT_CREDIT_UPPER_BOUND); } void elink_ets_bw_limit(const struct elink_params *params, const uint32_t cos0_bw, const uint32_t cos1_bw) { /* ETS disabled configuration*/ struct bxe_softc *sc = params->sc; const uint32_t total_bw = cos0_bw + cos1_bw; uint32_t cos0_credit_weight = 0; uint32_t cos1_credit_weight = 0; ELINK_DEBUG_P0(sc, "ETS enabled BW limit configuration\n"); if ((!total_bw) || (!cos0_bw) || (!cos1_bw)) { ELINK_DEBUG_P0(sc, "Total BW can't be zero\n"); return; } cos0_credit_weight = (cos0_bw * ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT)/ total_bw; cos1_credit_weight = (cos1_bw * ELINK_ETS_BW_LIMIT_CREDIT_WEIGHT)/ total_bw; elink_ets_bw_limit_common(params); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_0, cos0_credit_weight); REG_WR(sc, NIG_REG_P0_TX_ARB_CREDIT_WEIGHT_1, cos1_credit_weight); REG_WR(sc, PBF_REG_COS0_WEIGHT, cos0_credit_weight); REG_WR(sc, PBF_REG_COS1_WEIGHT, cos1_credit_weight); } elink_status_t elink_ets_strict(const struct elink_params *params, const uint8_t strict_cos) { /* ETS disabled configuration*/ struct bxe_softc *sc = params->sc; uint32_t val = 0; ELINK_DEBUG_P0(sc, "ETS enabled strict configuration\n"); /* Bitmap of 5bits length. Each bit specifies whether the entry behaves * as strict. Bits 0,1,2 - debug and management entries, * 3 - COS0 entry, 4 - COS1 entry. * COS1 | COS0 | DEBUG21 | DEBUG0 | MGMT * bit4 bit3 bit2 bit1 bit0 * MCP and debug are strict */ REG_WR(sc, NIG_REG_P0_TX_ARB_CLIENT_IS_STRICT, 0x1F); /* For strict priority entries defines the number of consecutive slots * for the highest priority. */ REG_WR(sc, NIG_REG_P0_TX_ARB_NUM_STRICT_ARB_SLOTS, 0x100); /* ETS mode disable */ REG_WR(sc, PBF_REG_ETS_ENABLED, 0); /* Defines the number of consecutive slots for the strict priority */ REG_WR(sc, PBF_REG_NUM_STRICT_ARB_SLOTS, 0x100); /* Defines the number of consecutive slots for the strict priority */ REG_WR(sc, PBF_REG_HIGH_PRIORITY_COS_NUM, strict_cos); /* Mapping between entry priority to client number (0,1,2 -debug and * management clients, 3 - COS0 client, 4 - COS client)(HIGHEST) * 3bits client num. * PRI4 | PRI3 | PRI2 | PRI1 | PRI0 * dbg0-010 dbg1-001 cos1-100 cos0-011 MCP-000 * dbg0-010 dbg1-001 cos0-011 cos1-100 MCP-000 */ val = (!strict_cos) ? 0x2318 : 0x22E0; REG_WR(sc, NIG_REG_P0_TX_ARB_PRIORITY_CLIENT, val); return ELINK_STATUS_OK; } /******************************************************************/ /* PFC section */ /******************************************************************/ static void elink_update_pfc_xmac(struct elink_params *params, struct elink_vars *vars, uint8_t is_lb) { struct bxe_softc *sc = params->sc; uint32_t xmac_base; uint32_t pause_val, pfc0_val, pfc1_val; /* XMAC base adrr */ xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; /* Initialize pause and pfc registers */ pause_val = 0x18000; pfc0_val = 0xFFFF8000; pfc1_val = 0x2; /* No PFC support */ if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)) { /* RX flow control - Process pause frame in receive direction */ if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX) pause_val |= XMAC_PAUSE_CTRL_REG_RX_PAUSE_EN; /* TX flow control - Send pause packet when buffer is full */ if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX) pause_val |= XMAC_PAUSE_CTRL_REG_TX_PAUSE_EN; } else {/* PFC support */ pfc1_val |= XMAC_PFC_CTRL_HI_REG_PFC_REFRESH_EN | XMAC_PFC_CTRL_HI_REG_PFC_STATS_EN | XMAC_PFC_CTRL_HI_REG_RX_PFC_EN | XMAC_PFC_CTRL_HI_REG_TX_PFC_EN | XMAC_PFC_CTRL_HI_REG_FORCE_PFC_XON; /* Write pause and PFC registers */ REG_WR(sc, xmac_base + XMAC_REG_PAUSE_CTRL, pause_val); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL, pfc0_val); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, pfc1_val); pfc1_val &= ~XMAC_PFC_CTRL_HI_REG_FORCE_PFC_XON; } /* Write pause and PFC registers */ REG_WR(sc, xmac_base + XMAC_REG_PAUSE_CTRL, pause_val); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL, pfc0_val); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, pfc1_val); /* Set MAC address for source TX Pause/PFC frames */ REG_WR(sc, xmac_base + XMAC_REG_CTRL_SA_LO, ((params->mac_addr[2] << 24) | (params->mac_addr[3] << 16) | (params->mac_addr[4] << 8) | (params->mac_addr[5]))); REG_WR(sc, xmac_base + XMAC_REG_CTRL_SA_HI, ((params->mac_addr[0] << 8) | (params->mac_addr[1]))); DELAY(30); } static void elink_emac_get_pfc_stat(struct elink_params *params, uint32_t pfc_frames_sent[2], uint32_t pfc_frames_received[2]) { /* Read pfc statistic */ struct bxe_softc *sc = params->sc; uint32_t emac_base = params->port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; uint32_t val_xon = 0; uint32_t val_xoff = 0; ELINK_DEBUG_P0(sc, "pfc statistic read from EMAC\n"); /* PFC received frames */ val_xoff = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XOFF_RCVD); val_xoff &= EMAC_REG_RX_PFC_STATS_XOFF_RCVD_COUNT; val_xon = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XON_RCVD); val_xon &= EMAC_REG_RX_PFC_STATS_XON_RCVD_COUNT; pfc_frames_received[0] = val_xon + val_xoff; /* PFC received sent */ val_xoff = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XOFF_SENT); val_xoff &= EMAC_REG_RX_PFC_STATS_XOFF_SENT_COUNT; val_xon = REG_RD(sc, emac_base + EMAC_REG_RX_PFC_STATS_XON_SENT); val_xon &= EMAC_REG_RX_PFC_STATS_XON_SENT_COUNT; pfc_frames_sent[0] = val_xon + val_xoff; } /* Read pfc statistic*/ void elink_pfc_statistic(struct elink_params *params, struct elink_vars *vars, uint32_t pfc_frames_sent[2], uint32_t pfc_frames_received[2]) { /* Read pfc statistic */ struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "pfc statistic\n"); if (!vars->link_up) return; if (vars->mac_type == ELINK_MAC_TYPE_EMAC) { ELINK_DEBUG_P0(sc, "About to read PFC stats from EMAC\n"); elink_emac_get_pfc_stat(params, pfc_frames_sent, pfc_frames_received); } } /******************************************************************/ /* MAC/PBF section */ /******************************************************************/ static void elink_set_mdio_clk(struct bxe_softc *sc, uint32_t chip_id, uint32_t emac_base) { uint32_t new_mode, cur_mode; uint32_t clc_cnt; /* Set clause 45 mode, slow down the MDIO clock to 2.5MHz * (a value of 49==0x31) and make sure that the AUTO poll is off */ cur_mode = REG_RD(sc, emac_base + EMAC_REG_EMAC_MDIO_MODE); if (USES_WARPCORE(sc)) clc_cnt = 74L << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT; else clc_cnt = 49L << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT; if (((cur_mode & EMAC_MDIO_MODE_CLOCK_CNT) == clc_cnt) && (cur_mode & (EMAC_MDIO_MODE_CLAUSE_45))) return; new_mode = cur_mode & ~(EMAC_MDIO_MODE_AUTO_POLL | EMAC_MDIO_MODE_CLOCK_CNT); new_mode |= clc_cnt; new_mode |= (EMAC_MDIO_MODE_CLAUSE_45); ELINK_DEBUG_P2(sc, "Changing emac_mode from 0x%x to 0x%x\n", cur_mode, new_mode); REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_MODE, new_mode); DELAY(40); } static uint8_t elink_is_4_port_mode(struct bxe_softc *sc) { uint32_t port4mode_ovwr_val; /* Check 4-port override enabled */ port4mode_ovwr_val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); if (port4mode_ovwr_val & (1<<0)) { /* Return 4-port mode override value */ return ((port4mode_ovwr_val & (1<<1)) == (1<<1)); } /* Return 4-port mode from input pin */ return (uint8_t)REG_RD(sc, MISC_REG_PORT4MODE_EN); } static void elink_set_mdio_emac_per_phy(struct bxe_softc *sc, struct elink_params *params) { uint8_t phy_index; /* Set mdio clock per phy */ for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys; phy_index++) elink_set_mdio_clk(sc, params->chip_id, params->phy[phy_index].mdio_ctrl); } static void elink_emac_init(struct elink_params *params, struct elink_vars *vars) { /* reset and unreset the emac core */ struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; uint32_t val; uint16_t timeout; REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port)); DELAY(5); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, (MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port)); /* init emac - use read-modify-write */ /* self clear reset */ val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, (val | EMAC_MODE_RESET)); timeout = 200; do { val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE); ELINK_DEBUG_P1(sc, "EMAC reset reg is %u\n", val); if (!timeout) { ELINK_DEBUG_P0(sc, "EMAC timeout!\n"); return; } timeout--; } while (val & EMAC_MODE_RESET); elink_set_mdio_emac_per_phy(sc, params); /* Set mac address */ val = ((params->mac_addr[0] << 8) | params->mac_addr[1]); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MAC_MATCH, val); val = ((params->mac_addr[2] << 24) | (params->mac_addr[3] << 16) | (params->mac_addr[4] << 8) | params->mac_addr[5]); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MAC_MATCH + 4, val); } static void elink_set_xumac_nig(struct elink_params *params, uint16_t tx_pause_en, uint8_t enable) { struct bxe_softc *sc = params->sc; REG_WR(sc, params->port ? NIG_REG_P1_MAC_IN_EN : NIG_REG_P0_MAC_IN_EN, enable); REG_WR(sc, params->port ? NIG_REG_P1_MAC_OUT_EN : NIG_REG_P0_MAC_OUT_EN, enable); REG_WR(sc, params->port ? NIG_REG_P1_MAC_PAUSE_OUT_EN : NIG_REG_P0_MAC_PAUSE_OUT_EN, tx_pause_en); } static void elink_set_umac_rxtx(struct elink_params *params, uint8_t en) { uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; uint32_t val; struct bxe_softc *sc = params->sc; if (!(REG_RD(sc, MISC_REG_RESET_REG_2) & (MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port))) return; val = REG_RD(sc, umac_base + UMAC_REG_COMMAND_CONFIG); if (en) val |= (UMAC_COMMAND_CONFIG_REG_TX_ENA | UMAC_COMMAND_CONFIG_REG_RX_ENA); else val &= ~(UMAC_COMMAND_CONFIG_REG_TX_ENA | UMAC_COMMAND_CONFIG_REG_RX_ENA); /* Disable RX and TX */ REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val); } static void elink_umac_enable(struct elink_params *params, struct elink_vars *vars, uint8_t lb) { uint32_t val; uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; struct bxe_softc *sc = params->sc; /* Reset UMAC */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port)); DELAY(1000 * 1); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, (MISC_REGISTERS_RESET_REG_2_UMAC0 << params->port)); ELINK_DEBUG_P0(sc, "enabling UMAC\n"); /* This register opens the gate for the UMAC despite its name */ REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 1); val = UMAC_COMMAND_CONFIG_REG_PROMIS_EN | UMAC_COMMAND_CONFIG_REG_PAD_EN | UMAC_COMMAND_CONFIG_REG_SW_RESET | UMAC_COMMAND_CONFIG_REG_NO_LGTH_CHECK; switch (vars->line_speed) { case ELINK_SPEED_10: val |= (0<<2); break; case ELINK_SPEED_100: val |= (1<<2); break; case ELINK_SPEED_1000: val |= (2<<2); break; case ELINK_SPEED_2500: val |= (3<<2); break; default: ELINK_DEBUG_P1(sc, "Invalid speed for UMAC %d\n", vars->line_speed); break; } if (!(vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val |= UMAC_COMMAND_CONFIG_REG_IGNORE_TX_PAUSE; if (!(vars->flow_ctrl & ELINK_FLOW_CTRL_RX)) val |= UMAC_COMMAND_CONFIG_REG_PAUSE_IGNORE; if (vars->duplex == DUPLEX_HALF) val |= UMAC_COMMAND_CONFIG_REG_HD_ENA; REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val); DELAY(50); /* Configure UMAC for EEE */ if (vars->eee_status & SHMEM_EEE_ADV_STATUS_MASK) { ELINK_DEBUG_P0(sc, "configured UMAC for EEE\n"); REG_WR(sc, umac_base + UMAC_REG_UMAC_EEE_CTRL, UMAC_UMAC_EEE_CTRL_REG_EEE_EN); REG_WR(sc, umac_base + UMAC_REG_EEE_WAKE_TIMER, 0x11); } else { REG_WR(sc, umac_base + UMAC_REG_UMAC_EEE_CTRL, 0x0); } /* Set MAC address for source TX Pause/PFC frames (under SW reset) */ REG_WR(sc, umac_base + UMAC_REG_MAC_ADDR0, ((params->mac_addr[2] << 24) | (params->mac_addr[3] << 16) | (params->mac_addr[4] << 8) | (params->mac_addr[5]))); REG_WR(sc, umac_base + UMAC_REG_MAC_ADDR1, ((params->mac_addr[0] << 8) | (params->mac_addr[1]))); /* Enable RX and TX */ val &= ~UMAC_COMMAND_CONFIG_REG_PAD_EN; val |= UMAC_COMMAND_CONFIG_REG_TX_ENA | UMAC_COMMAND_CONFIG_REG_RX_ENA; REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val); DELAY(50); /* Remove SW Reset */ val &= ~UMAC_COMMAND_CONFIG_REG_SW_RESET; /* Check loopback mode */ if (lb) val |= UMAC_COMMAND_CONFIG_REG_LOOP_ENA; REG_WR(sc, umac_base + UMAC_REG_COMMAND_CONFIG, val); /* Maximum Frame Length (RW). Defines a 14-Bit maximum frame * length used by the MAC receive logic to check frames. */ REG_WR(sc, umac_base + UMAC_REG_MAXFR, 0x2710); elink_set_xumac_nig(params, ((vars->flow_ctrl & ELINK_FLOW_CTRL_TX) != 0), 1); vars->mac_type = ELINK_MAC_TYPE_UMAC; } /* Define the XMAC mode */ static void elink_xmac_init(struct elink_params *params, uint32_t max_speed) { struct bxe_softc *sc = params->sc; uint32_t is_port4mode = elink_is_4_port_mode(sc); /* In 4-port mode, need to set the mode only once, so if XMAC is * already out of reset, it means the mode has already been set, * and it must not* reset the XMAC again, since it controls both * ports of the path */ if (((CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || (CHIP_NUM(sc) == CHIP_NUM_57840_2_20) || (CHIP_NUM(sc) == CHIP_NUM_57840_OBS)) && is_port4mode && (REG_RD(sc, MISC_REG_RESET_REG_2) & MISC_REGISTERS_RESET_REG_2_XMAC)) { ELINK_DEBUG_P0(sc, "XMAC already out of reset in 4-port mode\n"); return; } /* Hard reset */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, MISC_REGISTERS_RESET_REG_2_XMAC); DELAY(1000 * 1); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, MISC_REGISTERS_RESET_REG_2_XMAC); if (is_port4mode) { ELINK_DEBUG_P0(sc, "Init XMAC to 2 ports x 10G per path\n"); /* Set the number of ports on the system side to up to 2 */ REG_WR(sc, MISC_REG_XMAC_CORE_PORT_MODE, 1); /* Set the number of ports on the Warp Core to 10G */ REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 3); } else { /* Set the number of ports on the system side to 1 */ REG_WR(sc, MISC_REG_XMAC_CORE_PORT_MODE, 0); if (max_speed == ELINK_SPEED_10000) { ELINK_DEBUG_P0(sc, "Init XMAC to 10G x 1 port per path\n"); /* Set the number of ports on the Warp Core to 10G */ REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 3); } else { ELINK_DEBUG_P0(sc, "Init XMAC to 20G x 2 ports per path\n"); /* Set the number of ports on the Warp Core to 20G */ REG_WR(sc, MISC_REG_XMAC_PHY_PORT_MODE, 1); } } /* Soft reset */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, MISC_REGISTERS_RESET_REG_2_XMAC_SOFT); DELAY(1000 * 1); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, MISC_REGISTERS_RESET_REG_2_XMAC_SOFT); } static void elink_set_xmac_rxtx(struct elink_params *params, uint8_t en) { uint8_t port = params->port; struct bxe_softc *sc = params->sc; uint32_t pfc_ctrl, xmac_base = (port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; uint32_t val; if (REG_RD(sc, MISC_REG_RESET_REG_2) & MISC_REGISTERS_RESET_REG_2_XMAC) { /* Send an indication to change the state in the NIG back to XON * Clearing this bit enables the next set of this bit to get * rising edge */ pfc_ctrl = REG_RD(sc, xmac_base + XMAC_REG_PFC_CTRL_HI); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, (pfc_ctrl & ~(1<<1))); REG_WR(sc, xmac_base + XMAC_REG_PFC_CTRL_HI, (pfc_ctrl | (1<<1))); ELINK_DEBUG_P1(sc, "Disable XMAC on port %x\n", port); val = REG_RD(sc, xmac_base + XMAC_REG_CTRL); if (en) val |= (XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN); else val &= ~(XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN); REG_WR(sc, xmac_base + XMAC_REG_CTRL, val); } } static elink_status_t elink_xmac_enable(struct elink_params *params, struct elink_vars *vars, uint8_t lb) { uint32_t val, xmac_base; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "enabling XMAC\n"); xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; elink_xmac_init(params, vars->line_speed); /* This register determines on which events the MAC will assert * error on the i/f to the NIG along w/ EOP. */ /* This register tells the NIG whether to send traffic to UMAC * or XMAC */ REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 0); /* When XMAC is in XLGMII mode, disable sending idles for fault * detection. */ if (!(params->phy[ELINK_INT_PHY].flags & ELINK_FLAGS_TX_ERROR_CHECK)) { REG_WR(sc, xmac_base + XMAC_REG_RX_LSS_CTRL, (XMAC_RX_LSS_CTRL_REG_LOCAL_FAULT_DISABLE | XMAC_RX_LSS_CTRL_REG_REMOTE_FAULT_DISABLE)); REG_WR(sc, xmac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, 0); REG_WR(sc, xmac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_LOCAL_FAULT_STATUS | XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_REMOTE_FAULT_STATUS); } /* Set Max packet size */ REG_WR(sc, xmac_base + XMAC_REG_RX_MAX_SIZE, 0x2710); /* CRC append for Tx packets */ REG_WR(sc, xmac_base + XMAC_REG_TX_CTRL, 0xC800); /* update PFC */ elink_update_pfc_xmac(params, vars, 0); if (vars->eee_status & SHMEM_EEE_ADV_STATUS_MASK) { ELINK_DEBUG_P0(sc, "Setting XMAC for EEE\n"); REG_WR(sc, xmac_base + XMAC_REG_EEE_TIMERS_HI, 0x1380008); REG_WR(sc, xmac_base + XMAC_REG_EEE_CTRL, 0x1); } else { REG_WR(sc, xmac_base + XMAC_REG_EEE_CTRL, 0x0); } /* Enable TX and RX */ val = XMAC_CTRL_REG_TX_EN | XMAC_CTRL_REG_RX_EN; /* Set MAC in XLGMII mode for dual-mode */ if ((vars->line_speed == ELINK_SPEED_20000) && (params->phy[ELINK_INT_PHY].supported & ELINK_SUPPORTED_20000baseKR2_Full)) val |= XMAC_CTRL_REG_XLGMII_ALIGN_ENB; /* Check loopback mode */ if (lb) val |= XMAC_CTRL_REG_LINE_LOCAL_LPBK; REG_WR(sc, xmac_base + XMAC_REG_CTRL, val); elink_set_xumac_nig(params, ((vars->flow_ctrl & ELINK_FLOW_CTRL_TX) != 0), 1); vars->mac_type = ELINK_MAC_TYPE_XMAC; return ELINK_STATUS_OK; } static elink_status_t elink_emac_enable(struct elink_params *params, struct elink_vars *vars, uint8_t lb) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; uint32_t val; ELINK_DEBUG_P0(sc, "enabling EMAC\n"); /* Disable BMAC */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port)); /* enable emac and not bmac */ REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + port*4, 1); #ifdef ELINK_INCLUDE_EMUL /* for paladium */ if (CHIP_REV_IS_EMUL(sc)) { /* Use lane 1 (of lanes 0-3) */ REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1); REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); } /* for fpga */ else #endif #ifdef ELINK_INCLUDE_FPGA if (CHIP_REV_IS_FPGA(sc)) { /* Use lane 1 (of lanes 0-3) */ ELINK_DEBUG_P0(sc, "elink_emac_enable: Setting FPGA\n"); REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1); REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0); } else #endif /* ASIC */ if (vars->phy_flags & PHY_XGXS_FLAG) { uint32_t ser_lane = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT); ELINK_DEBUG_P0(sc, "XGXS\n"); /* select the master lanes (out of 0-3) */ REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, ser_lane); /* select XGXS */ REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); } else { /* SerDes */ ELINK_DEBUG_P0(sc, "SerDes\n"); /* select SerDes */ REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0); } elink_bits_en(sc, emac_base + EMAC_REG_EMAC_RX_MODE, EMAC_RX_MODE_RESET); elink_bits_en(sc, emac_base + EMAC_REG_EMAC_TX_MODE, EMAC_TX_MODE_RESET); #if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA) if (CHIP_REV_IS_SLOW(sc)) { /* config GMII mode */ val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, (val | EMAC_MODE_PORT_GMII)); } else { /* ASIC */ #endif /* pause enable/disable */ elink_bits_dis(sc, emac_base + EMAC_REG_EMAC_RX_MODE, EMAC_RX_MODE_FLOW_EN); elink_bits_dis(sc, emac_base + EMAC_REG_EMAC_TX_MODE, (EMAC_TX_MODE_EXT_PAUSE_EN | EMAC_TX_MODE_FLOW_EN)); if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)) { if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX) elink_bits_en(sc, emac_base + EMAC_REG_EMAC_RX_MODE, EMAC_RX_MODE_FLOW_EN); if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX) elink_bits_en(sc, emac_base + EMAC_REG_EMAC_TX_MODE, (EMAC_TX_MODE_EXT_PAUSE_EN | EMAC_TX_MODE_FLOW_EN)); } else elink_bits_en(sc, emac_base + EMAC_REG_EMAC_TX_MODE, EMAC_TX_MODE_FLOW_EN); #if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA) } #endif /* KEEP_VLAN_TAG, promiscuous */ val = REG_RD(sc, emac_base + EMAC_REG_EMAC_RX_MODE); val |= EMAC_RX_MODE_KEEP_VLAN_TAG | EMAC_RX_MODE_PROMISCUOUS; /* Setting this bit causes MAC control frames (except for pause * frames) to be passed on for processing. This setting has no * affect on the operation of the pause frames. This bit effects * all packets regardless of RX Parser packet sorting logic. * Turn the PFC off to make sure we are in Xon state before * enabling it. */ elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_MODE, 0); if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) { ELINK_DEBUG_P0(sc, "PFC is enabled\n"); /* Enable PFC again */ elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_MODE, EMAC_REG_RX_PFC_MODE_RX_EN | EMAC_REG_RX_PFC_MODE_TX_EN | EMAC_REG_RX_PFC_MODE_PRIORITIES); elink_cb_reg_write(sc, emac_base + EMAC_REG_RX_PFC_PARAM, ((0x0101 << EMAC_REG_RX_PFC_PARAM_OPCODE_BITSHIFT) | (0x00ff << EMAC_REG_RX_PFC_PARAM_PRIORITY_EN_BITSHIFT))); val |= EMAC_RX_MODE_KEEP_MAC_CONTROL; } elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_RX_MODE, val); /* Set Loopback */ val = REG_RD(sc, emac_base + EMAC_REG_EMAC_MODE); if (lb) val |= 0x810; else val &= ~0x810; elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_MODE, val); /* Enable emac */ REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 1); /* Enable emac for jumbo packets */ elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_RX_MTU_SIZE, (EMAC_RX_MTU_SIZE_JUMBO_ENA | (ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD))); /* Strip CRC */ REG_WR(sc, NIG_REG_NIG_INGRESS_EMAC0_NO_CRC + port*4, 0x1); /* Disable the NIG in/out to the bmac */ REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0x0); REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, 0x0); REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0x0); /* Enable the NIG in/out to the emac */ REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0x1); val = 0; if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) || (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val = 1; REG_WR(sc, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, val); REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x1); #ifdef ELINK_INCLUDE_EMUL if (CHIP_REV_IS_EMUL(sc)) { /* Take the BigMac out of reset */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port)); /* Enable access for bmac registers */ REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1); } else #endif REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x0); vars->mac_type = ELINK_MAC_TYPE_EMAC; return ELINK_STATUS_OK; } static void elink_update_pfc_bmac1(struct elink_params *params, struct elink_vars *vars) { uint32_t wb_data[2]; struct bxe_softc *sc = params->sc; uint32_t bmac_addr = params->port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; uint32_t val = 0x14; if ((!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)) && (vars->flow_ctrl & ELINK_FLOW_CTRL_RX)) /* Enable BigMAC to react on received Pause packets */ val |= (1<<5); wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_CONTROL, wb_data, 2); /* TX control */ val = 0xc0; if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) && (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val |= 0x800000; wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_CONTROL, wb_data, 2); } static void elink_update_pfc_bmac2(struct elink_params *params, struct elink_vars *vars, uint8_t is_lb) { /* Set rx control: Strip CRC and enable BigMAC to relay * control packets to the system as well */ uint32_t wb_data[2]; struct bxe_softc *sc = params->sc; uint32_t bmac_addr = params->port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; uint32_t val = 0x14; if ((!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED)) && (vars->flow_ctrl & ELINK_FLOW_CTRL_RX)) /* Enable BigMAC to react on received Pause packets */ val |= (1<<5); wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_CONTROL, wb_data, 2); DELAY(30); /* Tx control */ val = 0xc0; if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) && (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val |= 0x800000; wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_CONTROL, wb_data, 2); if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) { ELINK_DEBUG_P0(sc, "PFC is enabled\n"); /* Enable PFC RX & TX & STATS and set 8 COS */ wb_data[0] = 0x0; wb_data[0] |= (1<<0); /* RX */ wb_data[0] |= (1<<1); /* TX */ wb_data[0] |= (1<<2); /* Force initial Xon */ wb_data[0] |= (1<<3); /* 8 cos */ wb_data[0] |= (1<<5); /* STATS */ wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_PFC_CONTROL, wb_data, 2); /* Clear the force Xon */ wb_data[0] &= ~(1<<2); } else { ELINK_DEBUG_P0(sc, "PFC is disabled\n"); /* Disable PFC RX & TX & STATS and set 8 COS */ wb_data[0] = 0x8; wb_data[1] = 0; } REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_PFC_CONTROL, wb_data, 2); /* Set Time (based unit is 512 bit time) between automatic * re-sending of PP packets amd enable automatic re-send of * Per-Priroity Packet as long as pp_gen is asserted and * pp_disable is low. */ val = 0x8000; if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) val |= (1<<16); /* enable automatic re-send */ wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_PAUSE_CONTROL, wb_data, 2); /* mac control */ val = 0x3; /* Enable RX and TX */ if (is_lb) { val |= 0x4; /* Local loopback */ ELINK_DEBUG_P0(sc, "enable bmac loopback\n"); } /* When PFC enabled, Pass pause frames towards the NIG. */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) val |= ((1<<6)|(1<<5)); wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_CONTROL, wb_data, 2); } /****************************************************************************** * Description: * This function is needed because NIG ARB_CREDIT_WEIGHT_X are * not continues and ARB_CREDIT_WEIGHT_0 + offset is suitable. ******************************************************************************/ static elink_status_t elink_pfc_nig_rx_priority_mask(struct bxe_softc *sc, uint8_t cos_entry, uint32_t priority_mask, uint8_t port) { uint32_t nig_reg_rx_priority_mask_add = 0; switch (cos_entry) { case 0: nig_reg_rx_priority_mask_add = (port) ? NIG_REG_P1_RX_COS0_PRIORITY_MASK : NIG_REG_P0_RX_COS0_PRIORITY_MASK; break; case 1: nig_reg_rx_priority_mask_add = (port) ? NIG_REG_P1_RX_COS1_PRIORITY_MASK : NIG_REG_P0_RX_COS1_PRIORITY_MASK; break; case 2: nig_reg_rx_priority_mask_add = (port) ? NIG_REG_P1_RX_COS2_PRIORITY_MASK : NIG_REG_P0_RX_COS2_PRIORITY_MASK; break; case 3: if (port) return ELINK_STATUS_ERROR; nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS3_PRIORITY_MASK; break; case 4: if (port) return ELINK_STATUS_ERROR; nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS4_PRIORITY_MASK; break; case 5: if (port) return ELINK_STATUS_ERROR; nig_reg_rx_priority_mask_add = NIG_REG_P0_RX_COS5_PRIORITY_MASK; break; } REG_WR(sc, nig_reg_rx_priority_mask_add, priority_mask); return ELINK_STATUS_OK; } static void elink_update_mng(struct elink_params *params, uint32_t link_status) { struct bxe_softc *sc = params->sc; REG_WR(sc, params->shmem_base + offsetof(struct shmem_region, port_mb[params->port].link_status), link_status); } static void elink_update_pfc_nig(struct elink_params *params, struct elink_vars *vars, struct elink_nig_brb_pfc_port_params *nig_params) { uint32_t xcm_mask = 0, ppp_enable = 0, pause_enable = 0, llfc_out_en = 0; uint32_t llfc_enable = 0, xcm_out_en = 0, hwpfc_enable = 0; uint32_t pkt_priority_to_cos = 0; struct bxe_softc *sc = params->sc; uint8_t port = params->port; int set_pfc = params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED; ELINK_DEBUG_P0(sc, "updating pfc nig parameters\n"); /* When NIG_LLH0_XCM_MASK_REG_LLHX_XCM_MASK_BCN bit is set * MAC control frames (that are not pause packets) * will be forwarded to the XCM. */ xcm_mask = REG_RD(sc, port ? NIG_REG_LLH1_XCM_MASK : NIG_REG_LLH0_XCM_MASK); /* NIG params will override non PFC params, since it's possible to * do transition from PFC to SAFC */ if (set_pfc) { pause_enable = 0; llfc_out_en = 0; llfc_enable = 0; if (CHIP_IS_E3(sc)) ppp_enable = 0; else ppp_enable = 1; xcm_mask &= ~(port ? NIG_LLH1_XCM_MASK_REG_LLH1_XCM_MASK_BCN : NIG_LLH0_XCM_MASK_REG_LLH0_XCM_MASK_BCN); xcm_out_en = 0; hwpfc_enable = 1; } else { if (nig_params) { llfc_out_en = nig_params->llfc_out_en; llfc_enable = nig_params->llfc_enable; pause_enable = nig_params->pause_enable; } else /* Default non PFC mode - PAUSE */ pause_enable = 1; xcm_mask |= (port ? NIG_LLH1_XCM_MASK_REG_LLH1_XCM_MASK_BCN : NIG_LLH0_XCM_MASK_REG_LLH0_XCM_MASK_BCN); xcm_out_en = 1; } if (CHIP_IS_E3(sc)) REG_WR(sc, port ? NIG_REG_BRB1_PAUSE_IN_EN : NIG_REG_BRB0_PAUSE_IN_EN, pause_enable); REG_WR(sc, port ? NIG_REG_LLFC_OUT_EN_1 : NIG_REG_LLFC_OUT_EN_0, llfc_out_en); REG_WR(sc, port ? NIG_REG_LLFC_ENABLE_1 : NIG_REG_LLFC_ENABLE_0, llfc_enable); REG_WR(sc, port ? NIG_REG_PAUSE_ENABLE_1 : NIG_REG_PAUSE_ENABLE_0, pause_enable); REG_WR(sc, port ? NIG_REG_PPP_ENABLE_1 : NIG_REG_PPP_ENABLE_0, ppp_enable); REG_WR(sc, port ? NIG_REG_LLH1_XCM_MASK : NIG_REG_LLH0_XCM_MASK, xcm_mask); REG_WR(sc, port ? NIG_REG_LLFC_EGRESS_SRC_ENABLE_1 : NIG_REG_LLFC_EGRESS_SRC_ENABLE_0, 0x7); /* Output enable for RX_XCM # IF */ REG_WR(sc, port ? NIG_REG_XCM1_OUT_EN : NIG_REG_XCM0_OUT_EN, xcm_out_en); /* HW PFC TX enable */ REG_WR(sc, port ? NIG_REG_P1_HWPFC_ENABLE : NIG_REG_P0_HWPFC_ENABLE, hwpfc_enable); if (nig_params) { uint8_t i = 0; pkt_priority_to_cos = nig_params->pkt_priority_to_cos; for (i = 0; i < nig_params->num_of_rx_cos_priority_mask; i++) elink_pfc_nig_rx_priority_mask(sc, i, nig_params->rx_cos_priority_mask[i], port); REG_WR(sc, port ? NIG_REG_LLFC_HIGH_PRIORITY_CLASSES_1 : NIG_REG_LLFC_HIGH_PRIORITY_CLASSES_0, nig_params->llfc_high_priority_classes); REG_WR(sc, port ? NIG_REG_LLFC_LOW_PRIORITY_CLASSES_1 : NIG_REG_LLFC_LOW_PRIORITY_CLASSES_0, nig_params->llfc_low_priority_classes); } REG_WR(sc, port ? NIG_REG_P1_PKT_PRIORITY_TO_COS : NIG_REG_P0_PKT_PRIORITY_TO_COS, pkt_priority_to_cos); } elink_status_t elink_update_pfc(struct elink_params *params, struct elink_vars *vars, struct elink_nig_brb_pfc_port_params *pfc_params) { /* The PFC and pause are orthogonal to one another, meaning when * PFC is enabled, the pause are disabled, and when PFC is * disabled, pause are set according to the pause result. */ uint32_t val; struct bxe_softc *sc = params->sc; uint8_t bmac_loopback = (params->loopback_mode == ELINK_LOOPBACK_BMAC); if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) vars->link_status |= LINK_STATUS_PFC_ENABLED; else vars->link_status &= ~LINK_STATUS_PFC_ENABLED; elink_update_mng(params, vars->link_status); /* Update NIG params */ elink_update_pfc_nig(params, vars, pfc_params); if (!vars->link_up) return ELINK_STATUS_OK; ELINK_DEBUG_P0(sc, "About to update PFC in BMAC\n"); if (CHIP_IS_E3(sc)) { if (vars->mac_type == ELINK_MAC_TYPE_XMAC) elink_update_pfc_xmac(params, vars, 0); } else { val = REG_RD(sc, MISC_REG_RESET_REG_2); if ((val & (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << params->port)) == 0) { ELINK_DEBUG_P0(sc, "About to update PFC in EMAC\n"); elink_emac_enable(params, vars, 0); return ELINK_STATUS_OK; } if (CHIP_IS_E2(sc)) elink_update_pfc_bmac2(params, vars, bmac_loopback); else elink_update_pfc_bmac1(params, vars); val = 0; if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) || (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val = 1; REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + params->port*4, val); } return ELINK_STATUS_OK; } static elink_status_t elink_bmac1_enable(struct elink_params *params, struct elink_vars *vars, uint8_t is_lb) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; uint32_t wb_data[2]; uint32_t val; ELINK_DEBUG_P0(sc, "Enabling BigMAC1\n"); /* XGXS control */ wb_data[0] = 0x3c; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_BMAC_XGXS_CONTROL, wb_data, 2); /* TX MAC SA */ wb_data[0] = ((params->mac_addr[2] << 24) | (params->mac_addr[3] << 16) | (params->mac_addr[4] << 8) | params->mac_addr[5]); wb_data[1] = ((params->mac_addr[0] << 8) | params->mac_addr[1]); REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_SOURCE_ADDR, wb_data, 2); /* MAC control */ val = 0x3; if (is_lb) { val |= 0x4; ELINK_DEBUG_P0(sc, "enable bmac loopback\n"); } wb_data[0] = val; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_BMAC_CONTROL, wb_data, 2); /* Set rx mtu */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_MAX_SIZE, wb_data, 2); elink_update_pfc_bmac1(params, vars); /* Set tx mtu */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_MAX_SIZE, wb_data, 2); /* Set cnt max size */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_CNT_MAX_SIZE, wb_data, 2); /* Configure SAFC */ wb_data[0] = 0x1000200; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_RX_LLFC_MSG_FLDS, wb_data, 2); #ifdef ELINK_INCLUDE_EMUL /* Fix for emulation */ if (CHIP_REV_IS_EMUL(sc)) { wb_data[0] = 0xf000; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC_REGISTER_TX_PAUSE_THRESHOLD, wb_data, 2); } #endif return ELINK_STATUS_OK; } static elink_status_t elink_bmac2_enable(struct elink_params *params, struct elink_vars *vars, uint8_t is_lb) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; uint32_t wb_data[2]; ELINK_DEBUG_P0(sc, "Enabling BigMAC2\n"); wb_data[0] = 0; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_CONTROL, wb_data, 2); DELAY(30); /* XGXS control: Reset phy HW, MDIO registers, PHY PLL and BMAC */ wb_data[0] = 0x3c; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_BMAC_XGXS_CONTROL, wb_data, 2); DELAY(30); /* TX MAC SA */ wb_data[0] = ((params->mac_addr[2] << 24) | (params->mac_addr[3] << 16) | (params->mac_addr[4] << 8) | params->mac_addr[5]); wb_data[1] = ((params->mac_addr[0] << 8) | params->mac_addr[1]); REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_SOURCE_ADDR, wb_data, 2); DELAY(30); /* Configure SAFC */ wb_data[0] = 0x1000200; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_LLFC_MSG_FLDS, wb_data, 2); DELAY(30); /* Set RX MTU */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_RX_MAX_SIZE, wb_data, 2); DELAY(30); /* Set TX MTU */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_TX_MAX_SIZE, wb_data, 2); DELAY(30); /* Set cnt max size */ wb_data[0] = ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD - 2; wb_data[1] = 0; REG_WR_DMAE(sc, bmac_addr + BIGMAC2_REGISTER_CNT_MAX_SIZE, wb_data, 2); DELAY(30); elink_update_pfc_bmac2(params, vars, is_lb); return ELINK_STATUS_OK; } static elink_status_t elink_bmac_enable(struct elink_params *params, struct elink_vars *vars, uint8_t is_lb, uint8_t reset_bmac) { elink_status_t rc = ELINK_STATUS_OK; uint8_t port = params->port; struct bxe_softc *sc = params->sc; uint32_t val; /* Reset and unreset the BigMac */ if (reset_bmac) { REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port)); DELAY(1000 * 1); } REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port)); /* Enable access for bmac registers */ REG_WR(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1); /* Enable BMAC according to BMAC type*/ if (CHIP_IS_E2(sc)) rc = elink_bmac2_enable(params, vars, is_lb); else rc = elink_bmac1_enable(params, vars, is_lb); REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0x1); REG_WR(sc, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 0x0); REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + port*4, 0x0); val = 0; if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) || (vars->flow_ctrl & ELINK_FLOW_CTRL_TX)) val = 1; REG_WR(sc, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, val); REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x0); REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0x0); REG_WR(sc, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, 0x0); REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0x1); REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0x1); vars->mac_type = ELINK_MAC_TYPE_BMAC; return rc; } static void elink_set_bmac_rx(struct bxe_softc *sc, uint32_t chip_id, uint8_t port, uint8_t en) { uint32_t bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; uint32_t wb_data[2]; uint32_t nig_bmac_enable = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port*4); if (CHIP_IS_E2(sc)) bmac_addr += BIGMAC2_REGISTER_BMAC_CONTROL; else bmac_addr += BIGMAC_REGISTER_BMAC_CONTROL; /* Only if the bmac is out of reset */ if (REG_RD(sc, MISC_REG_RESET_REG_2) & (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port) && nig_bmac_enable) { /* Clear Rx Enable bit in BMAC_CONTROL register */ REG_RD_DMAE(sc, bmac_addr, wb_data, 2); if (en) wb_data[0] |= ELINK_BMAC_CONTROL_RX_ENABLE; else wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; REG_WR_DMAE(sc, bmac_addr, wb_data, 2); DELAY(1000 * 1); } } static elink_status_t elink_pbf_update(struct elink_params *params, uint32_t flow_ctrl, uint32_t line_speed) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t init_crd, crd; uint32_t count = 1000; /* Disable port */ REG_WR(sc, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x1); /* Wait for init credit */ init_crd = REG_RD(sc, PBF_REG_P0_INIT_CRD + port*4); crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8); ELINK_DEBUG_P2(sc, "init_crd 0x%x crd 0x%x\n", init_crd, crd); while ((init_crd != crd) && count) { DELAY(1000 * 5); crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8); count--; } crd = REG_RD(sc, PBF_REG_P0_CREDIT + port*8); if (init_crd != crd) { ELINK_DEBUG_P2(sc, "BUG! init_crd 0x%x != crd 0x%x\n", init_crd, crd); return ELINK_STATUS_ERROR; } if (flow_ctrl & ELINK_FLOW_CTRL_RX || line_speed == ELINK_SPEED_10 || line_speed == ELINK_SPEED_100 || line_speed == ELINK_SPEED_1000 || line_speed == ELINK_SPEED_2500) { REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 1); /* Update threshold */ REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, 0); /* Update init credit */ init_crd = 778; /* (800-18-4) */ } else { uint32_t thresh = (ELINK_ETH_MAX_JUMBO_PACKET_SIZE + ELINK_ETH_OVREHEAD)/16; REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); /* Update threshold */ REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, thresh); /* Update init credit */ switch (line_speed) { case ELINK_SPEED_10000: init_crd = thresh + 553 - 22; break; default: ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n", line_speed); return ELINK_STATUS_ERROR; } } REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, init_crd); ELINK_DEBUG_P2(sc, "PBF updated to speed %d credit %d\n", line_speed, init_crd); /* Probe the credit changes */ REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0x1); DELAY(1000 * 5); REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0x0); /* Enable port */ REG_WR(sc, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x0); return ELINK_STATUS_OK; } /** * elink_get_emac_base - retrive emac base address * * @bp: driver handle * @mdc_mdio_access: access type * @port: port id * * This function selects the MDC/MDIO access (through emac0 or * emac1) depend on the mdc_mdio_access, port, port swapped. Each * phy has a default access mode, which could also be overridden * by nvram configuration. This parameter, whether this is the * default phy configuration, or the nvram overrun * configuration, is passed here as mdc_mdio_access and selects * the emac_base for the CL45 read/writes operations */ static uint32_t elink_get_emac_base(struct bxe_softc *sc, uint32_t mdc_mdio_access, uint8_t port) { uint32_t emac_base = 0; switch (mdc_mdio_access) { case SHARED_HW_CFG_MDC_MDIO_ACCESS1_PHY_TYPE: break; case SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC0: if (REG_RD(sc, NIG_REG_PORT_SWAP)) emac_base = GRCBASE_EMAC1; else emac_base = GRCBASE_EMAC0; break; case SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1: if (REG_RD(sc, NIG_REG_PORT_SWAP)) emac_base = GRCBASE_EMAC0; else emac_base = GRCBASE_EMAC1; break; case SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH: emac_base = (port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0; break; case SHARED_HW_CFG_MDC_MDIO_ACCESS1_SWAPPED: emac_base = (port) ? GRCBASE_EMAC0 : GRCBASE_EMAC1; break; default: break; } return emac_base; } /******************************************************************/ /* CL22 access functions */ /******************************************************************/ static elink_status_t elink_cl22_write(struct bxe_softc *sc, struct elink_phy *phy, uint16_t reg, uint16_t val) { uint32_t tmp, mode; uint8_t i; elink_status_t rc = ELINK_STATUS_OK; /* Switch to CL22 */ mode = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode & ~EMAC_MDIO_MODE_CLAUSE_45); /* Address */ tmp = ((phy->addr << 21) | (reg << 16) | val | EMAC_MDIO_COMM_COMMAND_WRITE_22 | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp); for (i = 0; i < 50; i++) { DELAY(10); tmp = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (tmp & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "write phy register failed\n"); rc = ELINK_STATUS_TIMEOUT; } REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode); return rc; } static elink_status_t elink_cl22_read(struct bxe_softc *sc, struct elink_phy *phy, uint16_t reg, uint16_t *ret_val) { uint32_t val, mode; uint16_t i; elink_status_t rc = ELINK_STATUS_OK; /* Switch to CL22 */ mode = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode & ~EMAC_MDIO_MODE_CLAUSE_45); /* Address */ val = ((phy->addr << 21) | (reg << 16) | EMAC_MDIO_COMM_COMMAND_READ_22 | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val); for (i = 0; i < 50; i++) { DELAY(10); val = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(val & EMAC_MDIO_COMM_START_BUSY)) { *ret_val = (uint16_t)(val & EMAC_MDIO_COMM_DATA); DELAY(5); break; } } if (val & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "read phy register failed\n"); *ret_val = 0; rc = ELINK_STATUS_TIMEOUT; } REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, mode); return rc; } /******************************************************************/ /* CL45 access functions */ /******************************************************************/ static elink_status_t elink_cl45_read(struct bxe_softc *sc, struct elink_phy *phy, uint8_t devad, uint16_t reg, uint16_t *ret_val) { uint32_t val; uint16_t i; elink_status_t rc = ELINK_STATUS_OK; uint32_t chip_id; if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_G) { chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) | ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12); elink_set_mdio_clk(sc, chip_id, phy->mdio_ctrl); } if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0) elink_bits_en(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS, EMAC_MDIO_STATUS_10MB); /* Address */ val = ((phy->addr << 21) | (devad << 16) | reg | EMAC_MDIO_COMM_COMMAND_ADDRESS | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val); for (i = 0; i < 50; i++) { DELAY(10); val = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(val & EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (val & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "read phy register failed\n"); elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n" *ret_val = 0; rc = ELINK_STATUS_TIMEOUT; } else { /* Data */ val = ((phy->addr << 21) | (devad << 16) | EMAC_MDIO_COMM_COMMAND_READ_45 | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val); for (i = 0; i < 50; i++) { DELAY(10); val = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(val & EMAC_MDIO_COMM_START_BUSY)) { *ret_val = (uint16_t)(val & EMAC_MDIO_COMM_DATA); break; } } if (val & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "read phy register failed\n"); elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n" *ret_val = 0; rc = ELINK_STATUS_TIMEOUT; } } /* Work around for E3 A0 */ if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA) { phy->flags ^= ELINK_FLAGS_DUMMY_READ; if (phy->flags & ELINK_FLAGS_DUMMY_READ) { uint16_t temp_val; elink_cl45_read(sc, phy, devad, 0xf, &temp_val); } } if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0) elink_bits_dis(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS, EMAC_MDIO_STATUS_10MB); return rc; } static elink_status_t elink_cl45_write(struct bxe_softc *sc, struct elink_phy *phy, uint8_t devad, uint16_t reg, uint16_t val) { uint32_t tmp; uint8_t i; elink_status_t rc = ELINK_STATUS_OK; uint32_t chip_id; if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_G) { chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) | ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12); elink_set_mdio_clk(sc, chip_id, phy->mdio_ctrl); } if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0) elink_bits_en(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS, EMAC_MDIO_STATUS_10MB); /* Address */ tmp = ((phy->addr << 21) | (devad << 16) | reg | EMAC_MDIO_COMM_COMMAND_ADDRESS | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp); for (i = 0; i < 50; i++) { DELAY(10); tmp = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (tmp & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "write phy register failed\n"); elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n" rc = ELINK_STATUS_TIMEOUT; } else { /* Data */ tmp = ((phy->addr << 21) | (devad << 16) | val | EMAC_MDIO_COMM_COMMAND_WRITE_45 | EMAC_MDIO_COMM_START_BUSY); REG_WR(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp); for (i = 0; i < 50; i++) { DELAY(10); tmp = REG_RD(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM); if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (tmp & EMAC_MDIO_COMM_START_BUSY) { ELINK_DEBUG_P0(sc, "write phy register failed\n"); elink_cb_event_log(sc, ELINK_LOG_ID_MDIO_ACCESS_TIMEOUT); // "MDC/MDIO access timeout\n" rc = ELINK_STATUS_TIMEOUT; } } /* Work around for E3 A0 */ if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA) { phy->flags ^= ELINK_FLAGS_DUMMY_READ; if (phy->flags & ELINK_FLAGS_DUMMY_READ) { uint16_t temp_val; elink_cl45_read(sc, phy, devad, 0xf, &temp_val); } } if (phy->flags & ELINK_FLAGS_MDC_MDIO_WA_B0) elink_bits_dis(sc, phy->mdio_ctrl + EMAC_REG_EMAC_MDIO_STATUS, EMAC_MDIO_STATUS_10MB); return rc; } /******************************************************************/ /* EEE section */ /******************************************************************/ static uint8_t elink_eee_has_cap(struct elink_params *params) { struct bxe_softc *sc = params->sc; if (REG_RD(sc, params->shmem2_base) <= offsetof(struct shmem2_region, eee_status[params->port])) return 0; return 1; } static elink_status_t elink_eee_nvram_to_time(uint32_t nvram_mode, uint32_t *idle_timer) { switch (nvram_mode) { case PORT_FEAT_CFG_EEE_POWER_MODE_BALANCED: *idle_timer = ELINK_EEE_MODE_NVRAM_BALANCED_TIME; break; case PORT_FEAT_CFG_EEE_POWER_MODE_AGGRESSIVE: *idle_timer = ELINK_EEE_MODE_NVRAM_AGGRESSIVE_TIME; break; case PORT_FEAT_CFG_EEE_POWER_MODE_LOW_LATENCY: *idle_timer = ELINK_EEE_MODE_NVRAM_LATENCY_TIME; break; default: *idle_timer = 0; break; } return ELINK_STATUS_OK; } static elink_status_t elink_eee_time_to_nvram(uint32_t idle_timer, uint32_t *nvram_mode) { switch (idle_timer) { case ELINK_EEE_MODE_NVRAM_BALANCED_TIME: *nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_BALANCED; break; case ELINK_EEE_MODE_NVRAM_AGGRESSIVE_TIME: *nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_AGGRESSIVE; break; case ELINK_EEE_MODE_NVRAM_LATENCY_TIME: *nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_LOW_LATENCY; break; default: *nvram_mode = PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED; break; } return ELINK_STATUS_OK; } static uint32_t elink_eee_calc_timer(struct elink_params *params) { uint32_t eee_mode, eee_idle; struct bxe_softc *sc = params->sc; if (params->eee_mode & ELINK_EEE_MODE_OVERRIDE_NVRAM) { if (params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME) { /* time value in eee_mode --> used directly*/ eee_idle = params->eee_mode & ELINK_EEE_MODE_TIMER_MASK; } else { /* hsi value in eee_mode --> time */ if (elink_eee_nvram_to_time(params->eee_mode & ELINK_EEE_MODE_NVRAM_MASK, &eee_idle)) return 0; } } else { /* hsi values in nvram --> time*/ eee_mode = ((REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port]. eee_power_mode)) & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); if (elink_eee_nvram_to_time(eee_mode, &eee_idle)) return 0; } return eee_idle; } static elink_status_t elink_eee_set_timers(struct elink_params *params, struct elink_vars *vars) { uint32_t eee_idle = 0, eee_mode; struct bxe_softc *sc = params->sc; eee_idle = elink_eee_calc_timer(params); if (eee_idle) { REG_WR(sc, MISC_REG_CPMU_LP_IDLE_THR_P0 + (params->port << 2), eee_idle); } else if ((params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI) && (params->eee_mode & ELINK_EEE_MODE_OVERRIDE_NVRAM) && (params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME)) { ELINK_DEBUG_P0(sc, "Error: Tx LPI is enabled with timer 0\n"); return ELINK_STATUS_ERROR; } vars->eee_status &= ~(SHMEM_EEE_TIMER_MASK | SHMEM_EEE_TIME_OUTPUT_BIT); if (params->eee_mode & ELINK_EEE_MODE_OUTPUT_TIME) { /* eee_idle in 1u --> eee_status in 16u */ eee_idle >>= 4; vars->eee_status |= (eee_idle & SHMEM_EEE_TIMER_MASK) | SHMEM_EEE_TIME_OUTPUT_BIT; } else { if (elink_eee_time_to_nvram(eee_idle, &eee_mode)) return ELINK_STATUS_ERROR; vars->eee_status |= eee_mode; } return ELINK_STATUS_OK; } static elink_status_t elink_eee_initial_config(struct elink_params *params, struct elink_vars *vars, uint8_t mode) { vars->eee_status |= ((uint32_t) mode) << SHMEM_EEE_SUPPORTED_SHIFT; /* Propagate params' bits --> vars (for migration exposure) */ if (params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI) vars->eee_status |= SHMEM_EEE_LPI_REQUESTED_BIT; else vars->eee_status &= ~SHMEM_EEE_LPI_REQUESTED_BIT; if (params->eee_mode & ELINK_EEE_MODE_ADV_LPI) vars->eee_status |= SHMEM_EEE_REQUESTED_BIT; else vars->eee_status &= ~SHMEM_EEE_REQUESTED_BIT; return elink_eee_set_timers(params, vars); } static elink_status_t elink_eee_disable(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; /* Make Certain LPI is disabled */ REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 + (params->port << 2), 0); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, 0x0); vars->eee_status &= ~SHMEM_EEE_ADV_STATUS_MASK; return ELINK_STATUS_OK; } static elink_status_t elink_eee_advertise(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint8_t modes) { struct bxe_softc *sc = params->sc; uint16_t val = 0; /* Mask events preventing LPI generation */ REG_WR(sc, MISC_REG_CPMU_LP_MASK_EXT_P0 + (params->port << 2), 0xfc20); if (modes & SHMEM_EEE_10G_ADV) { ELINK_DEBUG_P0(sc, "Advertise 10GBase-T EEE\n"); val |= 0x8; } if (modes & SHMEM_EEE_1G_ADV) { ELINK_DEBUG_P0(sc, "Advertise 1GBase-T EEE\n"); val |= 0x4; } elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, val); vars->eee_status &= ~SHMEM_EEE_ADV_STATUS_MASK; vars->eee_status |= (modes << SHMEM_EEE_ADV_STATUS_SHIFT); return ELINK_STATUS_OK; } static void elink_update_mng_eee(struct elink_params *params, uint32_t eee_status) { struct bxe_softc *sc = params->sc; if (elink_eee_has_cap(params)) REG_WR(sc, params->shmem2_base + offsetof(struct shmem2_region, eee_status[params->port]), eee_status); } static void elink_eee_an_resolve(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t adv = 0, lp = 0; uint32_t lp_adv = 0; uint8_t neg = 0; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, &adv); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_EEE_ADV, &lp); if (lp & 0x2) { lp_adv |= SHMEM_EEE_100M_ADV; if (adv & 0x2) { if (vars->line_speed == ELINK_SPEED_100) neg = 1; ELINK_DEBUG_P0(sc, "EEE negotiated - 100M\n"); } } if (lp & 0x14) { lp_adv |= SHMEM_EEE_1G_ADV; if (adv & 0x14) { if (vars->line_speed == ELINK_SPEED_1000) neg = 1; ELINK_DEBUG_P0(sc, "EEE negotiated - 1G\n"); } } if (lp & 0x68) { lp_adv |= SHMEM_EEE_10G_ADV; if (adv & 0x68) { if (vars->line_speed == ELINK_SPEED_10000) neg = 1; ELINK_DEBUG_P0(sc, "EEE negotiated - 10G\n"); } } vars->eee_status &= ~SHMEM_EEE_LP_ADV_STATUS_MASK; vars->eee_status |= (lp_adv << SHMEM_EEE_LP_ADV_STATUS_SHIFT); if (neg) { ELINK_DEBUG_P0(sc, "EEE is active\n"); vars->eee_status |= SHMEM_EEE_ACTIVE_BIT; } } /******************************************************************/ /* BSC access functions from E3 */ /******************************************************************/ static void elink_bsc_module_sel(struct elink_params *params) { int idx; uint32_t board_cfg, sfp_ctrl; uint32_t i2c_pins[I2C_SWITCH_WIDTH], i2c_val[I2C_SWITCH_WIDTH]; struct bxe_softc *sc = params->sc; uint8_t port = params->port; /* Read I2C output PINs */ board_cfg = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.shared_hw_config.board)); i2c_pins[I2C_BSC0] = board_cfg & SHARED_HW_CFG_E3_I2C_MUX0_MASK; i2c_pins[I2C_BSC1] = (board_cfg & SHARED_HW_CFG_E3_I2C_MUX1_MASK) >> SHARED_HW_CFG_E3_I2C_MUX1_SHIFT; /* Read I2C output value */ sfp_ctrl = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_cmn_pin_cfg)); i2c_val[I2C_BSC0] = (sfp_ctrl & PORT_HW_CFG_E3_I2C_MUX0_MASK) > 0; i2c_val[I2C_BSC1] = (sfp_ctrl & PORT_HW_CFG_E3_I2C_MUX1_MASK) > 0; ELINK_DEBUG_P0(sc, "Setting BSC switch\n"); for (idx = 0; idx < I2C_SWITCH_WIDTH; idx++) elink_set_cfg_pin(sc, i2c_pins[idx], i2c_val[idx]); } static elink_status_t elink_bsc_read(struct bxe_softc *sc, uint8_t sl_devid, uint16_t sl_addr, uint8_t lc_addr, uint8_t xfer_cnt, uint32_t *data_array) { uint32_t val, i; elink_status_t rc = ELINK_STATUS_OK; if (xfer_cnt > 16) { ELINK_DEBUG_P1(sc, "invalid xfer_cnt %d. Max is 16 bytes\n", xfer_cnt); return ELINK_STATUS_ERROR; } xfer_cnt = 16 - lc_addr; /* Enable the engine */ val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND); val |= MCPR_IMC_COMMAND_ENABLE; REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val); /* Program slave device ID */ val = (sl_devid << 16) | sl_addr; REG_WR(sc, MCP_REG_MCPR_IMC_SLAVE_CONTROL, val); /* Start xfer with 0 byte to update the address pointer ???*/ val = (MCPR_IMC_COMMAND_ENABLE) | (MCPR_IMC_COMMAND_WRITE_OP << MCPR_IMC_COMMAND_OPERATION_BITSHIFT) | (lc_addr << MCPR_IMC_COMMAND_TRANSFER_ADDRESS_BITSHIFT) | (0); REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val); /* Poll for completion */ i = 0; val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND); while (((val >> MCPR_IMC_COMMAND_IMC_STATUS_BITSHIFT) & 0x3) != 1) { DELAY(10); val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND); if (i++ > 1000) { ELINK_DEBUG_P1(sc, "wr 0 byte timed out after %d try\n", i); rc = ELINK_STATUS_TIMEOUT; break; } } if (rc == ELINK_STATUS_TIMEOUT) return rc; /* Start xfer with read op */ val = (MCPR_IMC_COMMAND_ENABLE) | (MCPR_IMC_COMMAND_READ_OP << MCPR_IMC_COMMAND_OPERATION_BITSHIFT) | (lc_addr << MCPR_IMC_COMMAND_TRANSFER_ADDRESS_BITSHIFT) | (xfer_cnt); REG_WR(sc, MCP_REG_MCPR_IMC_COMMAND, val); /* Poll for completion */ i = 0; val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND); while (((val >> MCPR_IMC_COMMAND_IMC_STATUS_BITSHIFT) & 0x3) != 1) { DELAY(10); val = REG_RD(sc, MCP_REG_MCPR_IMC_COMMAND); if (i++ > 1000) { ELINK_DEBUG_P1(sc, "rd op timed out after %d try\n", i); rc = ELINK_STATUS_TIMEOUT; break; } } if (rc == ELINK_STATUS_TIMEOUT) return rc; for (i = (lc_addr >> 2); i < 4; i++) { data_array[i] = REG_RD(sc, (MCP_REG_MCPR_IMC_DATAREG0 + i*4)); #ifdef __BIG_ENDIAN data_array[i] = ((data_array[i] & 0x000000ff) << 24) | ((data_array[i] & 0x0000ff00) << 8) | ((data_array[i] & 0x00ff0000) >> 8) | ((data_array[i] & 0xff000000) >> 24); #endif } return rc; } static void elink_cl45_read_or_write(struct bxe_softc *sc, struct elink_phy *phy, uint8_t devad, uint16_t reg, uint16_t or_val) { uint16_t val; elink_cl45_read(sc, phy, devad, reg, &val); elink_cl45_write(sc, phy, devad, reg, val | or_val); } static void elink_cl45_read_and_write(struct bxe_softc *sc, struct elink_phy *phy, uint8_t devad, uint16_t reg, uint16_t and_val) { uint16_t val; elink_cl45_read(sc, phy, devad, reg, &val); elink_cl45_write(sc, phy, devad, reg, val & and_val); } elink_status_t elink_phy_read(struct elink_params *params, uint8_t phy_addr, uint8_t devad, uint16_t reg, uint16_t *ret_val) { uint8_t phy_index; /* Probe for the phy according to the given phy_addr, and execute * the read request on it */ for (phy_index = 0; phy_index < params->num_phys; phy_index++) { if (params->phy[phy_index].addr == phy_addr) { return elink_cl45_read(params->sc, ¶ms->phy[phy_index], devad, reg, ret_val); } } return ELINK_STATUS_ERROR; } elink_status_t elink_phy_write(struct elink_params *params, uint8_t phy_addr, uint8_t devad, uint16_t reg, uint16_t val) { uint8_t phy_index; /* Probe for the phy according to the given phy_addr, and execute * the write request on it */ for (phy_index = 0; phy_index < params->num_phys; phy_index++) { if (params->phy[phy_index].addr == phy_addr) { return elink_cl45_write(params->sc, ¶ms->phy[phy_index], devad, reg, val); } } return ELINK_STATUS_ERROR; } static uint8_t elink_get_warpcore_lane(struct elink_phy *phy, struct elink_params *params) { uint8_t lane = 0; struct bxe_softc *sc = params->sc; uint32_t path_swap, path_swap_ovr; uint8_t path, port; path = SC_PATH(sc); port = params->port; if (elink_is_4_port_mode(sc)) { uint32_t port_swap, port_swap_ovr; /* Figure out path swap value */ path_swap_ovr = REG_RD(sc, MISC_REG_FOUR_PORT_PATH_SWAP_OVWR); if (path_swap_ovr & 0x1) path_swap = (path_swap_ovr & 0x2); else path_swap = REG_RD(sc, MISC_REG_FOUR_PORT_PATH_SWAP); if (path_swap) path = path ^ 1; /* Figure out port swap value */ port_swap_ovr = REG_RD(sc, MISC_REG_FOUR_PORT_PORT_SWAP_OVWR); if (port_swap_ovr & 0x1) port_swap = (port_swap_ovr & 0x2); else port_swap = REG_RD(sc, MISC_REG_FOUR_PORT_PORT_SWAP); if (port_swap) port = port ^ 1; lane = (port<<1) + path; } else { /* Two port mode - no port swap */ /* Figure out path swap value */ path_swap_ovr = REG_RD(sc, MISC_REG_TWO_PORT_PATH_SWAP_OVWR); if (path_swap_ovr & 0x1) { path_swap = (path_swap_ovr & 0x2); } else { path_swap = REG_RD(sc, MISC_REG_TWO_PORT_PATH_SWAP); } if (path_swap) path = path ^ 1; lane = path << 1 ; } return lane; } static void elink_set_aer_mmd(struct elink_params *params, struct elink_phy *phy) { uint32_t ser_lane; uint16_t offset, aer_val; struct bxe_softc *sc = params->sc; ser_lane = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT); offset = (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) ? (phy->addr + ser_lane) : 0; if (USES_WARPCORE(sc)) { aer_val = elink_get_warpcore_lane(phy, params); /* In Dual-lane mode, two lanes are joined together, * so in order to configure them, the AER broadcast method is * used here. * 0x200 is the broadcast address for lanes 0,1 * 0x201 is the broadcast address for lanes 2,3 */ if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE) aer_val = (aer_val >> 1) | 0x200; } else if (CHIP_IS_E2(sc)) aer_val = 0x3800 + offset - 1; else aer_val = 0x3800 + offset; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, aer_val); } /******************************************************************/ /* Internal phy section */ /******************************************************************/ static void elink_set_serdes_access(struct bxe_softc *sc, uint8_t port) { uint32_t emac_base = (port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0; /* Set Clause 22 */ REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_ST + port*0x10, 1); REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245f8000); DELAY(500); REG_WR(sc, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245d000f); DELAY(500); /* Set Clause 45 */ REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_ST + port*0x10, 0); } static void elink_serdes_deassert(struct bxe_softc *sc, uint8_t port) { uint32_t val; ELINK_DEBUG_P0(sc, "elink_serdes_deassert\n"); val = ELINK_SERDES_RESET_BITS << (port*16); /* Reset and unreset the SerDes/XGXS */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR, val); DELAY(500); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_SET, val); elink_set_serdes_access(sc, port); REG_WR(sc, NIG_REG_SERDES0_CTRL_MD_DEVAD + port*0x10, ELINK_DEFAULT_PHY_DEV_ADDR); } static void elink_xgxs_specific_func(struct elink_phy *phy, struct elink_params *params, uint32_t action) { struct bxe_softc *sc = params->sc; switch (action) { case ELINK_PHY_INIT: /* Set correct devad */ REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_ST + params->port*0x18, 0); REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + params->port*0x18, phy->def_md_devad); break; } } static void elink_xgxs_deassert(struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t port; uint32_t val; ELINK_DEBUG_P0(sc, "elink_xgxs_deassert\n"); port = params->port; val = ELINK_XGXS_RESET_BITS << (port*16); /* Reset and unreset the SerDes/XGXS */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR, val); DELAY(500); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_SET, val); elink_xgxs_specific_func(¶ms->phy[ELINK_INT_PHY], params, ELINK_PHY_INIT); } static void elink_calc_ieee_aneg_adv(struct elink_phy *phy, struct elink_params *params, uint16_t *ieee_fc) { struct bxe_softc *sc = params->sc; *ieee_fc = MDIO_COMBO_IEEE0_AUTO_NEG_ADV_FULL_DUPLEX; /* Resolve pause mode and advertisement Please refer to Table * 28B-3 of the 802.3ab-1999 spec */ switch (phy->req_flow_ctrl) { case ELINK_FLOW_CTRL_AUTO: switch (params->req_fc_auto_adv) { case ELINK_FLOW_CTRL_BOTH: case ELINK_FLOW_CTRL_RX: *ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH; break; case ELINK_FLOW_CTRL_TX: *ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC; break; default: break; } break; case ELINK_FLOW_CTRL_TX: *ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC; break; case ELINK_FLOW_CTRL_RX: case ELINK_FLOW_CTRL_BOTH: *ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH; break; case ELINK_FLOW_CTRL_NONE: default: *ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE; break; } ELINK_DEBUG_P1(sc, "ieee_fc = 0x%x\n", *ieee_fc); } static void set_phy_vars(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t actual_phy_idx, phy_index, link_cfg_idx; uint8_t phy_config_swapped = params->multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED; for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys; phy_index++) { link_cfg_idx = ELINK_LINK_CONFIG_IDX(phy_index); actual_phy_idx = phy_index; if (phy_config_swapped) { if (phy_index == ELINK_EXT_PHY1) actual_phy_idx = ELINK_EXT_PHY2; else if (phy_index == ELINK_EXT_PHY2) actual_phy_idx = ELINK_EXT_PHY1; } params->phy[actual_phy_idx].req_flow_ctrl = params->req_flow_ctrl[link_cfg_idx]; params->phy[actual_phy_idx].req_line_speed = params->req_line_speed[link_cfg_idx]; params->phy[actual_phy_idx].speed_cap_mask = params->speed_cap_mask[link_cfg_idx]; params->phy[actual_phy_idx].req_duplex = params->req_duplex[link_cfg_idx]; if (params->req_line_speed[link_cfg_idx] == ELINK_SPEED_AUTO_NEG) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_ENABLED; ELINK_DEBUG_P3(sc, "req_flow_ctrl %x, req_line_speed %x," " speed_cap_mask %x\n", params->phy[actual_phy_idx].req_flow_ctrl, params->phy[actual_phy_idx].req_line_speed, params->phy[actual_phy_idx].speed_cap_mask); } } static void elink_ext_phy_set_pause(struct elink_params *params, struct elink_phy *phy, struct elink_vars *vars) { uint16_t val; struct bxe_softc *sc = params->sc; /* Read modify write pause advertizing */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, &val); val &= ~MDIO_AN_REG_ADV_PAUSE_BOTH; /* Please refer to Table 28B-3 of 802.3ab-1999 spec. */ elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc); if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) { val |= MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC; } if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) { val |= MDIO_AN_REG_ADV_PAUSE_PAUSE; } ELINK_DEBUG_P1(sc, "Ext phy AN advertize 0x%x\n", val); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, val); } static void elink_pause_resolve(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint32_t pause_result) { struct bxe_softc *sc = params->sc; /* LD LP */ switch (pause_result) { /* ASYM P ASYM P */ case 0xb: /* 1 0 1 1 */ ELINK_DEBUG_P0(sc, "Flow Control: TX only\n"); vars->flow_ctrl = ELINK_FLOW_CTRL_TX; break; case 0xe: /* 1 1 1 0 */ ELINK_DEBUG_P0(sc, "Flow Control: RX only\n"); vars->flow_ctrl = ELINK_FLOW_CTRL_RX; break; case 0x5: /* 0 1 0 1 */ case 0x7: /* 0 1 1 1 */ case 0xd: /* 1 1 0 1 */ case 0xf: /* 1 1 1 1 */ /* If the user selected to advertise RX ONLY, * although we advertised both, need to enable * RX only. */ if (params->req_fc_auto_adv == ELINK_FLOW_CTRL_BOTH) { ELINK_DEBUG_P0(sc, "Flow Control: RX & TX\n"); vars->flow_ctrl = ELINK_FLOW_CTRL_BOTH; } else { ELINK_DEBUG_P0(sc, "Flow Control: RX only\n"); vars->flow_ctrl = ELINK_FLOW_CTRL_RX; } break; default: ELINK_DEBUG_P0(sc, "Flow Control: None\n"); vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; break; } if (pause_result & (1<<0)) vars->link_status |= LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE; if (pause_result & (1<<1)) vars->link_status |= LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE; } static void elink_ext_phy_update_adv_fc(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint16_t ld_pause; /* local */ uint16_t lp_pause; /* link partner */ uint16_t pause_result; struct bxe_softc *sc = params->sc; if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) { elink_cl22_read(sc, phy, 0x4, &ld_pause); elink_cl22_read(sc, phy, 0x5, &lp_pause); } else if (CHIP_IS_E3(sc) && ELINK_SINGLE_MEDIA_DIRECT(params)) { uint8_t lane = elink_get_warpcore_lane(phy, params); uint16_t gp_status, gp_mask; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_4, &gp_status); gp_mask = (MDIO_WC_REG_GP2_STATUS_GP_2_4_CL73_AN_CMPL | MDIO_WC_REG_GP2_STATUS_GP_2_4_CL37_LP_AN_CAP) << lane; if ((gp_status & gp_mask) == gp_mask) { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, &ld_pause); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG, &lp_pause); } else { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &ld_pause); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LP, &lp_pause); ld_pause = ((ld_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) << 3); lp_pause = ((lp_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) << 3); } } else { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV_PAUSE, &ld_pause); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG, &lp_pause); } pause_result = (ld_pause & MDIO_AN_REG_ADV_PAUSE_MASK) >> 8; pause_result |= (lp_pause & MDIO_AN_REG_ADV_PAUSE_MASK) >> 10; ELINK_DEBUG_P1(sc, "Ext PHY pause result 0x%x\n", pause_result); elink_pause_resolve(phy, params, vars, pause_result); } static uint8_t elink_ext_phy_resolve_fc(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint8_t ret = 0; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; if (phy->req_flow_ctrl != ELINK_FLOW_CTRL_AUTO) { /* Update the advertised flow-controlled of LD/LP in AN */ if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) elink_ext_phy_update_adv_fc(phy, params, vars); /* But set the flow-control result as the requested one */ vars->flow_ctrl = phy->req_flow_ctrl; } else if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG) vars->flow_ctrl = params->req_fc_auto_adv; else if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) { ret = 1; elink_ext_phy_update_adv_fc(phy, params, vars); } return ret; } /******************************************************************/ /* Warpcore section */ /******************************************************************/ /* The init_internal_warpcore should mirror the xgxs, * i.e. reset the lane (if needed), set aer for the * init configuration, and set/clear SGMII flag. Internal * phy init is done purely in phy_init stage. */ #define WC_TX_DRIVER(post2, idriver, ipre, ifir) \ ((post2 << MDIO_WC_REG_TX0_TX_DRIVER_POST2_COEFF_OFFSET) | \ (idriver << MDIO_WC_REG_TX0_TX_DRIVER_IDRIVER_OFFSET) | \ (ipre << MDIO_WC_REG_TX0_TX_DRIVER_IPRE_DRIVER_OFFSET) | \ (ifir << MDIO_WC_REG_TX0_TX_DRIVER_IFIR_OFFSET)) #define WC_TX_FIR(post, main, pre) \ ((post << MDIO_WC_REG_TX_FIR_TAP_POST_TAP_OFFSET) | \ (main << MDIO_WC_REG_TX_FIR_TAP_MAIN_TAP_OFFSET) | \ (pre << MDIO_WC_REG_TX_FIR_TAP_PRE_TAP_OFFSET)) static void elink_update_link_attr(struct elink_params *params, uint32_t link_attr) { struct bxe_softc *sc = params->sc; if (SHMEM2_HAS(sc, link_attr_sync)) REG_WR(sc, params->shmem2_base + offsetof(struct shmem2_region, link_attr_sync[params->port]), link_attr); } static void elink_warpcore_enable_AN_KR2(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t i; static struct elink_reg_set reg_set[] = { /* Step 1 - Program the TX/RX alignment markers */ {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL5, 0xa157}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL7, 0xcbe2}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL6, 0x7537}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL9, 0xa157}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL11, 0xcbe2}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL10, 0x7537}, /* Step 2 - Configure the NP registers */ {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, 0x000a}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL1, 0x6400}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL3, 0x0620}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CODE_FIELD, 0x0157}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI1, 0x6464}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI2, 0x3150}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI3, 0x3150}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_BAM_CODE, 0x0157}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_UD_CODE, 0x0620} }; ELINK_DEBUG_P0(sc, "Enabling 20G-KR2\n"); elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL49_USERB0_CTRL, (3<<6)); for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); /* Start KR2 work-around timer which handles BCM8073 link-parner */ params->link_attr_sync |= LINK_ATTR_SYNC_KR2_ENABLE; elink_update_link_attr(params, params->link_attr_sync); } static void elink_disable_kr2(struct elink_params *params, struct elink_vars *vars, struct elink_phy *phy) { struct bxe_softc *sc = params->sc; int i; static struct elink_reg_set reg_set[] = { /* Step 1 - Program the TX/RX alignment markers */ {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL5, 0x7690}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL7, 0xe647}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL6, 0xc4f0}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_TX_CTRL9, 0x7690}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL11, 0xe647}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL82_USERB1_RX_CTRL10, 0xc4f0}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, 0x000c}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL1, 0x6000}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CTRL3, 0x0000}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL73_BAM_CODE_FIELD, 0x0002}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI1, 0x0000}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI2, 0x0af7}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_OUI3, 0x0af7}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_BAM_CODE, 0x0002}, {MDIO_WC_DEVAD, MDIO_WC_REG_ETA_CL73_LD_UD_CODE, 0x0000} }; ELINK_DEBUG_P0(sc, "Disabling 20G-KR2\n"); for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); params->link_attr_sync &= ~LINK_ATTR_SYNC_KR2_ENABLE; elink_update_link_attr(params, params->link_attr_sync); vars->check_kr2_recovery_cnt = ELINK_CHECK_KR2_RECOVERY_CNT; } static void elink_warpcore_set_lpi_passthrough(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "Configure WC for LPI pass through\n"); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_EEE_COMBO_CONTROL0, 0x7c); elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC5, 0xc000); } static void elink_warpcore_restart_AN_KR(struct elink_phy *phy, struct elink_params *params) { /* Restart autoneg on the leading lane only */ struct bxe_softc *sc = params->sc; uint16_t lane = elink_get_warpcore_lane(phy, params); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, lane); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x1200); /* Restore AER */ elink_set_aer_mmd(params, phy); } static void elink_warpcore_enable_AN_KR(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint16_t lane, i, cl72_ctrl, an_adv = 0, val; uint32_t wc_lane_config; struct bxe_softc *sc = params->sc; static struct elink_reg_set reg_set[] = { {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, 0x7}, {MDIO_PMA_DEVAD, MDIO_WC_REG_IEEE0BLK_AUTONEGNP, 0x0}, {MDIO_WC_DEVAD, MDIO_WC_REG_RX66_CONTROL, 0x7415}, {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC2, 0x6190}, /* Disable Autoneg: re-enable it after adv is done. */ {MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0}, {MDIO_PMA_DEVAD, MDIO_WC_REG_PMD_KR_CONTROL, 0x2}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP, 0}, }; ELINK_DEBUG_P0(sc, "Enable Auto Negotiation for KR\n"); /* Set to default registers that may be overridden by 10G force */ for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, &cl72_ctrl); cl72_ctrl &= 0x08ff; cl72_ctrl |= 0x3800; elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, cl72_ctrl); /* Check adding advertisement for 1G KX */ if (((vars->line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) || (vars->line_speed == ELINK_SPEED_1000)) { uint16_t addr = MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2; an_adv |= (1<<5); /* Enable CL37 1G Parallel Detect */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, addr, 0x1); ELINK_DEBUG_P0(sc, "Advertize 1G\n"); } if (((vars->line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) || (vars->line_speed == ELINK_SPEED_10000)) { /* Check adding advertisement for 10G KR */ an_adv |= (1<<7); /* Enable 10G Parallel Detect */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_PAR_DET_10G_CTRL, 1); elink_set_aer_mmd(params, phy); ELINK_DEBUG_P0(sc, "Advertize 10G\n"); } /* Set Transmit PMD settings */ lane = elink_get_warpcore_lane(phy, params); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane, WC_TX_DRIVER(0x02, 0x06, 0x09, 0)); /* Configure the next lane if dual mode */ if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE) elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX0_TX_DRIVER + 0x10*(lane+1), WC_TX_DRIVER(0x02, 0x06, 0x09, 0)); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_OS_DEF_CTRL, 0x03f0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_2P5_DEF_CTRL, 0x03f0); /* Advertised speeds */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1, an_adv); /* Advertised and set FEC (Forward Error Correction) */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT2, (MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_ABILITY | MDIO_WC_REG_AN_IEEE1BLK_AN_ADV2_FEC_REQ)); /* Enable CL37 BAM */ if (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_ENABLE_BAM_ON_KR_ENABLED) { elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL6_MP5_NEXTPAGECTRL, 1); ELINK_DEBUG_P0(sc, "Enable CL37 BAM on KR\n"); } /* Advertise pause */ elink_ext_phy_set_pause(params, phy, vars); vars->rx_tx_asic_rst = MAX_KR_LINK_RETRY; elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC7, 0x100); /* Over 1G - AN local device user page 1 */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL3_UP1, 0x1f); if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) || (phy->req_line_speed == ELINK_SPEED_20000)) { CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, lane); elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX1_PCI_CTRL + (0x10*lane), (1<<11)); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXS_X2_CONTROL3, 0x7); elink_set_aer_mmd(params, phy); elink_warpcore_enable_AN_KR2(phy, params, vars); } else { /* Enable Auto-Detect to support 1G over CL37 as well */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0x10); wc_lane_config = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. shared_hw_config.wc_lane_config)); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX0_PCI_CTRL + (lane << 4), &val); /* Force cl48 sync_status LOW to avoid getting stuck in CL73 * parallel-detect loop when CL73 and CL37 are enabled. */ val |= 1 << 11; /* Restore Polarity settings in case it was run over by * previous link owner */ if (wc_lane_config & (SHARED_HW_CFG_RX_LANE0_POL_FLIP_ENABLED << lane)) val |= 3 << 2; else val &= ~(3 << 2); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX0_PCI_CTRL + (lane << 4), val); elink_disable_kr2(params, vars, phy); } /* Enable Autoneg: only on the main lane */ elink_warpcore_restart_AN_KR(phy, params); } static void elink_warpcore_set_10G_KR(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t val16, i, lane; static struct elink_reg_set reg_set[] = { /* Disable Autoneg */ {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, 0x7}, {MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, 0x3f00}, {MDIO_AN_DEVAD, MDIO_WC_REG_AN_IEEE1BLK_AN_ADVERTISEMENT1, 0}, {MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x0}, {MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL3_UP1, 0x1}, {MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC7, 0xa}, /* Leave cl72 training enable, needed for KR */ {MDIO_PMA_DEVAD, MDIO_WC_REG_PMD_KR_CONTROL, 0x2} }; for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); lane = elink_get_warpcore_lane(phy, params); /* Global registers */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); /* Disable CL36 PCS Tx */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL0, &val16); val16 &= ~(0x0011 << lane); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL0, val16); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL1, &val16); val16 |= (0x0303 << (lane << 1)); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL1, val16); /* Restore AER */ elink_set_aer_mmd(params, phy); /* Set speed via PMA/PMD register */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x2040); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_WC_REG_IEEE0BLK_AUTONEGNP, 0xB); /* Enable encoded forced speed */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC2, 0x30); /* Turn TX scramble payload only the 64/66 scrambler */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX66_CONTROL, 0x9); /* Turn RX scramble payload only the 64/66 scrambler */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_CONTROL, 0xF9); /* Set and clear loopback to cause a reset to 64/66 decoder */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x4000); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x0); } static void elink_warpcore_set_10G_XFI(struct elink_phy *phy, struct elink_params *params, uint8_t is_xfi) { struct bxe_softc *sc = params->sc; uint16_t misc1_val, tap_val, tx_driver_val, lane, val; uint32_t cfg_tap_val, tx_drv_brdct, tx_equal; uint32_t ifir_val, ipost2_val, ipre_driver_val; /* Hold rxSeqStart */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0, 0x8000); /* Hold tx_fifo_reset */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3, 0x1); /* Disable CL73 AN */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0); /* Disable 100FX Enable and Auto-Detect */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL1, 0xFFFA); /* Disable 100FX Idle detect */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL3, 0x0080); /* Set Block address to Remote PHY & Clear forced_speed[5] */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, 0xFF7F); /* Turn off auto-detect & fiber mode */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0xFFEE); /* Set filter_force_link, disable_false_link and parallel_detect */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, &val); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, ((val | 0x0006) & 0xFFFE)); /* Set XFI / SFI */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, &misc1_val); misc1_val &= ~(0x1f); if (is_xfi) { misc1_val |= 0x5; tap_val = WC_TX_FIR(0x08, 0x37, 0x00); tx_driver_val = WC_TX_DRIVER(0x00, 0x02, 0x03, 0); } else { cfg_tap_val = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port]. sfi_tap_values)); tx_equal = cfg_tap_val & PORT_HW_CFG_TX_EQUALIZATION_MASK; misc1_val |= 0x9; /* TAP values are controlled by nvram, if value there isn't 0 */ if (tx_equal) tap_val = (uint16_t)tx_equal; else tap_val = WC_TX_FIR(0x0f, 0x2b, 0x02); ifir_val = DEFAULT_TX_DRV_IFIR; ipost2_val = DEFAULT_TX_DRV_POST2; ipre_driver_val = DEFAULT_TX_DRV_IPRE_DRIVER; tx_drv_brdct = DEFAULT_TX_DRV_BRDCT; /* If any of the IFIR/IPRE_DRIVER/POST@ is set, apply all * configuration. */ if (cfg_tap_val & (PORT_HW_CFG_TX_DRV_IFIR_MASK | PORT_HW_CFG_TX_DRV_IPREDRIVER_MASK | PORT_HW_CFG_TX_DRV_POST2_MASK)) { ifir_val = (cfg_tap_val & PORT_HW_CFG_TX_DRV_IFIR_MASK) >> PORT_HW_CFG_TX_DRV_IFIR_SHIFT; ipre_driver_val = (cfg_tap_val & PORT_HW_CFG_TX_DRV_IPREDRIVER_MASK) >> PORT_HW_CFG_TX_DRV_IPREDRIVER_SHIFT; ipost2_val = (cfg_tap_val & PORT_HW_CFG_TX_DRV_POST2_MASK) >> PORT_HW_CFG_TX_DRV_POST2_SHIFT; } if (cfg_tap_val & PORT_HW_CFG_TX_DRV_BROADCAST_MASK) { tx_drv_brdct = (cfg_tap_val & PORT_HW_CFG_TX_DRV_BROADCAST_MASK) >> PORT_HW_CFG_TX_DRV_BROADCAST_SHIFT; } tx_driver_val = WC_TX_DRIVER(ipost2_val, tx_drv_brdct, ipre_driver_val, ifir_val); } elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, misc1_val); /* Set Transmit PMD settings */ lane = elink_get_warpcore_lane(phy, params); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX_FIR_TAP, tap_val | MDIO_WC_REG_TX_FIR_TAP_ENABLE); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane, tx_driver_val); /* Enable fiber mode, enable and invert sig_det */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0xd); /* Set Block address to Remote PHY & Set forced_speed[5], 40bit mode */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, 0x8080); elink_warpcore_set_lpi_passthrough(phy, params); /* 10G XFI Full Duplex */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x100); /* Release tx_fifo_reset */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3, 0xFFFE); /* Release rxSeqStart */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DSC2B0_DSC_MISC_CTRL0, 0x7FFF); } static void elink_warpcore_set_20G_force_KR2(struct elink_phy *phy, struct elink_params *params) { uint16_t val; struct bxe_softc *sc = params->sc; /* Set global registers, so set AER lane to 0 */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); /* Disable sequencer */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, ~(1<<13)); elink_set_aer_mmd(params, phy); elink_cl45_read_and_write(sc, phy, MDIO_PMA_DEVAD, MDIO_WC_REG_PMD_KR_CONTROL, ~(1<<1)); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0); /* Turn off CL73 */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, &val); val &= ~(1<<5); val |= (1<<6); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL73_USERB0_CTRL, val); /* Set 20G KR2 force speed */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x1f); elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, (1<<7)); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, &val); val &= ~(3<<14); val |= (1<<15); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_MISC1_CONTROL, val); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_CL72_USERB0_CL72_TX_FIR_TAP, 0x835A); /* Enable sequencer (over lane 0) */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, (1<<13)); elink_set_aer_mmd(params, phy); } static void elink_warpcore_set_20G_DXGXS(struct bxe_softc *sc, struct elink_phy *phy, uint16_t lane) { /* Rx0 anaRxControl1G */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX0_ANARXCONTROL1G, 0x90); /* Rx2 anaRxControl1G */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX2_ANARXCONTROL1G, 0x90); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW0, 0xE070); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW1, 0xC0D0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW2, 0xA0B0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW3, 0x8090); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW0_MASK, 0xF0F0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW1_MASK, 0xF0F0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW2_MASK, 0xF0F0); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_SCW3_MASK, 0xF0F0); /* Serdes Digital Misc1 */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x6008); /* Serdes Digital4 Misc3 */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, 0x8088); /* Set Transmit PMD settings */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX_FIR_TAP, (WC_TX_FIR(0x12, 0x2d, 0x00) | MDIO_WC_REG_TX_FIR_TAP_ENABLE)); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane, WC_TX_DRIVER(0x02, 0x02, 0x02, 0)); } static void elink_warpcore_set_sgmii_speed(struct elink_phy *phy, struct elink_params *params, uint8_t fiber_mode, uint8_t always_autoneg) { struct bxe_softc *sc = params->sc; uint16_t val16, digctrl_kx1, digctrl_kx2; /* Clear XFI clock comp in non-10G single lane mode. */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_CONTROL, ~(3<<13)); elink_warpcore_set_lpi_passthrough(phy, params); if (always_autoneg || phy->req_line_speed == ELINK_SPEED_AUTO_NEG) { /* SGMII Autoneg */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, 0x1000); ELINK_DEBUG_P0(sc, "set SGMII AUTONEG\n"); } else { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, &val16); val16 &= 0xcebf; switch (phy->req_line_speed) { case ELINK_SPEED_10: break; case ELINK_SPEED_100: val16 |= 0x2000; break; case ELINK_SPEED_1000: val16 |= 0x0040; break; default: ELINK_DEBUG_P1(sc, "Speed not supported: 0x%x\n", phy->req_line_speed); return; } if (phy->req_duplex == DUPLEX_FULL) val16 |= 0x0100; elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, val16); ELINK_DEBUG_P1(sc, "set SGMII force speed %d\n", phy->req_line_speed); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, &val16); ELINK_DEBUG_P1(sc, " (readback) %x\n", val16); } /* SGMII Slave mode and disable signal detect */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, &digctrl_kx1); if (fiber_mode) digctrl_kx1 = 1; else digctrl_kx1 &= 0xff4a; elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, digctrl_kx1); /* Turn off parallel detect */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, &digctrl_kx2); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, (digctrl_kx2 & ~(1<<2))); /* Re-enable parallel detect */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, (digctrl_kx2 | (1<<2))); /* Enable autodet */ elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, (digctrl_kx1 | 0x10)); } static void elink_warpcore_reset_lane(struct bxe_softc *sc, struct elink_phy *phy, uint8_t reset) { uint16_t val; /* Take lane out of reset after configuration is finished */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC6, &val); if (reset) val |= 0xC000; else val &= 0x3FFF; elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC6, val); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC6, &val); } /* Clear SFI/XFI link settings registers */ static void elink_warpcore_clear_regs(struct elink_phy *phy, struct elink_params *params, uint16_t lane) { struct bxe_softc *sc = params->sc; uint16_t i; static struct elink_reg_set wc_regs[] = { {MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0}, {MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL1, 0x014a}, {MDIO_WC_DEVAD, MDIO_WC_REG_FX100_CTRL3, 0x0800}, {MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL4_MISC3, 0x8008}, {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X1, 0x0195}, {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X2, 0x0007}, {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_CONTROL1000X3, 0x0002}, {MDIO_WC_DEVAD, MDIO_WC_REG_SERDESDIGITAL_MISC1, 0x6000}, {MDIO_WC_DEVAD, MDIO_WC_REG_TX_FIR_TAP, 0x0000}, {MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x2040}, {MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, 0x0140} }; /* Set XFI clock comp as default. */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_RX66_CONTROL, (3<<13)); for (i = 0; i < ARRAY_SIZE(wc_regs); i++) elink_cl45_write(sc, phy, wc_regs[i].devad, wc_regs[i].reg, wc_regs[i].val); lane = elink_get_warpcore_lane(phy, params); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_TX0_TX_DRIVER + 0x10*lane, 0x0990); } static elink_status_t elink_get_mod_abs_int_cfg(struct bxe_softc *sc, uint32_t chip_id, uint32_t shmem_base, uint8_t port, uint8_t *gpio_num, uint8_t *gpio_port) { uint32_t cfg_pin; *gpio_num = 0; *gpio_port = 0; if (CHIP_IS_E3(sc)) { cfg_pin = (REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_sfp_ctrl)) & PORT_HW_CFG_E3_MOD_ABS_MASK) >> PORT_HW_CFG_E3_MOD_ABS_SHIFT; /* Should not happen. This function called upon interrupt * triggered by GPIO ( since EPIO can only generate interrupts * to MCP). * So if this function was called and none of the GPIOs was set, * it means the shit hit the fan. */ if ((cfg_pin < PIN_CFG_GPIO0_P0) || (cfg_pin > PIN_CFG_GPIO3_P1)) { ELINK_DEBUG_P1(sc, "No cfg pin %x for module detect indication\n", cfg_pin); return ELINK_STATUS_ERROR; } *gpio_num = (cfg_pin - PIN_CFG_GPIO0_P0) & 0x3; *gpio_port = (cfg_pin - PIN_CFG_GPIO0_P0) >> 2; } else { *gpio_num = MISC_REGISTERS_GPIO_3; *gpio_port = port; } return ELINK_STATUS_OK; } static int elink_is_sfp_module_plugged(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t gpio_num, gpio_port; uint32_t gpio_val; if (elink_get_mod_abs_int_cfg(sc, params->chip_id, params->shmem_base, params->port, &gpio_num, &gpio_port) != ELINK_STATUS_OK) return 0; gpio_val = elink_cb_gpio_read(sc, gpio_num, gpio_port); /* Call the handling function in case module is detected */ if (gpio_val == 0) return 1; else return 0; } static int elink_warpcore_get_sigdet(struct elink_phy *phy, struct elink_params *params) { uint16_t gp2_status_reg0, lane; struct bxe_softc *sc = params->sc; lane = elink_get_warpcore_lane(phy, params); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_0, &gp2_status_reg0); return (gp2_status_reg0 >> (8+lane)) & 0x1; } static void elink_warpcore_config_runtime(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint32_t serdes_net_if; uint16_t gp_status1 = 0, lnkup = 0, lnkup_kr = 0; vars->turn_to_run_wc_rt = vars->turn_to_run_wc_rt ? 0 : 1; if (!vars->turn_to_run_wc_rt) return; if (vars->rx_tx_asic_rst) { uint16_t lane = elink_get_warpcore_lane(phy, params); serdes_net_if = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_NET_SERDES_IF_MASK); switch (serdes_net_if) { case PORT_HW_CFG_NET_SERDES_IF_KR: /* Do we get link yet? */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, 0x81d1, &gp_status1); lnkup = (gp_status1 >> (8+lane)) & 0x1;/* 1G */ /*10G KR*/ lnkup_kr = (gp_status1 >> (12+lane)) & 0x1; if (lnkup_kr || lnkup) { vars->rx_tx_asic_rst = 0; } else { /* Reset the lane to see if link comes up.*/ elink_warpcore_reset_lane(sc, phy, 1); elink_warpcore_reset_lane(sc, phy, 0); /* Restart Autoneg */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0x1200); vars->rx_tx_asic_rst--; ELINK_DEBUG_P1(sc, "0x%x retry left\n", vars->rx_tx_asic_rst); } break; default: break; } } /*params->rx_tx_asic_rst*/ } static void elink_warpcore_config_sfi(struct elink_phy *phy, struct elink_params *params) { uint16_t lane = elink_get_warpcore_lane(phy, params); struct bxe_softc *sc = params->sc; elink_warpcore_clear_regs(phy, params, lane); if ((params->req_line_speed[ELINK_LINK_CONFIG_IDX(ELINK_INT_PHY)] == ELINK_SPEED_10000) && (phy->media_type != ELINK_ETH_PHY_SFP_1G_FIBER)) { ELINK_DEBUG_P0(sc, "Setting 10G SFI\n"); elink_warpcore_set_10G_XFI(phy, params, 0); } else { ELINK_DEBUG_P0(sc, "Setting 1G Fiber\n"); elink_warpcore_set_sgmii_speed(phy, params, 1, 0); } } static void elink_sfp_e3_set_transmitter(struct elink_params *params, struct elink_phy *phy, uint8_t tx_en) { struct bxe_softc *sc = params->sc; uint32_t cfg_pin; uint8_t port = params->port; cfg_pin = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_sfp_ctrl)) & PORT_HW_CFG_E3_TX_LASER_MASK; /* Set the !tx_en since this pin is DISABLE_TX_LASER */ ELINK_DEBUG_P1(sc, "Setting WC TX to %d\n", tx_en); /* For 20G, the expected pin to be used is 3 pins after the current */ elink_set_cfg_pin(sc, cfg_pin, tx_en ^ 1); if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) elink_set_cfg_pin(sc, cfg_pin + 3, tx_en ^ 1); } static void elink_warpcore_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint32_t serdes_net_if; uint8_t fiber_mode; uint16_t lane = elink_get_warpcore_lane(phy, params); serdes_net_if = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_NET_SERDES_IF_MASK); ELINK_DEBUG_P2(sc, "Begin Warpcore init, link_speed %d, " "serdes_net_if = 0x%x\n", vars->line_speed, serdes_net_if); elink_set_aer_mmd(params, phy); elink_warpcore_reset_lane(sc, phy, 1); vars->phy_flags |= PHY_XGXS_FLAG; if ((serdes_net_if == PORT_HW_CFG_NET_SERDES_IF_SGMII) || (phy->req_line_speed && ((phy->req_line_speed == ELINK_SPEED_100) || (phy->req_line_speed == ELINK_SPEED_10)))) { vars->phy_flags |= PHY_SGMII_FLAG; ELINK_DEBUG_P0(sc, "Setting SGMII mode\n"); elink_warpcore_clear_regs(phy, params, lane); elink_warpcore_set_sgmii_speed(phy, params, 0, 1); } else { switch (serdes_net_if) { case PORT_HW_CFG_NET_SERDES_IF_KR: /* Enable KR Auto Neg */ if (params->loopback_mode != ELINK_LOOPBACK_EXT) elink_warpcore_enable_AN_KR(phy, params, vars); else { ELINK_DEBUG_P0(sc, "Setting KR 10G-Force\n"); elink_warpcore_set_10G_KR(phy, params, vars); } break; case PORT_HW_CFG_NET_SERDES_IF_XFI: elink_warpcore_clear_regs(phy, params, lane); if (vars->line_speed == ELINK_SPEED_10000) { ELINK_DEBUG_P0(sc, "Setting 10G XFI\n"); elink_warpcore_set_10G_XFI(phy, params, 1); } else { if (ELINK_SINGLE_MEDIA_DIRECT(params)) { ELINK_DEBUG_P0(sc, "1G Fiber\n"); fiber_mode = 1; } else { ELINK_DEBUG_P0(sc, "10/100/1G SGMII\n"); fiber_mode = 0; } elink_warpcore_set_sgmii_speed(phy, params, fiber_mode, 0); } break; case PORT_HW_CFG_NET_SERDES_IF_SFI: /* Issue Module detection if module is plugged, or * enabled transmitter to avoid current leakage in case * no module is connected */ if ((params->loopback_mode == ELINK_LOOPBACK_NONE) || (params->loopback_mode == ELINK_LOOPBACK_EXT)) { if (elink_is_sfp_module_plugged(phy, params)) elink_sfp_module_detection(phy, params); else elink_sfp_e3_set_transmitter(params, phy, 1); } elink_warpcore_config_sfi(phy, params); break; case PORT_HW_CFG_NET_SERDES_IF_DXGXS: if (vars->line_speed != ELINK_SPEED_20000) { ELINK_DEBUG_P0(sc, "Speed not supported yet\n"); return; } ELINK_DEBUG_P0(sc, "Setting 20G DXGXS\n"); elink_warpcore_set_20G_DXGXS(sc, phy, lane); /* Issue Module detection */ elink_sfp_module_detection(phy, params); break; case PORT_HW_CFG_NET_SERDES_IF_KR2: if (!params->loopback_mode) { elink_warpcore_enable_AN_KR(phy, params, vars); } else { ELINK_DEBUG_P0(sc, "Setting KR 20G-Force\n"); elink_warpcore_set_20G_force_KR2(phy, params); } break; default: ELINK_DEBUG_P1(sc, "Unsupported Serdes Net Interface 0x%x\n", serdes_net_if); return; } } /* Take lane out of reset after configuration is finished */ elink_warpcore_reset_lane(sc, phy, 0); ELINK_DEBUG_P0(sc, "Exit config init\n"); } static void elink_warpcore_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t val16, lane; elink_sfp_e3_set_transmitter(params, phy, 0); elink_set_mdio_emac_per_phy(sc, params); elink_set_aer_mmd(params, phy); /* Global register */ elink_warpcore_reset_lane(sc, phy, 1); /* Clear loopback settings (if any) */ /* 10G & 20G */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_COMBO_IEEE0_MIICTRL, 0xBFFF); elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_IEEE0BLK_MIICNTL, 0xfffe); /* Update those 1-copy registers */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); /* Enable 1G MDIO (1-copy) */ elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, ~0x10); elink_cl45_read_and_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL2, 0xff00); lane = elink_get_warpcore_lane(phy, params); /* Disable CL36 PCS Tx */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL0, &val16); val16 |= (0x11 << lane); if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE) val16 |= (0x22 << lane); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL0, val16); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL1, &val16); val16 &= ~(0x0303 << (lane << 1)); val16 |= (0x0101 << (lane << 1)); if (phy->flags & ELINK_FLAGS_WC_DUAL_MODE) { val16 &= ~(0x0c0c << (lane << 1)); val16 |= (0x0404 << (lane << 1)); } elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL1, val16); /* Restore AER */ elink_set_aer_mmd(params, phy); } static void elink_set_warpcore_loopback(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t val16; uint32_t lane; ELINK_DEBUG_P2(sc, "Setting Warpcore loopback type %x, speed %d\n", params->loopback_mode, phy->req_line_speed); if (phy->req_line_speed < ELINK_SPEED_10000 || phy->supported & ELINK_SUPPORTED_20000baseKR2_Full) { /* 10/100/1000/20G-KR2 */ /* Update those 1-copy registers */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, 0); /* Enable 1G MDIO (1-copy) */ elink_cl45_read_or_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK0_XGXSCONTROL, 0x10); /* Set 1G loopback based on lane (1-copy) */ lane = elink_get_warpcore_lane(phy, params); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_XGXSBLK1_LANECTRL2, &val16); val16 |= (1<flags & ELINK_FLAGS_WC_DUAL_MODE) val16 |= (2<sc; uint8_t link_10g_plus; if (vars->link_status & LINK_STATUS_PHYSICAL_LINK_FLAG) vars->phy_flags |= PHY_PHYSICAL_LINK_FLAG; vars->link_up = (vars->link_status & LINK_STATUS_LINK_UP); if (vars->link_up) { ELINK_DEBUG_P0(sc, "phy link up\n"); ELINK_DEBUG_P1(sc, "link status = %x\n", vars->link_status); vars->phy_link_up = 1; vars->duplex = DUPLEX_FULL; switch (vars->link_status & LINK_STATUS_SPEED_AND_DUPLEX_MASK) { case ELINK_LINK_10THD: vars->duplex = DUPLEX_HALF; /* Fall thru */ case ELINK_LINK_10TFD: vars->line_speed = ELINK_SPEED_10; break; case ELINK_LINK_100TXHD: vars->duplex = DUPLEX_HALF; /* Fall thru */ case ELINK_LINK_100T4: case ELINK_LINK_100TXFD: vars->line_speed = ELINK_SPEED_100; break; case ELINK_LINK_1000THD: vars->duplex = DUPLEX_HALF; /* Fall thru */ case ELINK_LINK_1000TFD: vars->line_speed = ELINK_SPEED_1000; break; case ELINK_LINK_2500THD: vars->duplex = DUPLEX_HALF; /* Fall thru */ case ELINK_LINK_2500TFD: vars->line_speed = ELINK_SPEED_2500; break; case ELINK_LINK_10GTFD: vars->line_speed = ELINK_SPEED_10000; break; case ELINK_LINK_20GTFD: vars->line_speed = ELINK_SPEED_20000; break; default: break; } vars->flow_ctrl = 0; if (vars->link_status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED) vars->flow_ctrl |= ELINK_FLOW_CTRL_TX; if (vars->link_status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED) vars->flow_ctrl |= ELINK_FLOW_CTRL_RX; if (!vars->flow_ctrl) vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; if (vars->line_speed && ((vars->line_speed == ELINK_SPEED_10) || (vars->line_speed == ELINK_SPEED_100))) { vars->phy_flags |= PHY_SGMII_FLAG; } else { vars->phy_flags &= ~PHY_SGMII_FLAG; } if (vars->line_speed && USES_WARPCORE(sc) && (vars->line_speed == ELINK_SPEED_1000)) vars->phy_flags |= PHY_SGMII_FLAG; /* Anything 10 and over uses the bmac */ link_10g_plus = (vars->line_speed >= ELINK_SPEED_10000); if (link_10g_plus) { if (USES_WARPCORE(sc)) vars->mac_type = ELINK_MAC_TYPE_XMAC; else vars->mac_type = ELINK_MAC_TYPE_BMAC; } else { if (USES_WARPCORE(sc)) vars->mac_type = ELINK_MAC_TYPE_UMAC; else vars->mac_type = ELINK_MAC_TYPE_EMAC; } } else { /* Link down */ ELINK_DEBUG_P0(sc, "phy link down\n"); vars->phy_link_up = 0; vars->line_speed = 0; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; /* Indicate no mac active */ vars->mac_type = ELINK_MAC_TYPE_NONE; if (vars->link_status & LINK_STATUS_PHYSICAL_LINK_FLAG) vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG; if (vars->link_status & LINK_STATUS_SFP_TX_FAULT) vars->phy_flags |= PHY_SFP_TX_FAULT_FLAG; } } void elink_link_status_update(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t sync_offset, media_types; /* Update PHY configuration */ set_phy_vars(params, vars); vars->link_status = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, port_mb[port].link_status)); /* Force link UP in non LOOPBACK_EXT loopback mode(s) */ if (params->loopback_mode != ELINK_LOOPBACK_NONE && params->loopback_mode != ELINK_LOOPBACK_EXT) vars->link_status |= LINK_STATUS_LINK_UP; if (elink_eee_has_cap(params)) vars->eee_status = REG_RD(sc, params->shmem2_base + offsetof(struct shmem2_region, eee_status[params->port])); vars->phy_flags = PHY_XGXS_FLAG; elink_sync_link(params, vars); /* Sync media type */ sync_offset = params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].media_type); media_types = REG_RD(sc, sync_offset); params->phy[ELINK_INT_PHY].media_type = (media_types & PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) >> PORT_HW_CFG_MEDIA_TYPE_PHY0_SHIFT; params->phy[ELINK_EXT_PHY1].media_type = (media_types & PORT_HW_CFG_MEDIA_TYPE_PHY1_MASK) >> PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT; params->phy[ELINK_EXT_PHY2].media_type = (media_types & PORT_HW_CFG_MEDIA_TYPE_PHY2_MASK) >> PORT_HW_CFG_MEDIA_TYPE_PHY2_SHIFT; ELINK_DEBUG_P1(sc, "media_types = 0x%x\n", media_types); /* Sync AEU offset */ sync_offset = params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].aeu_int_mask); vars->aeu_int_mask = REG_RD(sc, sync_offset); /* Sync PFC status */ if (vars->link_status & LINK_STATUS_PFC_ENABLED) params->feature_config_flags |= ELINK_FEATURE_CONFIG_PFC_ENABLED; else params->feature_config_flags &= ~ELINK_FEATURE_CONFIG_PFC_ENABLED; if (SHMEM2_HAS(sc, link_attr_sync)) params->link_attr_sync = SHMEM2_RD(sc, link_attr_sync[params->port]); ELINK_DEBUG_P3(sc, "link_status 0x%x phy_link_up %x int_mask 0x%x\n", vars->link_status, vars->phy_link_up, vars->aeu_int_mask); ELINK_DEBUG_P3(sc, "line_speed %x duplex %x flow_ctrl 0x%x\n", vars->line_speed, vars->duplex, vars->flow_ctrl); } static void elink_set_master_ln(struct elink_params *params, struct elink_phy *phy) { struct bxe_softc *sc = params->sc; uint16_t new_master_ln, ser_lane; ser_lane = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT); /* Set the master_ln for AN */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_TEST_MODE_LANE, &new_master_ln); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2 , MDIO_XGXS_BLOCK2_TEST_MODE_LANE, (new_master_ln | ser_lane)); } static elink_status_t elink_reset_unicore(struct elink_params *params, struct elink_phy *phy, uint8_t set_serdes) { struct bxe_softc *sc = params->sc; uint16_t mii_control; uint16_t i; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control); /* Reset the unicore */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, (mii_control | MDIO_COMBO_IEEO_MII_CONTROL_RESET)); if (set_serdes) elink_set_serdes_access(sc, params->port); /* Wait for the reset to self clear */ for (i = 0; i < ELINK_MDIO_ACCESS_TIMEOUT; i++) { DELAY(5); /* The reset erased the previous bank value */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control); if (!(mii_control & MDIO_COMBO_IEEO_MII_CONTROL_RESET)) { DELAY(5); return ELINK_STATUS_OK; } } elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, params->port); // "Warning: PHY was not initialized," // " Port %d\n", ELINK_DEBUG_P0(sc, "BUG! XGXS is still in reset!\n"); return ELINK_STATUS_ERROR; } static void elink_set_swap_lanes(struct elink_params *params, struct elink_phy *phy) { struct bxe_softc *sc = params->sc; /* Each two bits represents a lane number: * No swap is 0123 => 0x1b no need to enable the swap */ uint16_t rx_lane_swap, tx_lane_swap; rx_lane_swap = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_RX_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_RX_SHIFT); tx_lane_swap = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_TX_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_TX_SHIFT); if (rx_lane_swap != 0x1b) { CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_RX_LN_SWAP, (rx_lane_swap | MDIO_XGXS_BLOCK2_RX_LN_SWAP_ENABLE | MDIO_XGXS_BLOCK2_RX_LN_SWAP_FORCE_ENABLE)); } else { CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_RX_LN_SWAP, 0); } if (tx_lane_swap != 0x1b) { CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_TX_LN_SWAP, (tx_lane_swap | MDIO_XGXS_BLOCK2_TX_LN_SWAP_ENABLE)); } else { CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_TX_LN_SWAP, 0); } } static void elink_set_parallel_detection(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t control2; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL2, &control2); if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G) control2 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN; else control2 &= ~MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN; ELINK_DEBUG_P2(sc, "phy->speed_cap_mask = 0x%x, control2 = 0x%x\n", phy->speed_cap_mask, control2); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL2, control2); if ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { ELINK_DEBUG_P0(sc, "XGXS\n"); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_10G_PARALLEL_DETECT, MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK, MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK_CNT); CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_10G_PARALLEL_DETECT, MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL, &control2); control2 |= MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL_PARDET10G_EN; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_10G_PARALLEL_DETECT, MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL, control2); /* Disable parallel detection of HiG */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_XGXS_BLOCK2, MDIO_XGXS_BLOCK2_UNICORE_MODE_10G, MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_CX4_XGXS | MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_HIGIG_XGXS); } } static void elink_set_autoneg(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint8_t enable_cl73) { struct bxe_softc *sc = params->sc; uint16_t reg_val; /* CL37 Autoneg */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, ®_val); /* CL37 Autoneg Enabled */ if (vars->line_speed == ELINK_SPEED_AUTO_NEG) reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_AN_EN; else /* CL37 Autoneg Disabled */ reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN | MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, reg_val); /* Enable/Disable Autodetection */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, ®_val); reg_val &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_SIGNAL_DETECT_EN | MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT); reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE; if (vars->line_speed == ELINK_SPEED_AUTO_NEG) reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET; else reg_val &= ~MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, reg_val); /* Enable TetonII and BAM autoneg */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_BAM_NEXT_PAGE, MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL, ®_val); if (vars->line_speed == ELINK_SPEED_AUTO_NEG) { /* Enable BAM aneg Mode and TetonII aneg Mode */ reg_val |= (MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE | MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN); } else { /* TetonII and BAM Autoneg Disabled */ reg_val &= ~(MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE | MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN); } CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_BAM_NEXT_PAGE, MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL, reg_val); if (enable_cl73) { /* Enable Cl73 FSM status bits */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_USERB0, MDIO_CL73_USERB0_CL73_UCTRL, 0xe); /* Enable BAM Station Manager*/ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_USERB0, MDIO_CL73_USERB0_CL73_BAM_CTRL1, MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_EN | MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_STATION_MNGR_EN | MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_NP_AFTER_BP_EN); /* Advertise CL73 link speeds */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_ADV2, ®_val); if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) reg_val |= MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4; if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G) reg_val |= MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_ADV2, reg_val); /* CL73 Autoneg Enabled */ reg_val = MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN; } else /* CL73 Autoneg Disabled */ reg_val = 0; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB0, MDIO_CL73_IEEEB0_CL73_AN_CONTROL, reg_val); } /* Program SerDes, forced speed */ static void elink_program_serdes(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t reg_val; /* Program duplex, disable autoneg and sgmii*/ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, ®_val); reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX | MDIO_COMBO_IEEO_MII_CONTROL_AN_EN | MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK); if (phy->req_duplex == DUPLEX_FULL) reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, reg_val); /* Program speed * - needed only if the speed is greater than 1G (2.5G or 10G) */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_MISC1, ®_val); /* Clearing the speed value before setting the right speed */ ELINK_DEBUG_P1(sc, "MDIO_REG_BANK_SERDES_DIGITAL = 0x%x\n", reg_val); reg_val &= ~(MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_MASK | MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL); if (!((vars->line_speed == ELINK_SPEED_1000) || (vars->line_speed == ELINK_SPEED_100) || (vars->line_speed == ELINK_SPEED_10))) { reg_val |= (MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_156_25M | MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL); if (vars->line_speed == ELINK_SPEED_10000) reg_val |= MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_CX4; } CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_MISC1, reg_val); } static void elink_set_brcm_cl37_advertisement(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t val = 0; /* Set extended capabilities */ if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G) val |= MDIO_OVER_1G_UP1_2_5G; if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) val |= MDIO_OVER_1G_UP1_10G; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_OVER_1G, MDIO_OVER_1G_UP1, val); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_OVER_1G, MDIO_OVER_1G_UP3, 0x400); } static void elink_set_ieee_aneg_advertisement(struct elink_phy *phy, struct elink_params *params, uint16_t ieee_fc) { struct bxe_softc *sc = params->sc; uint16_t val; /* For AN, we are always publishing full duplex */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_AUTO_NEG_ADV, ieee_fc); CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_ADV1, &val); val &= ~MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_BOTH; val |= ((ieee_fc<<3) & MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_ADV1, val); } static void elink_restart_autoneg(struct elink_phy *phy, struct elink_params *params, uint8_t enable_cl73) { struct bxe_softc *sc = params->sc; uint16_t mii_control; ELINK_DEBUG_P0(sc, "elink_restart_autoneg\n"); /* Enable and restart BAM/CL37 aneg */ if (enable_cl73) { CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB0, MDIO_CL73_IEEEB0_CL73_AN_CONTROL, &mii_control); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB0, MDIO_CL73_IEEEB0_CL73_AN_CONTROL, (mii_control | MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN | MDIO_CL73_IEEEB0_CL73_AN_CONTROL_RESTART_AN)); } else { CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control); ELINK_DEBUG_P1(sc, "elink_restart_autoneg mii_control before = 0x%x\n", mii_control); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, (mii_control | MDIO_COMBO_IEEO_MII_CONTROL_AN_EN | MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN)); } } static void elink_initialize_sgmii_process(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t control1; /* In SGMII mode, the unicore is always slave */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, &control1); control1 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT; /* Set sgmii mode (and not fiber) */ control1 &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE | MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET | MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_MSTR_MODE); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, control1); /* If forced speed */ if (!(vars->line_speed == ELINK_SPEED_AUTO_NEG)) { /* Set speed, disable autoneg */ uint16_t mii_control; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control); mii_control &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN | MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK| MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX); switch (vars->line_speed) { case ELINK_SPEED_100: mii_control |= MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_100; break; case ELINK_SPEED_1000: mii_control |= MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_1000; break; case ELINK_SPEED_10: /* There is nothing to set for 10M */ break; default: /* Invalid speed for SGMII */ ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n", vars->line_speed); break; } /* Setting the full duplex */ if (phy->req_duplex == DUPLEX_FULL) mii_control |= MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX; CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_MII_CONTROL, mii_control); } else { /* AN mode */ /* Enable and restart AN */ elink_restart_autoneg(phy, params, 0); } } /* Link management */ static elink_status_t elink_direct_parallel_detect_used(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t pd_10g, status2_1000x; if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG) return ELINK_STATUS_OK; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_STATUS2, &status2_1000x); CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_SERDES_DIGITAL, MDIO_SERDES_DIGITAL_A_1000X_STATUS2, &status2_1000x); if (status2_1000x & MDIO_SERDES_DIGITAL_A_1000X_STATUS2_AN_DISABLED) { ELINK_DEBUG_P1(sc, "1G parallel detect link on port %d\n", params->port); return 1; } CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_10G_PARALLEL_DETECT, MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS, &pd_10g); if (pd_10g & MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_STATUS_PD_LINK) { ELINK_DEBUG_P1(sc, "10G parallel detect link on port %d\n", params->port); return 1; } return ELINK_STATUS_OK; } static void elink_update_adv_fc(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint32_t gp_status) { uint16_t ld_pause; /* local driver */ uint16_t lp_pause; /* link partner */ uint16_t pause_result; struct bxe_softc *sc = params->sc; if ((gp_status & (MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE | MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE)) == (MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE | MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_MR_LP_NP_AN_ABLE)) { CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_ADV1, &ld_pause); CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_LP_ADV1, &lp_pause); pause_result = (ld_pause & MDIO_CL73_IEEEB1_AN_ADV1_PAUSE_MASK) >> 8; pause_result |= (lp_pause & MDIO_CL73_IEEEB1_AN_LP_ADV1_PAUSE_MASK) >> 10; ELINK_DEBUG_P1(sc, "pause_result CL73 0x%x\n", pause_result); } else { CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_AUTO_NEG_ADV, &ld_pause); CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_COMBO_IEEE0, MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1, &lp_pause); pause_result = (ld_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>5; pause_result |= (lp_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>7; ELINK_DEBUG_P1(sc, "pause_result CL37 0x%x\n", pause_result); } elink_pause_resolve(phy, params, vars, pause_result); } static void elink_flow_ctrl_resolve(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint32_t gp_status) { struct bxe_softc *sc = params->sc; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; /* Resolve from gp_status in case of AN complete and not sgmii */ if (phy->req_flow_ctrl != ELINK_FLOW_CTRL_AUTO) { /* Update the advertised flow-controlled of LD/LP in AN */ if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) elink_update_adv_fc(phy, params, vars, gp_status); /* But set the flow-control result as the requested one */ vars->flow_ctrl = phy->req_flow_ctrl; } else if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG) vars->flow_ctrl = params->req_fc_auto_adv; else if ((gp_status & ELINK_MDIO_AN_CL73_OR_37_COMPLETE) && (!(vars->phy_flags & PHY_SGMII_FLAG))) { if (elink_direct_parallel_detect_used(phy, params)) { vars->flow_ctrl = params->req_fc_auto_adv; return; } elink_update_adv_fc(phy, params, vars, gp_status); } ELINK_DEBUG_P1(sc, "flow_ctrl 0x%x\n", vars->flow_ctrl); } static void elink_check_fallback_to_cl37(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t rx_status, ustat_val, cl37_fsm_received; ELINK_DEBUG_P0(sc, "elink_check_fallback_to_cl37\n"); /* Step 1: Make sure signal is detected */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_RX0, MDIO_RX0_RX_STATUS, &rx_status); if ((rx_status & MDIO_RX0_RX_STATUS_SIGDET) != (MDIO_RX0_RX_STATUS_SIGDET)) { ELINK_DEBUG_P1(sc, "Signal is not detected. Restoring CL73." "rx_status(0x80b0) = 0x%x\n", rx_status); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB0, MDIO_CL73_IEEEB0_CL73_AN_CONTROL, MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN); return; } /* Step 2: Check CL73 state machine */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_USERB0, MDIO_CL73_USERB0_CL73_USTAT1, &ustat_val); if ((ustat_val & (MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK | MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) != (MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK | MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) { ELINK_DEBUG_P1(sc, "CL73 state-machine is not stable. " "ustat_val(0x8371) = 0x%x\n", ustat_val); return; } /* Step 3: Check CL37 Message Pages received to indicate LP * supports only CL37 */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_REMOTE_PHY, MDIO_REMOTE_PHY_MISC_RX_STATUS, &cl37_fsm_received); if ((cl37_fsm_received & (MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG | MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) != (MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG | MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) { ELINK_DEBUG_P1(sc, "No CL37 FSM were received. " "misc_rx_status(0x8330) = 0x%x\n", cl37_fsm_received); return; } /* The combined cl37/cl73 fsm state information indicating that * we are connected to a device which does not support cl73, but * does support cl37 BAM. In this case we disable cl73 and * restart cl37 auto-neg */ /* Disable CL73 */ CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB0, MDIO_CL73_IEEEB0_CL73_AN_CONTROL, 0); /* Restart CL37 autoneg */ elink_restart_autoneg(phy, params, 0); ELINK_DEBUG_P0(sc, "Disabling CL73, and restarting CL37 autoneg\n"); } static void elink_xgxs_an_resolve(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint32_t gp_status) { if (gp_status & ELINK_MDIO_AN_CL73_OR_37_COMPLETE) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE; if (elink_direct_parallel_detect_used(phy, params)) vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED; } static elink_status_t elink_get_link_speed_duplex(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars, uint16_t is_link_up, uint16_t speed_mask, uint16_t is_duplex) { struct bxe_softc *sc = params->sc; if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_ENABLED; if (is_link_up) { ELINK_DEBUG_P0(sc, "phy link up\n"); vars->phy_link_up = 1; vars->link_status |= LINK_STATUS_LINK_UP; switch (speed_mask) { case ELINK_GP_STATUS_10M: vars->line_speed = ELINK_SPEED_10; if (is_duplex == DUPLEX_FULL) vars->link_status |= ELINK_LINK_10TFD; else vars->link_status |= ELINK_LINK_10THD; break; case ELINK_GP_STATUS_100M: vars->line_speed = ELINK_SPEED_100; if (is_duplex == DUPLEX_FULL) vars->link_status |= ELINK_LINK_100TXFD; else vars->link_status |= ELINK_LINK_100TXHD; break; case ELINK_GP_STATUS_1G: case ELINK_GP_STATUS_1G_KX: vars->line_speed = ELINK_SPEED_1000; if (is_duplex == DUPLEX_FULL) vars->link_status |= ELINK_LINK_1000TFD; else vars->link_status |= ELINK_LINK_1000THD; break; case ELINK_GP_STATUS_2_5G: vars->line_speed = ELINK_SPEED_2500; if (is_duplex == DUPLEX_FULL) vars->link_status |= ELINK_LINK_2500TFD; else vars->link_status |= ELINK_LINK_2500THD; break; case ELINK_GP_STATUS_5G: case ELINK_GP_STATUS_6G: ELINK_DEBUG_P1(sc, "link speed unsupported gp_status 0x%x\n", speed_mask); return ELINK_STATUS_ERROR; case ELINK_GP_STATUS_10G_KX4: case ELINK_GP_STATUS_10G_HIG: case ELINK_GP_STATUS_10G_CX4: case ELINK_GP_STATUS_10G_KR: case ELINK_GP_STATUS_10G_SFI: case ELINK_GP_STATUS_10G_XFI: vars->line_speed = ELINK_SPEED_10000; vars->link_status |= ELINK_LINK_10GTFD; break; case ELINK_GP_STATUS_20G_DXGXS: case ELINK_GP_STATUS_20G_KR2: vars->line_speed = ELINK_SPEED_20000; vars->link_status |= ELINK_LINK_20GTFD; break; default: ELINK_DEBUG_P1(sc, "link speed unsupported gp_status 0x%x\n", speed_mask); return ELINK_STATUS_ERROR; } } else { /* link_down */ ELINK_DEBUG_P0(sc, "phy link down\n"); vars->phy_link_up = 0; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_NONE; } ELINK_DEBUG_P2(sc, " in elink_get_link_speed_duplex vars->link_status = %x, vars->duplex = %x\n", vars->link_status, vars->duplex); ELINK_DEBUG_P2(sc, " phy_link_up %x line_speed %d\n", vars->phy_link_up, vars->line_speed); return ELINK_STATUS_OK; } static elink_status_t elink_link_settings_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t gp_status, duplex = DUPLEX_HALF, link_up = 0, speed_mask; elink_status_t rc = ELINK_STATUS_OK; /* Read gp_status */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_GP_STATUS, MDIO_GP_STATUS_TOP_AN_STATUS1, &gp_status); if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_DUPLEX_STATUS) { duplex = DUPLEX_FULL; ELINK_DEBUG_P1(sc, "duplex status read from phy is = %x\n", duplex); } else { ELINK_DEBUG_P1(sc, "phy status does not allow interface to be FULL_DUPLEX : %x\n", gp_status); } if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS) link_up = 1; speed_mask = gp_status & ELINK_GP_STATUS_SPEED_MASK; ELINK_DEBUG_P3(sc, "gp_status 0x%x, is_link_up %d, speed_mask 0x%x\n", gp_status, link_up, speed_mask); rc = elink_get_link_speed_duplex(phy, params, vars, link_up, speed_mask, duplex); if (rc == ELINK_STATUS_ERROR) return rc; if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS) { if (ELINK_SINGLE_MEDIA_DIRECT(params)) { vars->duplex = duplex; elink_flow_ctrl_resolve(phy, params, vars, gp_status); if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) elink_xgxs_an_resolve(phy, params, vars, gp_status); } } else { /* Link_down */ if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && ELINK_SINGLE_MEDIA_DIRECT(params)) { /* Check signal is detected */ elink_check_fallback_to_cl37(phy, params); } } /* Read LP advertised speeds*/ if (ELINK_SINGLE_MEDIA_DIRECT(params) && (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE)) { uint16_t val; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_CL73_IEEEB1, MDIO_CL73_IEEEB1_AN_LP_ADV2, &val); if (val & MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE; if (val & (MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 | MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_OVER_1G, MDIO_OVER_1G_LP_UP1, &val); if (val & MDIO_OVER_1G_UP1_2_5G) vars->link_status |= LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE; if (val & (MDIO_OVER_1G_UP1_10G | MDIO_OVER_1G_UP1_10GH)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; } ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n", vars->duplex, vars->flow_ctrl, vars->link_status); return rc; } static elink_status_t elink_warpcore_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t lane; uint16_t gp_status1, gp_speed, link_up, duplex = DUPLEX_FULL; elink_status_t rc = ELINK_STATUS_OK; lane = elink_get_warpcore_lane(phy, params); /* Read gp_status */ if ((params->loopback_mode) && (phy->flags & ELINK_FLAGS_WC_DUAL_MODE)) { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_LINK_STATUS, &link_up); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_LINK_STATUS, &link_up); link_up &= 0x1; ELINK_DEBUG_P1(sc, "params->loopback_mode link_up read = %x\n", link_up); } else if ((phy->req_line_speed > ELINK_SPEED_10000) && (phy->supported & ELINK_SUPPORTED_20000baseMLD2_Full)) { uint16_t temp_link_up; elink_cl45_read(sc, phy, MDIO_WC_DEVAD, 1, &temp_link_up); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, 1, &link_up); ELINK_DEBUG_P2(sc, "PCS RX link status = 0x%x-->0x%x\n", temp_link_up, link_up); link_up &= (1<<2); if (link_up) elink_ext_phy_resolve_fc(phy, params, vars); } else { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_1, &gp_status1); ELINK_DEBUG_P1(sc, "0x81d1 = 0x%x\n", gp_status1); /* Check for either KR, 1G, or AN up. */ link_up = ((gp_status1 >> 8) | (gp_status1 >> 12) | (gp_status1)) & (1 << lane); if (phy->supported & ELINK_SUPPORTED_20000baseKR2_Full) { uint16_t an_link; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_STATUS, &an_link); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_STATUS, &an_link); link_up |= (an_link & (1<<2)); ELINK_DEBUG_P2(sc,"an_link = %x, link_up = %x\n", an_link, link_up); } if (link_up && ELINK_SINGLE_MEDIA_DIRECT(params)) { uint16_t pd, gp_status4; if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) { /* Check Autoneg complete */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_4, &gp_status4); if (gp_status4 & ((1<<12)<link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE; /* Check parallel detect used */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_PAR_DET_10G_STATUS, &pd); if (pd & (1<<15)) vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED; ELINK_DEBUG_P2(sc, "pd = %x, link_status = %x\n", pd, vars->link_status); } elink_ext_phy_resolve_fc(phy, params, vars); vars->duplex = duplex; ELINK_DEBUG_P3(sc, " ELINK_SINGLE_MEDIA_DIRECT duplex %x flow_ctrl 0x%x link_status 0x%x\n", vars->duplex, vars->flow_ctrl, vars->link_status); } } ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n", vars->duplex, vars->flow_ctrl, vars->link_status); if ((vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) && ELINK_SINGLE_MEDIA_DIRECT(params)) { uint16_t val; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG2, &val); if (val & MDIO_CL73_IEEEB1_AN_ADV2_ADVR_1000M_KX) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE; if (val & (MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4 | MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KR)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; ELINK_DEBUG_P2(sc, "val = %x, link_status = %x\n", val, vars->link_status); elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL3_LP_UP1, &val); if (val & MDIO_OVER_1G_UP1_2_5G) vars->link_status |= LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE; if (val & (MDIO_OVER_1G_UP1_10G | MDIO_OVER_1G_UP1_10GH)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; ELINK_DEBUG_P2(sc, "val = %x, link_status = %x\n", val, vars->link_status); } if (lane < 2) { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_2, &gp_speed); } else { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_3, &gp_speed); } ELINK_DEBUG_P2(sc, "lane %d gp_speed 0x%x\n", lane, gp_speed); if ((lane & 1) == 0) gp_speed <<= 8; gp_speed &= 0x3f00; link_up = !!link_up; /* Reset the TX FIFO to fix SGMII issue */ rc = elink_get_link_speed_duplex(phy, params, vars, link_up, gp_speed, duplex); /* In case of KR link down, start up the recovering procedure */ if ((!link_up) && (phy->media_type == ELINK_ETH_PHY_KR) && (!(phy->flags & ELINK_FLAGS_WC_DUAL_MODE))) vars->rx_tx_asic_rst = MAX_KR_LINK_RETRY; ELINK_DEBUG_P3(sc, "duplex %x flow_ctrl 0x%x link_status 0x%x\n", vars->duplex, vars->flow_ctrl, vars->link_status); return rc; } static void elink_set_gmii_tx_driver(struct elink_params *params) { struct bxe_softc *sc = params->sc; struct elink_phy *phy = ¶ms->phy[ELINK_INT_PHY]; uint16_t lp_up2; uint16_t tx_driver; uint16_t bank; /* Read precomp */ CL22_RD_OVER_CL45(sc, phy, MDIO_REG_BANK_OVER_1G, MDIO_OVER_1G_LP_UP2, &lp_up2); /* Bits [10:7] at lp_up2, positioned at [15:12] */ lp_up2 = (((lp_up2 & MDIO_OVER_1G_LP_UP2_PREEMPHASIS_MASK) >> MDIO_OVER_1G_LP_UP2_PREEMPHASIS_SHIFT) << MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT); if (lp_up2 == 0) return; for (bank = MDIO_REG_BANK_TX0; bank <= MDIO_REG_BANK_TX3; bank += (MDIO_REG_BANK_TX1 - MDIO_REG_BANK_TX0)) { CL22_RD_OVER_CL45(sc, phy, bank, MDIO_TX0_TX_DRIVER, &tx_driver); /* Replace tx_driver bits [15:12] */ if (lp_up2 != (tx_driver & MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK)) { tx_driver &= ~MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK; tx_driver |= lp_up2; CL22_WR_OVER_CL45(sc, phy, bank, MDIO_TX0_TX_DRIVER, tx_driver); } } } static elink_status_t elink_emac_program(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint16_t mode = 0; ELINK_DEBUG_P0(sc, "setting link speed & duplex\n"); elink_bits_dis(sc, GRCBASE_EMAC0 + port*0x400 + EMAC_REG_EMAC_MODE, (EMAC_MODE_25G_MODE | EMAC_MODE_PORT_MII_10M | EMAC_MODE_HALF_DUPLEX)); switch (vars->line_speed) { case ELINK_SPEED_10: mode |= EMAC_MODE_PORT_MII_10M; break; case ELINK_SPEED_100: mode |= EMAC_MODE_PORT_MII; break; case ELINK_SPEED_1000: mode |= EMAC_MODE_PORT_GMII; break; case ELINK_SPEED_2500: mode |= (EMAC_MODE_25G_MODE | EMAC_MODE_PORT_GMII); break; default: /* 10G not valid for EMAC */ ELINK_DEBUG_P1(sc, "Invalid line_speed 0x%x\n", vars->line_speed); return ELINK_STATUS_ERROR; } if (vars->duplex == DUPLEX_HALF) mode |= EMAC_MODE_HALF_DUPLEX; elink_bits_en(sc, GRCBASE_EMAC0 + port*0x400 + EMAC_REG_EMAC_MODE, mode); elink_set_led(params, vars, ELINK_LED_MODE_OPER, vars->line_speed); return ELINK_STATUS_OK; } static void elink_set_preemphasis(struct elink_phy *phy, struct elink_params *params) { uint16_t bank, i = 0; struct bxe_softc *sc = params->sc; for (bank = MDIO_REG_BANK_RX0, i = 0; bank <= MDIO_REG_BANK_RX3; bank += (MDIO_REG_BANK_RX1-MDIO_REG_BANK_RX0), i++) { CL22_WR_OVER_CL45(sc, phy, bank, MDIO_RX0_RX_EQ_BOOST, phy->rx_preemphasis[i]); } for (bank = MDIO_REG_BANK_TX0, i = 0; bank <= MDIO_REG_BANK_TX3; bank += (MDIO_REG_BANK_TX1 - MDIO_REG_BANK_TX0), i++) { CL22_WR_OVER_CL45(sc, phy, bank, MDIO_TX0_TX_DRIVER, phy->tx_preemphasis[i]); } } static void elink_xgxs_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t enable_cl73 = (ELINK_SINGLE_MEDIA_DIRECT(params) || (params->loopback_mode == ELINK_LOOPBACK_XGXS)); if (!(vars->phy_flags & PHY_SGMII_FLAG)) { if (ELINK_SINGLE_MEDIA_DIRECT(params) && (params->feature_config_flags & ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) elink_set_preemphasis(phy, params); /* Forced speed requested? */ if (vars->line_speed != ELINK_SPEED_AUTO_NEG || (ELINK_SINGLE_MEDIA_DIRECT(params) && params->loopback_mode == ELINK_LOOPBACK_EXT)) { ELINK_DEBUG_P0(sc, "not SGMII, no AN\n"); /* Disable autoneg */ elink_set_autoneg(phy, params, vars, 0); /* Program speed and duplex */ elink_program_serdes(phy, params, vars); } else { /* AN_mode */ ELINK_DEBUG_P0(sc, "not SGMII, AN\n"); /* AN enabled */ elink_set_brcm_cl37_advertisement(phy, params); /* Program duplex & pause advertisement (for aneg) */ elink_set_ieee_aneg_advertisement(phy, params, vars->ieee_fc); /* Enable autoneg */ elink_set_autoneg(phy, params, vars, enable_cl73); /* Enable and restart AN */ elink_restart_autoneg(phy, params, enable_cl73); } } else { /* SGMII mode */ ELINK_DEBUG_P0(sc, "SGMII\n"); elink_initialize_sgmii_process(phy, params, vars); } } static elink_status_t elink_prepare_xgxs(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { elink_status_t rc; vars->phy_flags |= PHY_XGXS_FLAG; if ((phy->req_line_speed && ((phy->req_line_speed == ELINK_SPEED_100) || (phy->req_line_speed == ELINK_SPEED_10))) || (!phy->req_line_speed && (phy->speed_cap_mask >= PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) && (phy->speed_cap_mask < PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) || (phy->type == PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT_SD)) vars->phy_flags |= PHY_SGMII_FLAG; else vars->phy_flags &= ~PHY_SGMII_FLAG; elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc); elink_set_aer_mmd(params, phy); if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) elink_set_master_ln(params, phy); rc = elink_reset_unicore(params, phy, 0); /* Reset the SerDes and wait for reset bit return low */ if (rc != ELINK_STATUS_OK) return rc; elink_set_aer_mmd(params, phy); /* Setting the masterLn_def again after the reset */ if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) { elink_set_master_ln(params, phy); elink_set_swap_lanes(params, phy); } return rc; } static uint16_t elink_wait_reset_complete(struct bxe_softc *sc, struct elink_phy *phy, struct elink_params *params) { uint16_t cnt, ctrl; /* Wait for soft reset to get cleared up to 1 sec */ for (cnt = 0; cnt < 1000; cnt++) { if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) elink_cl22_read(sc, phy, MDIO_PMA_REG_CTRL, &ctrl); else elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, &ctrl); if (!(ctrl & (1<<15))) break; DELAY(1000 * 1); } if (cnt == 1000) elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, params->port); // "Warning: PHY was not initialized," // " Port %d\n", ELINK_DEBUG_P2(sc, "control reg 0x%x (after %d ms)\n", ctrl, cnt); return cnt; } static void elink_link_int_enable(struct elink_params *params) { uint8_t port = params->port; uint32_t mask; struct bxe_softc *sc = params->sc; /* Setting the status to report on link up for either XGXS or SerDes */ if (CHIP_IS_E3(sc)) { mask = ELINK_NIG_MASK_XGXS0_LINK_STATUS; if (!(ELINK_SINGLE_MEDIA_DIRECT(params))) mask |= ELINK_NIG_MASK_MI_INT; } else if (params->switch_cfg == ELINK_SWITCH_CFG_10G) { mask = (ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_XGXS0_LINK_STATUS); ELINK_DEBUG_P0(sc, "enabled XGXS interrupt\n"); if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) && params->phy[ELINK_INT_PHY].type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) { mask |= ELINK_NIG_MASK_MI_INT; ELINK_DEBUG_P0(sc, "enabled external phy int\n"); } } else { /* SerDes */ mask = ELINK_NIG_MASK_SERDES0_LINK_STATUS; ELINK_DEBUG_P0(sc, "enabled SerDes interrupt\n"); if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) && params->phy[ELINK_INT_PHY].type != PORT_HW_CFG_SERDES_EXT_PHY_TYPE_NOT_CONN) { mask |= ELINK_NIG_MASK_MI_INT; ELINK_DEBUG_P0(sc, "enabled external phy int\n"); } } elink_bits_en(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, mask); ELINK_DEBUG_P3(sc, "port %x, is_xgxs %x, int_status 0x%x\n", port, (params->switch_cfg == ELINK_SWITCH_CFG_10G), REG_RD(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4)); ELINK_DEBUG_P3(sc, " int_mask 0x%x, MI_INT %x, SERDES_LINK %x\n", REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4), REG_RD(sc, NIG_REG_EMAC0_STATUS_MISC_MI_INT + port*0x18), REG_RD(sc, NIG_REG_SERDES0_STATUS_LINK_STATUS+port*0x3c)); ELINK_DEBUG_P2(sc, " 10G %x, XGXS_LINK %x\n", REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK10G + port*0x68), REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK_STATUS + port*0x68)); } static void elink_rearm_latch_signal(struct bxe_softc *sc, uint8_t port, uint8_t exp_mi_int) { uint32_t latch_status = 0; /* Disable the MI INT ( external phy int ) by writing 1 to the * status register. Link down indication is high-active-signal, * so in this case we need to write the status to clear the XOR */ /* Read Latched signals */ latch_status = REG_RD(sc, NIG_REG_LATCH_STATUS_0 + port*8); ELINK_DEBUG_P1(sc, "latch_status = 0x%x\n", latch_status); /* Handle only those with latched-signal=up.*/ if (exp_mi_int) elink_bits_en(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4, ELINK_NIG_STATUS_EMAC0_MI_INT); else elink_bits_dis(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4, ELINK_NIG_STATUS_EMAC0_MI_INT); if (latch_status & 1) { /* For all latched-signal=up : Re-Arm Latch signals */ REG_WR(sc, NIG_REG_LATCH_STATUS_0 + port*8, (latch_status & 0xfffe) | (latch_status & 1)); } /* For all latched-signal=up,Write original_signal to status */ } static void elink_link_int_ack(struct elink_params *params, struct elink_vars *vars, uint8_t is_10g_plus) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; uint32_t mask; /* First reset all status we assume only one line will be * change at a time */ elink_bits_dis(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4, (ELINK_NIG_STATUS_XGXS0_LINK10G | ELINK_NIG_STATUS_XGXS0_LINK_STATUS | ELINK_NIG_STATUS_SERDES0_LINK_STATUS)); if (vars->phy_link_up) { if (USES_WARPCORE(sc)) mask = ELINK_NIG_STATUS_XGXS0_LINK_STATUS; else { if (is_10g_plus) mask = ELINK_NIG_STATUS_XGXS0_LINK10G; else if (params->switch_cfg == ELINK_SWITCH_CFG_10G) { /* Disable the link interrupt by writing 1 to * the relevant lane in the status register */ uint32_t ser_lane = ((params->lane_config & PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >> PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT); mask = ((1 << ser_lane) << ELINK_NIG_STATUS_XGXS0_LINK_STATUS_SIZE); } else mask = ELINK_NIG_STATUS_SERDES0_LINK_STATUS; } ELINK_DEBUG_P1(sc, "Ack link up interrupt with mask 0x%x\n", mask); elink_bits_en(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4, mask); } } static elink_status_t elink_format_ver(uint32_t num, uint8_t *str, uint16_t *len) { uint8_t *str_ptr = str; uint32_t mask = 0xf0000000; uint8_t shift = 8*4; uint8_t digit; uint8_t remove_leading_zeros = 1; if (*len < 10) { /* Need more than 10chars for this format */ *str_ptr = '\0'; (*len)--; return ELINK_STATUS_ERROR; } while (shift > 0) { shift -= 4; digit = ((num & mask) >> shift); if (digit == 0 && remove_leading_zeros) { mask = mask >> 4; continue; } else if (digit < 0xa) *str_ptr = digit + '0'; else *str_ptr = digit - 0xa + 'a'; remove_leading_zeros = 0; str_ptr++; (*len)--; mask = mask >> 4; if (shift == 4*4) { *str_ptr = '.'; str_ptr++; (*len)--; remove_leading_zeros = 1; } } return ELINK_STATUS_OK; } static elink_status_t elink_null_format_ver(uint32_t spirom_ver, uint8_t *str, uint16_t *len) { str[0] = '\0'; (*len)--; return ELINK_STATUS_OK; } elink_status_t elink_get_ext_phy_fw_version(struct elink_params *params, uint8_t *version, uint16_t len) { struct bxe_softc *sc; uint32_t spirom_ver = 0; elink_status_t status = ELINK_STATUS_OK; uint8_t *ver_p = version; uint16_t remain_len = len; if (version == NULL || params == NULL) return ELINK_STATUS_ERROR; sc = params->sc; /* Extract first external phy*/ version[0] = '\0'; spirom_ver = REG_RD(sc, params->phy[ELINK_EXT_PHY1].ver_addr); if (params->phy[ELINK_EXT_PHY1].format_fw_ver) { status |= params->phy[ELINK_EXT_PHY1].format_fw_ver(spirom_ver, ver_p, &remain_len); ver_p += (len - remain_len); } if ((params->num_phys == ELINK_MAX_PHYS) && (params->phy[ELINK_EXT_PHY2].ver_addr != 0)) { spirom_ver = REG_RD(sc, params->phy[ELINK_EXT_PHY2].ver_addr); if (params->phy[ELINK_EXT_PHY2].format_fw_ver) { *ver_p = '/'; ver_p++; remain_len--; status |= params->phy[ELINK_EXT_PHY2].format_fw_ver( spirom_ver, ver_p, &remain_len); ver_p = version + (len - remain_len); } } *ver_p = '\0'; return status; } static void elink_set_xgxs_loopback(struct elink_phy *phy, struct elink_params *params) { uint8_t port = params->port; struct bxe_softc *sc = params->sc; if (phy->req_line_speed != ELINK_SPEED_1000) { uint32_t md_devad = 0; ELINK_DEBUG_P0(sc, "XGXS 10G loopback enable\n"); if (!CHIP_IS_E3(sc)) { /* Change the uni_phy_addr in the nig */ md_devad = REG_RD(sc, (NIG_REG_XGXS0_CTRL_MD_DEVAD + port*0x18)); REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + port*0x18, 0x5); } elink_cl45_write(sc, phy, 5, (MDIO_REG_BANK_AER_BLOCK + (MDIO_AER_BLOCK_AER_REG & 0xf)), 0x2800); elink_cl45_write(sc, phy, 5, (MDIO_REG_BANK_CL73_IEEEB0 + (MDIO_CL73_IEEEB0_CL73_AN_CONTROL & 0xf)), 0x6041); DELAY(1000 * 200); /* Set aer mmd back */ elink_set_aer_mmd(params, phy); if (!CHIP_IS_E3(sc)) { /* And md_devad */ REG_WR(sc, NIG_REG_XGXS0_CTRL_MD_DEVAD + port*0x18, md_devad); } } else { uint16_t mii_ctrl; ELINK_DEBUG_P0(sc, "XGXS 1G loopback enable\n"); elink_cl45_read(sc, phy, 5, (MDIO_REG_BANK_COMBO_IEEE0 + (MDIO_COMBO_IEEE0_MII_CONTROL & 0xf)), &mii_ctrl); elink_cl45_write(sc, phy, 5, (MDIO_REG_BANK_COMBO_IEEE0 + (MDIO_COMBO_IEEE0_MII_CONTROL & 0xf)), mii_ctrl | MDIO_COMBO_IEEO_MII_CONTROL_LOOPBACK); } } elink_status_t elink_set_led(struct elink_params *params, struct elink_vars *vars, uint8_t mode, uint32_t speed) { uint8_t port = params->port; uint16_t hw_led_mode = params->hw_led_mode; elink_status_t rc = ELINK_STATUS_OK; uint8_t phy_idx; uint32_t tmp; uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P2(sc, "elink_set_led: port %x, mode %d\n", port, mode); ELINK_DEBUG_P2(sc, "speed 0x%x, hw_led_mode 0x%x\n", speed, hw_led_mode); /* In case */ for (phy_idx = ELINK_EXT_PHY1; phy_idx < ELINK_MAX_PHYS; phy_idx++) { if (params->phy[phy_idx].set_link_led) { params->phy[phy_idx].set_link_led( ¶ms->phy[phy_idx], params, mode); } } #ifdef ELINK_INCLUDE_EMUL if (params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC) return rc; #endif switch (mode) { case ELINK_LED_MODE_FRONT_PANEL_OFF: case ELINK_LED_MODE_OFF: REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 0); REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, SHARED_HW_CFG_LED_MAC1); tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED); if (params->phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) tmp &= ~(EMAC_LED_1000MB_OVERRIDE | EMAC_LED_100MB_OVERRIDE | EMAC_LED_10MB_OVERRIDE); else tmp |= EMAC_LED_OVERRIDE; elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, tmp); break; case ELINK_LED_MODE_OPER: /* For all other phys, OPER mode is same as ON, so in case * link is down, do nothing */ if (!vars->link_up) break; case ELINK_LED_MODE_ON: if (((params->phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727) || (params->phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722)) && CHIP_IS_E2(sc) && params->num_phys == 2) { /* This is a work-around for E2+8727 Configurations */ if (mode == ELINK_LED_MODE_ON || speed == ELINK_SPEED_10000){ REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0); REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 1); tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, (tmp | EMAC_LED_OVERRIDE)); /* Return here without enabling traffic * LED blink and setting rate in ON mode. * In oper mode, enabling LED blink * and setting rate is needed. */ if (mode == ELINK_LED_MODE_ON) return rc; } } else if (ELINK_SINGLE_MEDIA_DIRECT(params)) { /* This is a work-around for HW issue found when link * is up in CL73 */ if ((!CHIP_IS_E3(sc)) || (CHIP_IS_E3(sc) && mode == ELINK_LED_MODE_ON)) REG_WR(sc, NIG_REG_LED_10G_P0 + port*4, 1); if (CHIP_IS_E1x(sc) || CHIP_IS_E2(sc) || (mode == ELINK_LED_MODE_ON)) REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0); else REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, hw_led_mode); } else if ((params->phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) && (mode == ELINK_LED_MODE_ON)) { REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, 0); tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, tmp | EMAC_LED_OVERRIDE | EMAC_LED_1000MB_OVERRIDE); /* Break here; otherwise, it'll disable the * intended override. */ break; } else { uint32_t nig_led_mode = ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY2) ? (SHARED_HW_CFG_LED_PHY1 >> SHARED_HW_CFG_LED_MODE_SHIFT) : hw_led_mode; REG_WR(sc, NIG_REG_LED_MODE_P0 + port*4, nig_led_mode); } REG_WR(sc, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0 + port*4, 0); /* Set blinking rate to ~15.9Hz */ if (CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_P0 + port*4, LED_BLINK_RATE_VAL_E3); else REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_P0 + port*4, LED_BLINK_RATE_VAL_E1X_E2); REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_RATE_ENA_P0 + port*4, 1); tmp = elink_cb_reg_read(sc, emac_base + EMAC_REG_EMAC_LED); elink_cb_reg_write(sc, emac_base + EMAC_REG_EMAC_LED, (tmp & (~EMAC_LED_OVERRIDE))); if (CHIP_IS_E1(sc) && ((speed == ELINK_SPEED_2500) || (speed == ELINK_SPEED_1000) || (speed == ELINK_SPEED_100) || (speed == ELINK_SPEED_10))) { /* For speeds less than 10G LED scheme is different */ REG_WR(sc, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0 + port*4, 1); REG_WR(sc, NIG_REG_LED_CONTROL_TRAFFIC_P0 + port*4, 0); REG_WR(sc, NIG_REG_LED_CONTROL_BLINK_TRAFFIC_P0 + port*4, 1); } break; default: rc = ELINK_STATUS_ERROR; ELINK_DEBUG_P1(sc, "elink_set_led: Invalid led mode %d\n", mode); break; } return rc; } /* This function comes to reflect the actual link state read DIRECTLY from the * HW */ elink_status_t elink_test_link(struct elink_params *params, struct elink_vars *vars, uint8_t is_serdes) { struct bxe_softc *sc = params->sc; uint16_t gp_status = 0, phy_index = 0; uint8_t ext_phy_link_up = 0, serdes_phy_type; struct elink_vars temp_vars; struct elink_phy *int_phy = ¶ms->phy[ELINK_INT_PHY]; #ifdef ELINK_INCLUDE_FPGA if (CHIP_REV_IS_FPGA(sc)) return ELINK_STATUS_OK; #endif #ifdef ELINK_INCLUDE_EMUL if (CHIP_REV_IS_EMUL(sc)) return ELINK_STATUS_OK; #endif if (CHIP_IS_E3(sc)) { uint16_t link_up; if (params->req_line_speed[ELINK_LINK_CONFIG_IDX(ELINK_INT_PHY)] > ELINK_SPEED_10000) { /* Check 20G link */ elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD, 1, &link_up); elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD, 1, &link_up); link_up &= (1<<2); } else { /* Check 10G link and below*/ uint8_t lane = elink_get_warpcore_lane(int_phy, params); elink_cl45_read(sc, int_phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_1, &gp_status); gp_status = ((gp_status >> 8) & 0xf) | ((gp_status >> 12) & 0xf); link_up = gp_status & (1 << lane); } if (!link_up) return ELINK_STATUS_NO_LINK; } else { CL22_RD_OVER_CL45(sc, int_phy, MDIO_REG_BANK_GP_STATUS, MDIO_GP_STATUS_TOP_AN_STATUS1, &gp_status); /* Link is up only if both local phy and external phy are up */ if (!(gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS)) return ELINK_STATUS_NO_LINK; } /* In XGXS loopback mode, do not check external PHY */ if (params->loopback_mode == ELINK_LOOPBACK_XGXS) return ELINK_STATUS_OK; switch (params->num_phys) { case 1: /* No external PHY */ return ELINK_STATUS_OK; case 2: ext_phy_link_up = params->phy[ELINK_EXT_PHY1].read_status( ¶ms->phy[ELINK_EXT_PHY1], params, &temp_vars); break; case 3: /* Dual Media */ for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) { serdes_phy_type = ((params->phy[phy_index].media_type == ELINK_ETH_PHY_SFPP_10G_FIBER) || (params->phy[phy_index].media_type == ELINK_ETH_PHY_SFP_1G_FIBER) || (params->phy[phy_index].media_type == ELINK_ETH_PHY_XFP_FIBER) || (params->phy[phy_index].media_type == ELINK_ETH_PHY_DA_TWINAX)); if (is_serdes != serdes_phy_type) continue; if (params->phy[phy_index].read_status) { ext_phy_link_up |= params->phy[phy_index].read_status( ¶ms->phy[phy_index], params, &temp_vars); } } break; } if (ext_phy_link_up) return ELINK_STATUS_OK; return ELINK_STATUS_NO_LINK; } static elink_status_t elink_link_initialize(struct elink_params *params, struct elink_vars *vars) { uint8_t phy_index, non_ext_phy; struct bxe_softc *sc = params->sc; /* In case of external phy existence, the line speed would be the * line speed linked up by the external phy. In case it is direct * only, then the line_speed during initialization will be * equal to the req_line_speed */ vars->line_speed = params->phy[ELINK_INT_PHY].req_line_speed; /* Initialize the internal phy in case this is a direct board * (no external phys), or this board has external phy which requires * to first. */ if (!USES_WARPCORE(sc)) elink_prepare_xgxs(¶ms->phy[ELINK_INT_PHY], params, vars); /* init ext phy and enable link state int */ non_ext_phy = (ELINK_SINGLE_MEDIA_DIRECT(params) || (params->loopback_mode == ELINK_LOOPBACK_XGXS)); if (non_ext_phy || (params->phy[ELINK_EXT_PHY1].flags & ELINK_FLAGS_INIT_XGXS_FIRST) || (params->loopback_mode == ELINK_LOOPBACK_EXT_PHY)) { struct elink_phy *phy = ¶ms->phy[ELINK_INT_PHY]; if (vars->line_speed == ELINK_SPEED_AUTO_NEG && (CHIP_IS_E1x(sc) || CHIP_IS_E2(sc))) elink_set_parallel_detection(phy, params); if (params->phy[ELINK_INT_PHY].config_init) params->phy[ELINK_INT_PHY].config_init(phy, params, vars); } /* Re-read this value in case it was changed inside config_init due to * limitations of optic module */ vars->line_speed = params->phy[ELINK_INT_PHY].req_line_speed; /* Init external phy*/ if (non_ext_phy) { if (params->phy[ELINK_INT_PHY].supported & ELINK_SUPPORTED_FIBRE) vars->link_status |= LINK_STATUS_SERDES_LINK; } else { for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) { /* No need to initialize second phy in case of first * phy only selection. In case of second phy, we do * need to initialize the first phy, since they are * connected. */ if (params->phy[phy_index].supported & ELINK_SUPPORTED_FIBRE) vars->link_status |= LINK_STATUS_SERDES_LINK; if (phy_index == ELINK_EXT_PHY2 && (elink_phy_selection(params) == PORT_HW_CFG_PHY_SELECTION_FIRST_PHY)) { ELINK_DEBUG_P0(sc, "Not initializing second phy\n"); continue; } params->phy[phy_index].config_init( ¶ms->phy[phy_index], params, vars); } } /* Reset the interrupt indication after phy was initialized */ elink_bits_dis(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + params->port*4, (ELINK_NIG_STATUS_XGXS0_LINK10G | ELINK_NIG_STATUS_XGXS0_LINK_STATUS | ELINK_NIG_STATUS_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); return ELINK_STATUS_OK; } static void elink_int_link_reset(struct elink_phy *phy, struct elink_params *params) { /* Reset the SerDes/XGXS */ REG_WR(params->sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR, (0x1ff << (params->port*16))); } static void elink_common_ext_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t gpio_port; /* HW reset */ if (CHIP_IS_E2(sc)) gpio_port = SC_PATH(sc); else gpio_port = params->port; elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, gpio_port); elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_LOW, gpio_port); ELINK_DEBUG_P0(sc, "reset external PHY\n"); } static elink_status_t elink_update_link_down(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t port = params->port; ELINK_DEBUG_P1(sc, "Port %x: Link is down\n", port); elink_set_led(params, vars, ELINK_LED_MODE_OFF, 0); vars->phy_flags &= ~PHY_PHYSICAL_LINK_FLAG; /* Indicate no mac active */ vars->mac_type = ELINK_MAC_TYPE_NONE; /* Update shared memory */ vars->link_status &= ~ELINK_LINK_UPDATE_MASK; vars->line_speed = 0; elink_update_mng(params, vars->link_status); /* Activate nig drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 1); /* Disable emac */ if (!CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0); DELAY(1000 * 10); /* Reset BigMac/Xmac */ if (CHIP_IS_E1x(sc) || CHIP_IS_E2(sc)) elink_set_bmac_rx(sc, params->chip_id, params->port, 0); if (CHIP_IS_E3(sc)) { /* Prevent LPI Generation by chip */ REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 + (params->port << 2), 0); REG_WR(sc, MISC_REG_CPMU_LP_MASK_ENT_P0 + (params->port << 2), 0); vars->eee_status &= ~(SHMEM_EEE_LP_ADV_STATUS_MASK | SHMEM_EEE_ACTIVE_BIT); elink_update_mng_eee(params, vars->eee_status); elink_set_xmac_rxtx(params, 0); elink_set_umac_rxtx(params, 0); } return ELINK_STATUS_OK; } static elink_status_t elink_update_link_up(struct elink_params *params, struct elink_vars *vars, uint8_t link_10g) { struct bxe_softc *sc = params->sc; uint8_t phy_idx, port = params->port; elink_status_t rc = ELINK_STATUS_OK; vars->link_status |= (LINK_STATUS_LINK_UP | LINK_STATUS_PHYSICAL_LINK_FLAG); vars->phy_flags |= PHY_PHYSICAL_LINK_FLAG; if (vars->flow_ctrl & ELINK_FLOW_CTRL_TX) vars->link_status |= LINK_STATUS_TX_FLOW_CONTROL_ENABLED; if (vars->flow_ctrl & ELINK_FLOW_CTRL_RX) vars->link_status |= LINK_STATUS_RX_FLOW_CONTROL_ENABLED; if (USES_WARPCORE(sc)) { if (link_10g) { if (elink_xmac_enable(params, vars, 0) == ELINK_STATUS_NO_LINK) { ELINK_DEBUG_P0(sc, "Found errors on XMAC\n"); vars->link_up = 0; vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG; vars->link_status &= ~LINK_STATUS_LINK_UP; } } else elink_umac_enable(params, vars, 0); elink_set_led(params, vars, ELINK_LED_MODE_OPER, vars->line_speed); if ((vars->eee_status & SHMEM_EEE_ACTIVE_BIT) && (vars->eee_status & SHMEM_EEE_LPI_REQUESTED_BIT)) { ELINK_DEBUG_P0(sc, "Enabling LPI assertion\n"); REG_WR(sc, MISC_REG_CPMU_LP_FW_ENABLE_P0 + (params->port << 2), 1); REG_WR(sc, MISC_REG_CPMU_LP_DR_ENABLE, 1); REG_WR(sc, MISC_REG_CPMU_LP_MASK_ENT_P0 + (params->port << 2), 0xfc20); } } if ((CHIP_IS_E1x(sc) || CHIP_IS_E2(sc))) { if (link_10g) { if (elink_bmac_enable(params, vars, 0, 1) == ELINK_STATUS_NO_LINK) { ELINK_DEBUG_P0(sc, "Found errors on BMAC\n"); vars->link_up = 0; vars->phy_flags |= PHY_HALF_OPEN_CONN_FLAG; vars->link_status &= ~LINK_STATUS_LINK_UP; } elink_set_led(params, vars, ELINK_LED_MODE_OPER, ELINK_SPEED_10000); } else { rc = elink_emac_program(params, vars); elink_emac_enable(params, vars, 0); /* AN complete? */ if ((vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) && (!(vars->phy_flags & PHY_SGMII_FLAG)) && ELINK_SINGLE_MEDIA_DIRECT(params)) elink_set_gmii_tx_driver(params); } } /* PBF - link up */ if (CHIP_IS_E1x(sc)) rc |= elink_pbf_update(params, vars->flow_ctrl, vars->line_speed); /* Disable drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 0); /* Update shared memory */ elink_update_mng(params, vars->link_status); elink_update_mng_eee(params, vars->eee_status); /* Check remote fault */ for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) { if (params->phy[phy_idx].flags & ELINK_FLAGS_TX_ERROR_CHECK) { elink_check_half_open_conn(params, vars, 0); break; } } DELAY(1000 * 20); return rc; } static void elink_chng_link_count(struct elink_params *params, uint8_t clear) { struct bxe_softc *sc = params->sc; uint32_t addr, val; /* Verify the link_change_count is supported by the MFW */ if (!(SHMEM2_HAS(sc, link_change_count))) return; addr = params->shmem2_base + offsetof(struct shmem2_region, link_change_count[params->port]); if (clear) val = 0; else val = REG_RD(sc, addr) + 1; REG_WR(sc, addr, val); } /* The elink_link_update function should be called upon link * interrupt. * Link is considered up as follows: * - DIRECT_SINGLE_MEDIA - Only XGXS link (internal link) needs * to be up * - SINGLE_MEDIA - The link between the 577xx and the external * phy (XGXS) need to up as well as the external link of the * phy (PHY_EXT1) * - DUAL_MEDIA - The link between the 577xx and the first * external phy needs to be up, and at least one of the 2 * external phy link must be up. */ elink_status_t elink_link_update(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; struct elink_vars phy_vars[ELINK_MAX_PHYS]; uint8_t port = params->port; uint8_t link_10g_plus, phy_index; uint32_t prev_link_status = vars->link_status; uint8_t ext_phy_link_up = 0, cur_link_up; elink_status_t rc = ELINK_STATUS_OK; uint16_t ext_phy_line_speed = 0, prev_line_speed = vars->line_speed; uint8_t active_external_phy = ELINK_INT_PHY; vars->phy_flags &= ~PHY_HALF_OPEN_CONN_FLAG; vars->link_status &= ~ELINK_LINK_UPDATE_MASK; for (phy_index = ELINK_INT_PHY; phy_index < params->num_phys; phy_index++) { phy_vars[phy_index].flow_ctrl = 0; phy_vars[phy_index].link_status = 0; phy_vars[phy_index].line_speed = 0; phy_vars[phy_index].duplex = DUPLEX_FULL; phy_vars[phy_index].phy_link_up = 0; phy_vars[phy_index].link_up = 0; phy_vars[phy_index].fault_detected = 0; /* different consideration, since vars holds inner state */ phy_vars[phy_index].eee_status = vars->eee_status; } if (USES_WARPCORE(sc)) elink_set_aer_mmd(params, ¶ms->phy[ELINK_INT_PHY]); ELINK_DEBUG_P3(sc, "port %x, XGXS?%x, int_status 0x%x\n", port, (vars->phy_flags & PHY_XGXS_FLAG), REG_RD(sc, NIG_REG_STATUS_INTERRUPT_PORT0 + port*4)); ELINK_DEBUG_P3(sc, "int_mask 0x%x MI_INT %x, SERDES_LINK %x\n", REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4), REG_RD(sc, NIG_REG_EMAC0_STATUS_MISC_MI_INT + port*0x18) > 0, REG_RD(sc, NIG_REG_SERDES0_STATUS_LINK_STATUS + port*0x3c)); ELINK_DEBUG_P2(sc, " 10G %x, XGXS_LINK %x\n", REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK10G + port*0x68), REG_RD(sc, NIG_REG_XGXS0_STATUS_LINK_STATUS + port*0x68)); /* Disable emac */ if (!CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0); /* Step 1: * Check external link change only for external phys, and apply * priority selection between them in case the link on both phys * is up. Note that instead of the common vars, a temporary * vars argument is used since each phy may have different link/ * speed/duplex result */ for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) { struct elink_phy *phy = ¶ms->phy[phy_index]; if (!phy->read_status) continue; /* Read link status and params of this ext phy */ cur_link_up = phy->read_status(phy, params, &phy_vars[phy_index]); if (cur_link_up) { ELINK_DEBUG_P1(sc, "phy in index %d link is up\n", phy_index); } else { ELINK_DEBUG_P1(sc, "phy in index %d link is down\n", phy_index); continue; } if (!ext_phy_link_up) { ext_phy_link_up = 1; active_external_phy = phy_index; } else { switch (elink_phy_selection(params)) { case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: /* In this option, the first PHY makes sure to pass the * traffic through itself only. * Its not clear how to reset the link on the second phy */ active_external_phy = ELINK_EXT_PHY1; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: /* In this option, the first PHY makes sure to pass the * traffic through the second PHY. */ active_external_phy = ELINK_EXT_PHY2; break; default: /* Link indication on both PHYs with the following cases * is invalid: * - FIRST_PHY means that second phy wasn't initialized, * hence its link is expected to be down * - SECOND_PHY means that first phy should not be able * to link up by itself (using configuration) * - DEFAULT should be overridden during initialiazation */ ELINK_DEBUG_P1(sc, "Invalid link indication" "mpc=0x%x. DISABLING LINK !!!\n", params->multi_phy_config); ext_phy_link_up = 0; break; } } } prev_line_speed = vars->line_speed; /* Step 2: * Read the status of the internal phy. In case of * DIRECT_SINGLE_MEDIA board, this link is the external link, * otherwise this is the link between the 577xx and the first * external phy */ if (params->phy[ELINK_INT_PHY].read_status) params->phy[ELINK_INT_PHY].read_status( ¶ms->phy[ELINK_INT_PHY], params, vars); /* The INT_PHY flow control reside in the vars. This include the * case where the speed or flow control are not set to AUTO. * Otherwise, the active external phy flow control result is set * to the vars. The ext_phy_line_speed is needed to check if the * speed is different between the internal phy and external phy. * This case may be result of intermediate link speed change. */ if (active_external_phy > ELINK_INT_PHY) { vars->flow_ctrl = phy_vars[active_external_phy].flow_ctrl; /* Link speed is taken from the XGXS. AN and FC result from * the external phy. */ vars->link_status |= phy_vars[active_external_phy].link_status; /* if active_external_phy is first PHY and link is up - disable * disable TX on second external PHY */ if (active_external_phy == ELINK_EXT_PHY1) { if (params->phy[ELINK_EXT_PHY2].phy_specific_func) { ELINK_DEBUG_P0(sc, "Disabling TX on EXT_PHY2\n"); params->phy[ELINK_EXT_PHY2].phy_specific_func( ¶ms->phy[ELINK_EXT_PHY2], params, ELINK_DISABLE_TX); } } ext_phy_line_speed = phy_vars[active_external_phy].line_speed; vars->duplex = phy_vars[active_external_phy].duplex; if (params->phy[active_external_phy].supported & ELINK_SUPPORTED_FIBRE) vars->link_status |= LINK_STATUS_SERDES_LINK; else vars->link_status &= ~LINK_STATUS_SERDES_LINK; vars->eee_status = phy_vars[active_external_phy].eee_status; ELINK_DEBUG_P1(sc, "Active external phy selected: %x\n", active_external_phy); } ELINK_DEBUG_P3(sc, "vars : phy_flags = %x, mac_type = %x, phy_link_up = %x\n", vars->phy_flags, vars->mac_type, vars->phy_link_up); ELINK_DEBUG_P3(sc, "vars : link_up = %x, line_speed = %x, duplex = %x\n", vars->link_up, vars->line_speed, vars->duplex); ELINK_DEBUG_P3(sc, "vars : flow_ctrl = %x, ieee_fc = %x, link_status = %x\n", vars->flow_ctrl, vars->ieee_fc, vars->link_status); ELINK_DEBUG_P3(sc, "vars : eee_status = %x, fault_detected = %x, check_kr2_recovery_cnt = %x\n", vars->eee_status, vars->fault_detected, vars->check_kr2_recovery_cnt); ELINK_DEBUG_P3(sc, "vars : periodic_flags = %x, aeu_int_mask = %x, rx_tx_asic_rst = %x\n", vars->periodic_flags, vars->aeu_int_mask, vars->rx_tx_asic_rst); ELINK_DEBUG_P2(sc, "vars : turn_to_run_wc_rt = %x, rsrv2 = %x\n", vars->turn_to_run_wc_rt, vars->rsrv2); for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) { if (params->phy[phy_index].flags & ELINK_FLAGS_REARM_LATCH_SIGNAL) { elink_rearm_latch_signal(sc, port, phy_index == active_external_phy); break; } } ELINK_DEBUG_P3(sc, "vars->flow_ctrl = 0x%x, vars->link_status = 0x%x," " ext_phy_line_speed = %d\n", vars->flow_ctrl, vars->link_status, ext_phy_line_speed); /* Upon link speed change set the NIG into drain mode. Comes to * deals with possible FIFO glitch due to clk change when speed * is decreased without link down indicator */ if (vars->phy_link_up) { if (!(ELINK_SINGLE_MEDIA_DIRECT(params)) && ext_phy_link_up && (ext_phy_line_speed != vars->line_speed)) { ELINK_DEBUG_P2(sc, "Internal link speed %d is" " different than the external" " link speed %d\n", vars->line_speed, ext_phy_line_speed); vars->phy_link_up = 0; ELINK_DEBUG_P0(sc, "phy_link_up set to 0\n"); } else if (prev_line_speed != vars->line_speed) { REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); DELAY(1000 * 1); } } /* Anything 10 and over uses the bmac */ link_10g_plus = (vars->line_speed >= ELINK_SPEED_10000); elink_link_int_ack(params, vars, link_10g_plus); /* In case external phy link is up, and internal link is down * (not initialized yet probably after link initialization, it * needs to be initialized. * Note that after link down-up as result of cable plug, the xgxs * link would probably become up again without the need * initialize it */ if (!(ELINK_SINGLE_MEDIA_DIRECT(params))) { ELINK_DEBUG_P3(sc, "ext_phy_link_up = %d, int_link_up = %d," " init_preceding = %d\n", ext_phy_link_up, vars->phy_link_up, params->phy[ELINK_EXT_PHY1].flags & ELINK_FLAGS_INIT_XGXS_FIRST); if (!(params->phy[ELINK_EXT_PHY1].flags & ELINK_FLAGS_INIT_XGXS_FIRST) && ext_phy_link_up && !vars->phy_link_up) { vars->line_speed = ext_phy_line_speed; if (vars->line_speed < ELINK_SPEED_1000) vars->phy_flags |= PHY_SGMII_FLAG; else vars->phy_flags &= ~PHY_SGMII_FLAG; if (params->phy[ELINK_INT_PHY].config_init) params->phy[ELINK_INT_PHY].config_init( ¶ms->phy[ELINK_INT_PHY], params, vars); } } /* Link is up only if both local phy and external phy (in case of * non-direct board) are up and no fault detected on active PHY. */ vars->link_up = (vars->phy_link_up && (ext_phy_link_up || ELINK_SINGLE_MEDIA_DIRECT(params)) && (phy_vars[active_external_phy].fault_detected == 0)); if(vars->link_up) { ELINK_DEBUG_P0(sc, "local phy and external phy are up\n"); } else { ELINK_DEBUG_P0(sc, "either local phy or external phy or both are down\n"); } /* Update the PFC configuration in case it was changed */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) vars->link_status |= LINK_STATUS_PFC_ENABLED; else vars->link_status &= ~LINK_STATUS_PFC_ENABLED; if (vars->link_up) rc = elink_update_link_up(params, vars, link_10g_plus); else rc = elink_update_link_down(params, vars); if ((prev_link_status ^ vars->link_status) & LINK_STATUS_LINK_UP) elink_chng_link_count(params, 0); /* Update MCP link status was changed */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX) elink_cb_fw_command(sc, DRV_MSG_CODE_LINK_STATUS_CHANGED, 0); return rc; } /*****************************************************************************/ /* External Phy section */ /*****************************************************************************/ void elink_ext_phy_hw_reset(struct bxe_softc *sc, uint8_t port) { elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, port); DELAY(1000 * 1); elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_HIGH, port); } static void elink_save_spirom_version(struct bxe_softc *sc, uint8_t port, uint32_t spirom_ver, uint32_t ver_addr) { ELINK_DEBUG_P3(sc, "FW version 0x%x:0x%x for port %d\n", (uint16_t)(spirom_ver>>16), (uint16_t)spirom_ver, port); if (ver_addr) REG_WR(sc, ver_addr, spirom_ver); } static void elink_save_bcm_spirom_ver(struct bxe_softc *sc, struct elink_phy *phy, uint8_t port) { uint16_t fw_ver1, fw_ver2; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER1, &fw_ver1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, &fw_ver2); elink_save_spirom_version(sc, port, (uint32_t)(fw_ver1<<16 | fw_ver2), phy->ver_addr); } static void elink_ext_phy_10G_an_resolve(struct bxe_softc *sc, struct elink_phy *phy, struct elink_vars *vars) { uint16_t val; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_STATUS, &val); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_STATUS, &val); if (val & (1<<5)) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE; if ((val & (1<<0)) == 0) vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED; } /******************************************************************/ /* common BCM8073/BCM8727 PHY SECTION */ /******************************************************************/ static void elink_8073_resolve_fc(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; if (phy->req_line_speed == ELINK_SPEED_10 || phy->req_line_speed == ELINK_SPEED_100) { vars->flow_ctrl = phy->req_flow_ctrl; return; } if (elink_ext_phy_resolve_fc(phy, params, vars) && (vars->flow_ctrl == ELINK_FLOW_CTRL_NONE)) { uint16_t pause_result; uint16_t ld_pause; /* local */ uint16_t lp_pause; /* link partner */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &ld_pause); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LP, &lp_pause); pause_result = (ld_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 5; pause_result |= (lp_pause & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 7; elink_pause_resolve(phy, params, vars, pause_result); ELINK_DEBUG_P1(sc, "Ext PHY CL37 pause result 0x%x\n", pause_result); } } static elink_status_t elink_8073_8727_external_rom_boot(struct bxe_softc *sc, struct elink_phy *phy, uint8_t port) { uint32_t count = 0; uint16_t fw_ver1, fw_msgout; elink_status_t rc = ELINK_STATUS_OK; /* Boot port from external ROM */ /* EDC grst */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x0001); /* Ucode reboot and rst */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x008c); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL1, 0x0001); /* Reset internal microprocessor */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET); /* Release srst bit */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP); /* Delay 100ms per the PHY specifications */ DELAY(1000 * 100); /* 8073 sometimes taking longer to download */ do { count++; if (count > 300) { ELINK_DEBUG_P2(sc, "elink_8073_8727_external_rom_boot port %x:" "Download failed. fw version = 0x%x\n", port, fw_ver1); rc = ELINK_STATUS_ERROR; break; } elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER1, &fw_ver1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &fw_msgout); DELAY(1000 * 1); } while (fw_ver1 == 0 || fw_ver1 == 0x4321 || ((fw_msgout & 0xff) != 0x03 && (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073))); /* Clear ser_boot_ctl bit */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL1, 0x0000); elink_save_bcm_spirom_ver(sc, phy, port); ELINK_DEBUG_P2(sc, "elink_8073_8727_external_rom_boot port %x:" "Download complete. fw version = 0x%x\n", port, fw_ver1); return rc; } /******************************************************************/ /* BCM8073 PHY SECTION */ /******************************************************************/ static elink_status_t elink_8073_is_snr_needed(struct bxe_softc *sc, struct elink_phy *phy) { /* This is only required for 8073A1, version 102 only */ uint16_t val; /* Read 8073 HW revision*/ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_CHIP_REV, &val); if (val != 1) { /* No need to workaround in 8073 A1 */ return ELINK_STATUS_OK; } elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, &val); /* SNR should be applied only for version 0x102 */ if (val != 0x102) return ELINK_STATUS_OK; return 1; } static elink_status_t elink_8073_xaui_wa(struct bxe_softc *sc, struct elink_phy *phy) { uint16_t val, cnt, cnt1 ; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_CHIP_REV, &val); if (val > 0) { /* No need to workaround in 8073 A1 */ return ELINK_STATUS_OK; } /* XAUI workaround in 8073 A0: */ /* After loading the boot ROM and restarting Autoneg, poll * Dev1, Reg $C820: */ for (cnt = 0; cnt < 1000; cnt++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_SPEED_LINK_STATUS, &val); /* If bit [14] = 0 or bit [13] = 0, continue on with * system initialization (XAUI work-around not required, as * these bits indicate 2.5G or 1G link up). */ if (!(val & (1<<14)) || !(val & (1<<13))) { ELINK_DEBUG_P0(sc, "XAUI work-around not required\n"); return ELINK_STATUS_OK; } else if (!(val & (1<<15))) { ELINK_DEBUG_P0(sc, "bit 15 went off\n"); /* If bit 15 is 0, then poll Dev1, Reg $C841 until it's * MSB (bit15) goes to 1 (indicating that the XAUI * workaround has completed), then continue on with * system initialization. */ for (cnt1 = 0; cnt1 < 1000; cnt1++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_XAUI_WA, &val); if (val & (1<<15)) { ELINK_DEBUG_P0(sc, "XAUI workaround has completed\n"); return ELINK_STATUS_OK; } DELAY(1000 * 3); } break; } DELAY(1000 * 3); } ELINK_DEBUG_P0(sc, "Warning: XAUI work-around timeout !!!\n"); return ELINK_STATUS_ERROR; } static void elink_807x_force_10G(struct bxe_softc *sc, struct elink_phy *phy) { /* Force KR or KX */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x2040); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0x000b); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_BCM_CTRL, 0x0000); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x0000); } static void elink_8073_set_pause_cl37(struct elink_params *params, struct elink_phy *phy, struct elink_vars *vars) { uint16_t cl37_val; struct bxe_softc *sc = params->sc; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &cl37_val); cl37_val &= ~MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH; /* Please refer to Table 28B-3 of 802.3ab-1999 spec. */ elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc); if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC) { cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_SYMMETRIC; } if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) { cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC; } if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) { cl37_val |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH; } ELINK_DEBUG_P1(sc, "Ext phy AN advertize cl37 0x%x\n", cl37_val); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, cl37_val); DELAY(1000 * 500); } static void elink_8073_specific_func(struct elink_phy *phy, struct elink_params *params, uint32_t action) { struct bxe_softc *sc = params->sc; switch (action) { case ELINK_PHY_INIT: /* Enable LASI */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, (1<<2)); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x0004); break; } } static elink_status_t elink_8073_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t val = 0, tmp1; uint8_t gpio_port; ELINK_DEBUG_P0(sc, "Init 8073\n"); if (CHIP_IS_E2(sc)) gpio_port = SC_PATH(sc); else gpio_port = params->port; /* Restore normal power mode*/ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, gpio_port); elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_HIGH, gpio_port); elink_8073_specific_func(phy, params, ELINK_PHY_INIT); elink_8073_set_pause_cl37(params, phy, vars); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &tmp1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &tmp1); ELINK_DEBUG_P1(sc, "Before rom RX_ALARM(port1): 0x%x\n", tmp1); /* Swap polarity if required - Must be done only in non-1G mode */ if (params->lane_config & PORT_HW_CFG_SWAP_PHY_POLARITY_ENABLED) { /* Configure the 8073 to swap _P and _N of the KR lines */ ELINK_DEBUG_P0(sc, "Swapping polarity for the 8073\n"); /* 10G Rx/Tx and 1G Tx signal polarity swap */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL, &val); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_OPT_DIGITAL_CTRL, (val | (3<<9))); } /* Enable CL37 BAM */ if (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_ENABLE_BAM_ON_KR_ENABLED) { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_BAM, &val); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_BAM, val | 1); ELINK_DEBUG_P0(sc, "Enable CL37 BAM on KR\n"); } if (params->loopback_mode == ELINK_LOOPBACK_EXT) { elink_807x_force_10G(sc, phy); ELINK_DEBUG_P0(sc, "Forced speed 10G on 807X\n"); return ELINK_STATUS_OK; } else { elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_BCM_CTRL, 0x0002); } if (phy->req_line_speed != ELINK_SPEED_AUTO_NEG) { if (phy->req_line_speed == ELINK_SPEED_10000) { val = (1<<7); } else if (phy->req_line_speed == ELINK_SPEED_2500) { val = (1<<5); /* Note that 2.5G works only when used with 1G * advertisement */ } else val = (1<<5); } else { val = 0; if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) val |= (1<<7); /* Note that 2.5G works only when used with 1G advertisement */ if (phy->speed_cap_mask & (PORT_HW_CFG_SPEED_CAPABILITY_D0_1G | PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) val |= (1<<5); ELINK_DEBUG_P1(sc, "807x autoneg val = 0x%x\n", val); } elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV, val); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_2_5G, &tmp1); if (((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G) && (phy->req_line_speed == ELINK_SPEED_AUTO_NEG)) || (phy->req_line_speed == ELINK_SPEED_2500)) { uint16_t phy_ver; /* Allow 2.5G for A1 and above */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_CHIP_REV, &phy_ver); ELINK_DEBUG_P0(sc, "Add 2.5G\n"); if (phy_ver > 0) tmp1 |= 1; else tmp1 &= 0xfffe; } else { ELINK_DEBUG_P0(sc, "Disable 2.5G\n"); tmp1 &= 0xfffe; } elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8073_2_5G, tmp1); /* Add support for CL37 (passive mode) II */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, &tmp1); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, (tmp1 | ((phy->req_duplex == DUPLEX_FULL) ? 0x20 : 0x40))); /* Add support for CL37 (passive mode) III */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000); /* The SNR will improve about 2db by changing BW and FEE main * tap. Rest commands are executed after link is up * Change FFE main cursor to 5 in EDC register */ if (elink_8073_is_snr_needed(sc, phy)) elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_EDC_FFE_MAIN, 0xFB0C); /* Enable FEC (Forware Error Correction) Request in the AN */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV2, &tmp1); tmp1 |= (1<<15); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV2, tmp1); elink_ext_phy_set_pause(params, phy, vars); /* Restart autoneg */ DELAY(1000 * 500); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200); ELINK_DEBUG_P2(sc, "807x Autoneg Restart: Advertise 1G=%x, 10G=%x\n", ((val & (1<<5)) > 0), ((val & (1<<7)) > 0)); return ELINK_STATUS_OK; } static uint8_t elink_8073_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t link_up = 0; uint16_t val1, val2; uint16_t link_status = 0; uint16_t an1000_status = 0; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1); ELINK_DEBUG_P1(sc, "8703 LASI status 0x%x\n", val1); /* Clear the interrupt LASI status register */ elink_cl45_read(sc, phy, MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val2); elink_cl45_read(sc, phy, MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val1); ELINK_DEBUG_P2(sc, "807x PCS status 0x%x->0x%x\n", val2, val1); /* Clear MSG-OUT */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &val1); /* Check the LASI */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &val2); ELINK_DEBUG_P1(sc, "KR 0x9003 0x%x\n", val2); /* Check the link status */ elink_cl45_read(sc, phy, MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &val2); ELINK_DEBUG_P1(sc, "KR PCS status 0x%x\n", val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1); link_up = ((val1 & 4) == 4); ELINK_DEBUG_P1(sc, "PMA_REG_STATUS=0x%x\n", val1); if (link_up && ((phy->req_line_speed != ELINK_SPEED_10000))) { if (elink_8073_xaui_wa(sc, phy) != 0) return 0; } elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &an1000_status); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &an1000_status); /* Check the link status on 1.1.2 */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1); ELINK_DEBUG_P3(sc, "KR PMA status 0x%x->0x%x," "an_link_status=0x%x\n", val2, val1, an1000_status); link_up = (((val1 & 4) == 4) || (an1000_status & (1<<1))); if (link_up && elink_8073_is_snr_needed(sc, phy)) { /* The SNR will improve about 2dbby changing the BW and FEE main * tap. The 1st write to change FFE main tap is set before * restart AN. Change PLL Bandwidth in EDC register */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PLL_BANDWIDTH, 0x26BC); /* Change CDR Bandwidth in EDC register */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CDR_BANDWIDTH, 0x0333); } elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_SPEED_LINK_STATUS, &link_status); /* Bits 0..2 --> speed detected, bits 13..15--> link is down */ if ((link_status & (1<<2)) && (!(link_status & (1<<15)))) { link_up = 1; vars->line_speed = ELINK_SPEED_10000; ELINK_DEBUG_P1(sc, "port %x: External link up in 10G\n", params->port); } else if ((link_status & (1<<1)) && (!(link_status & (1<<14)))) { link_up = 1; vars->line_speed = ELINK_SPEED_2500; ELINK_DEBUG_P1(sc, "port %x: External link up in 2.5G\n", params->port); } else if ((link_status & (1<<0)) && (!(link_status & (1<<13)))) { link_up = 1; vars->line_speed = ELINK_SPEED_1000; ELINK_DEBUG_P1(sc, "port %x: External link up in 1G\n", params->port); } else { link_up = 0; ELINK_DEBUG_P1(sc, "port %x: External link is down\n", params->port); } if (link_up) { /* Swap polarity if required */ if (params->lane_config & PORT_HW_CFG_SWAP_PHY_POLARITY_ENABLED) { /* Configure the 8073 to swap P and N of the KR lines */ elink_cl45_read(sc, phy, MDIO_XS_DEVAD, MDIO_XS_REG_8073_RX_CTRL_PCIE, &val1); /* Set bit 3 to invert Rx in 1G mode and clear this bit * when it`s in 10G mode. */ if (vars->line_speed == ELINK_SPEED_1000) { ELINK_DEBUG_P0(sc, "Swapping 1G polarity for" "the 8073\n"); val1 |= (1<<3); } else val1 &= ~(1<<3); elink_cl45_write(sc, phy, MDIO_XS_DEVAD, MDIO_XS_REG_8073_RX_CTRL_PCIE, val1); } elink_ext_phy_10G_an_resolve(sc, phy, vars); elink_8073_resolve_fc(phy, params, vars); vars->duplex = DUPLEX_FULL; } if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG2, &val1); if (val1 & (1<<5)) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE; if (val1 & (1<<7)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; } return link_up; } static void elink_8073_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t gpio_port; if (CHIP_IS_E2(sc)) gpio_port = SC_PATH(sc); else gpio_port = params->port; ELINK_DEBUG_P1(sc, "Setting 8073 port %d into low power mode\n", gpio_port); elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_LOW, gpio_port); } /******************************************************************/ /* BCM8705 PHY SECTION */ /******************************************************************/ static elink_status_t elink_8705_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "init 8705\n"); /* Restore normal power mode*/ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port); /* HW reset */ elink_ext_phy_hw_reset(sc, params->port); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0xa040); elink_wait_reset_complete(sc, phy, params); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL, 0x8288); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, 0x7fbf); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CMU_PLL_BYPASS, 0x0100); elink_cl45_write(sc, phy, MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_CNTL, 0x1); /* BCM8705 doesn't have microcode, hence the 0 */ elink_save_spirom_version(sc, params->port, params->shmem_base, 0); return ELINK_STATUS_OK; } static uint8_t elink_8705_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint8_t link_up = 0; uint16_t val1, rx_sd; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "read status 8705\n"); elink_cl45_read(sc, phy, MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_STATUS, &val1); ELINK_DEBUG_P1(sc, "8705 LASI status 0x%x\n", val1); elink_cl45_read(sc, phy, MDIO_WIS_DEVAD, MDIO_WIS_REG_LASI_STATUS, &val1); ELINK_DEBUG_P1(sc, "8705 LASI status 0x%x\n", val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_RX_SD, &rx_sd); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xc809, &val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xc809, &val1); ELINK_DEBUG_P1(sc, "8705 1.c809 val=0x%x\n", val1); link_up = ((rx_sd & 0x1) && (val1 & (1<<9)) && ((val1 & (1<<8)) == 0)); if (link_up) { vars->line_speed = ELINK_SPEED_10000; elink_ext_phy_resolve_fc(phy, params, vars); } return link_up; } /******************************************************************/ /* SFP+ module Section */ /******************************************************************/ static void elink_set_disable_pmd_transmit(struct elink_params *params, struct elink_phy *phy, uint8_t pmd_dis) { struct bxe_softc *sc = params->sc; /* Disable transmitter only for bootcodes which can enable it afterwards * (for D3 link) */ if (pmd_dis) { if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED) { ELINK_DEBUG_P0(sc, "Disabling PMD transmitter\n"); } else { ELINK_DEBUG_P0(sc, "NOT disabling PMD transmitter\n"); return; } } else ELINK_DEBUG_P0(sc, "Enabling PMD transmitter\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_DISABLE, pmd_dis); } static uint8_t elink_get_gpio_port(struct elink_params *params) { uint8_t gpio_port; uint32_t swap_val, swap_override; struct bxe_softc *sc = params->sc; if (CHIP_IS_E2(sc)) gpio_port = SC_PATH(sc); else gpio_port = params->port; swap_val = REG_RD(sc, NIG_REG_PORT_SWAP); swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE); return gpio_port ^ (swap_val && swap_override); } static void elink_sfp_e1e2_set_transmitter(struct elink_params *params, struct elink_phy *phy, uint8_t tx_en) { uint16_t val; uint8_t port = params->port; struct bxe_softc *sc = params->sc; uint32_t tx_en_mode; /* Disable/Enable transmitter ( TX laser of the SFP+ module.)*/ tx_en_mode = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].sfp_ctrl)) & PORT_HW_CFG_TX_LASER_MASK; ELINK_DEBUG_P3(sc, "Setting transmitter tx_en=%x for port %x " "mode = %x\n", tx_en, port, tx_en_mode); switch (tx_en_mode) { case PORT_HW_CFG_TX_LASER_MDIO: elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &val); if (tx_en) val &= ~(1<<15); else val |= (1<<15); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, val); break; case PORT_HW_CFG_TX_LASER_GPIO0: case PORT_HW_CFG_TX_LASER_GPIO1: case PORT_HW_CFG_TX_LASER_GPIO2: case PORT_HW_CFG_TX_LASER_GPIO3: { uint16_t gpio_pin; uint8_t gpio_port, gpio_mode; if (tx_en) gpio_mode = MISC_REGISTERS_GPIO_OUTPUT_HIGH; else gpio_mode = MISC_REGISTERS_GPIO_OUTPUT_LOW; gpio_pin = tx_en_mode - PORT_HW_CFG_TX_LASER_GPIO0; gpio_port = elink_get_gpio_port(params); elink_cb_gpio_write(sc, gpio_pin, gpio_mode, gpio_port); break; } default: ELINK_DEBUG_P1(sc, "Invalid TX_LASER_MDIO 0x%x\n", tx_en_mode); break; } } static void elink_sfp_set_transmitter(struct elink_params *params, struct elink_phy *phy, uint8_t tx_en) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P1(sc, "Setting SFP+ transmitter to %d\n", tx_en); if (CHIP_IS_E3(sc)) elink_sfp_e3_set_transmitter(params, phy, tx_en); else elink_sfp_e1e2_set_transmitter(params, phy, tx_en); } static elink_status_t elink_8726_read_sfp_module_eeprom(struct elink_phy *phy, struct elink_params *params, uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt, uint8_t *o_buf, uint8_t is_init) { struct bxe_softc *sc = params->sc; uint16_t val = 0; uint16_t i; if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) { ELINK_DEBUG_P0(sc, "Reading from eeprom is limited to 0xf\n"); return ELINK_STATUS_ERROR; } /* Set the read command byte count */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT, (byte_cnt | (dev_addr << 8))); /* Set the read command address */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR, addr); /* Activate read command */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, 0x2c0f); /* Wait up to 500us for command complete status */ for (i = 0; i < 100; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val); if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) == MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) break; DELAY(5); } if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) != MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) { ELINK_DEBUG_P1(sc, "Got bad status 0x%x when reading from SFP+ EEPROM\n", (val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK)); return ELINK_STATUS_ERROR; } /* Read the buffer */ for (i = 0; i < byte_cnt; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8726_TWO_WIRE_DATA_BUF + i, &val); o_buf[i] = (uint8_t)(val & MDIO_PMA_REG_8726_TWO_WIRE_DATA_MASK); } for (i = 0; i < 100; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val); if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) == MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE) return ELINK_STATUS_OK; DELAY(1000 * 1); } return ELINK_STATUS_ERROR; } static void elink_warpcore_power_module(struct elink_params *params, uint8_t power) { uint32_t pin_cfg; struct bxe_softc *sc = params->sc; pin_cfg = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].e3_sfp_ctrl)) & PORT_HW_CFG_E3_PWR_DIS_MASK) >> PORT_HW_CFG_E3_PWR_DIS_SHIFT; if (pin_cfg == PIN_CFG_NA) return; ELINK_DEBUG_P2(sc, "Setting SFP+ module power to %d using pin cfg %d\n", power, pin_cfg); /* Low ==> corresponding SFP+ module is powered * high ==> the SFP+ module is powered down */ elink_set_cfg_pin(sc, pin_cfg, power ^ 1); } static elink_status_t elink_warpcore_read_sfp_module_eeprom(struct elink_phy *phy, struct elink_params *params, uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt, uint8_t *o_buf, uint8_t is_init) { elink_status_t rc = ELINK_STATUS_OK; uint8_t i, j = 0, cnt = 0; uint32_t data_array[4]; uint16_t addr32; struct bxe_softc *sc = params->sc; if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) { ELINK_DEBUG_P0(sc, "Reading from eeprom is limited to 16 bytes\n"); return ELINK_STATUS_ERROR; } /* 4 byte aligned address */ addr32 = addr & (~0x3); do { if ((!is_init) && (cnt == I2C_WA_PWR_ITER)) { elink_warpcore_power_module(params, 0); /* Note that 100us are not enough here */ DELAY(1000 * 1); elink_warpcore_power_module(params, 1); } elink_bsc_module_sel(params); rc = elink_bsc_read(sc, dev_addr, addr32, 0, byte_cnt, data_array); } while ((rc != ELINK_STATUS_OK) && (++cnt < I2C_WA_RETRY_CNT)); if (rc == ELINK_STATUS_OK) { for (i = (addr - addr32); i < byte_cnt + (addr - addr32); i++) { o_buf[j] = *((uint8_t *)data_array + i); j++; } } return rc; } static elink_status_t elink_8727_read_sfp_module_eeprom(struct elink_phy *phy, struct elink_params *params, uint8_t dev_addr, uint16_t addr, uint8_t byte_cnt, uint8_t *o_buf, uint8_t is_init) { struct bxe_softc *sc = params->sc; uint16_t val, i; if (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) { ELINK_DEBUG_P0(sc, "Reading from eeprom is limited to 0xf\n"); return ELINK_STATUS_ERROR; } /* Set 2-wire transfer rate of SFP+ module EEPROM * to 100Khz since some DACs(direct attached cables) do * not work at 400Khz. */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TWO_WIRE_SLAVE_ADDR, ((dev_addr << 8) | 1)); /* Need to read from 1.8000 to clear it */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val); /* Set the read command byte count */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT, ((byte_cnt < 2) ? 2 : byte_cnt)); /* Set the read command address */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR, addr); /* Set the destination address */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0x8004, MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF); /* Activate read command */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, 0x8002); /* Wait appropriate time for two-wire command to finish before * polling the status register */ DELAY(1000 * 1); /* Wait up to 500us for command complete status */ for (i = 0; i < 100; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val); if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) == MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) break; DELAY(5); } if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) != MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) { ELINK_DEBUG_P1(sc, "Got bad status 0x%x when reading from SFP+ EEPROM\n", (val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK)); return ELINK_STATUS_TIMEOUT; } /* Read the buffer */ for (i = 0; i < byte_cnt; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF + i, &val); o_buf[i] = (uint8_t)(val & MDIO_PMA_REG_8727_TWO_WIRE_DATA_MASK); } for (i = 0; i < 100; i++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val); if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) == MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE) return ELINK_STATUS_OK; DELAY(1000 * 1); } return ELINK_STATUS_ERROR; } elink_status_t elink_read_sfp_module_eeprom(struct elink_phy *phy, struct elink_params *params, uint8_t dev_addr, uint16_t addr, uint16_t byte_cnt, uint8_t *o_buf) { elink_status_t rc = 0; struct bxe_softc *sc = params->sc; uint8_t xfer_size; uint8_t *user_data = o_buf; read_sfp_module_eeprom_func_p read_func; if ((dev_addr != 0xa0) && (dev_addr != 0xa2)) { ELINK_DEBUG_P1(sc, "invalid dev_addr 0x%x\n", dev_addr); return ELINK_STATUS_ERROR; } switch (phy->type) { case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726: read_func = elink_8726_read_sfp_module_eeprom; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722: read_func = elink_8727_read_sfp_module_eeprom; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT: read_func = elink_warpcore_read_sfp_module_eeprom; break; default: return ELINK_OP_NOT_SUPPORTED; } while (!rc && (byte_cnt > 0)) { xfer_size = (byte_cnt > ELINK_SFP_EEPROM_PAGE_SIZE) ? ELINK_SFP_EEPROM_PAGE_SIZE : byte_cnt; rc = read_func(phy, params, dev_addr, addr, xfer_size, user_data, 0); byte_cnt -= xfer_size; user_data += xfer_size; addr += xfer_size; } return rc; } static elink_status_t elink_get_edc_mode(struct elink_phy *phy, struct elink_params *params, uint16_t *edc_mode) { struct bxe_softc *sc = params->sc; uint32_t sync_offset = 0, phy_idx, media_types; uint8_t val[ELINK_SFP_EEPROM_FC_TX_TECH_ADDR + 1], check_limiting_mode = 0; *edc_mode = ELINK_EDC_MODE_LIMITING; phy->media_type = ELINK_ETH_PHY_UNSPECIFIED; /* First check for copper cable */ if (elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, 0, ELINK_SFP_EEPROM_FC_TX_TECH_ADDR + 1, (uint8_t *)val) != 0) { ELINK_DEBUG_P0(sc, "Failed to read from SFP+ module EEPROM\n"); return ELINK_STATUS_ERROR; } params->link_attr_sync &= ~LINK_SFP_EEPROM_COMP_CODE_MASK; params->link_attr_sync |= val[ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR] << LINK_SFP_EEPROM_COMP_CODE_SHIFT; elink_update_link_attr(params, params->link_attr_sync); switch (val[ELINK_SFP_EEPROM_CON_TYPE_ADDR]) { case ELINK_SFP_EEPROM_CON_TYPE_VAL_COPPER: { uint8_t copper_module_type; phy->media_type = ELINK_ETH_PHY_DA_TWINAX; /* Check if its active cable (includes SFP+ module) * of passive cable */ copper_module_type = val[ELINK_SFP_EEPROM_FC_TX_TECH_ADDR]; if (copper_module_type & ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE) { ELINK_DEBUG_P0(sc, "Active Copper cable detected\n"); if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) *edc_mode = ELINK_EDC_MODE_ACTIVE_DAC; else check_limiting_mode = 1; } else { *edc_mode = ELINK_EDC_MODE_PASSIVE_DAC; /* Even in case PASSIVE_DAC indication is not set, * treat it as a passive DAC cable, since some cables * don't have this indication. */ if (copper_module_type & ELINK_SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE) { ELINK_DEBUG_P0(sc, "Passive Copper cable detected\n"); } else { ELINK_DEBUG_P0(sc, "Unknown copper-cable-type\n"); } } break; } case ELINK_SFP_EEPROM_CON_TYPE_VAL_UNKNOWN: case ELINK_SFP_EEPROM_CON_TYPE_VAL_LC: case ELINK_SFP_EEPROM_CON_TYPE_VAL_RJ45: check_limiting_mode = 1; /* Module is considered as 1G in case it's NOT compliant with * any 10G ethernet protocol, but is 1G Ethernet compliant. */ if (((val[ELINK_SFP_EEPROM_10G_COMP_CODE_ADDR] & (ELINK_SFP_EEPROM_10G_COMP_CODE_SR_MASK | ELINK_SFP_EEPROM_10G_COMP_CODE_LR_MASK | ELINK_SFP_EEPROM_10G_COMP_CODE_LRM_MASK)) == 0) && (val[ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR] != 0)) { ELINK_DEBUG_P0(sc, "1G SFP module detected\n"); phy->media_type = ELINK_ETH_PHY_SFP_1G_FIBER; if (phy->req_line_speed != ELINK_SPEED_1000) { uint8_t gport = params->port; phy->req_line_speed = ELINK_SPEED_1000; if (!CHIP_IS_E1x(sc)) { gport = SC_PATH(sc) + (params->port << 1); } elink_cb_event_log(sc, ELINK_LOG_ID_NON_10G_MODULE, gport); //"Warning: Link speed was forced to 1000Mbps." // " Current SFP module in port %d is not" // " compliant with 10G Ethernet\n", } if (val[ELINK_SFP_EEPROM_1G_COMP_CODE_ADDR] & ELINK_SFP_EEPROM_1G_COMP_CODE_BASE_T) { /* Some 1G-baseT modules will not link up, * unless TX_EN is toggled with long delay in * between. */ elink_sfp_set_transmitter(params, phy, 0); DELAY(1000 * 40); elink_sfp_set_transmitter(params, phy, 1); } } else { int idx, cfg_idx = 0; ELINK_DEBUG_P0(sc, "10G Optic module detected\n"); for (idx = ELINK_INT_PHY; idx < ELINK_MAX_PHYS; idx++) { if (params->phy[idx].type == phy->type) { cfg_idx = ELINK_LINK_CONFIG_IDX(idx); break; } } phy->media_type = ELINK_ETH_PHY_SFPP_10G_FIBER; phy->req_line_speed = params->req_line_speed[cfg_idx]; } break; default: ELINK_DEBUG_P1(sc, "Unable to determine module type 0x%x !!!\n", val[ELINK_SFP_EEPROM_CON_TYPE_ADDR]); return ELINK_STATUS_ERROR; } sync_offset = params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].media_type); media_types = REG_RD(sc, sync_offset); /* Update media type for non-PMF sync */ for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) { if (&(params->phy[phy_idx]) == phy) { media_types &= ~(PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK << (PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * phy_idx)); media_types |= ((phy->media_type & PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) << (PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * phy_idx)); break; } } REG_WR(sc, sync_offset, media_types); if (check_limiting_mode) { uint8_t options[ELINK_SFP_EEPROM_OPTIONS_SIZE]; if (elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, ELINK_SFP_EEPROM_OPTIONS_ADDR, ELINK_SFP_EEPROM_OPTIONS_SIZE, options) != 0) { ELINK_DEBUG_P0(sc, "Failed to read Option field from module EEPROM\n"); return ELINK_STATUS_ERROR; } if ((options[0] & ELINK_SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK)) *edc_mode = ELINK_EDC_MODE_LINEAR; else *edc_mode = ELINK_EDC_MODE_LIMITING; } ELINK_DEBUG_P1(sc, "EDC mode is set to 0x%x\n", *edc_mode); return ELINK_STATUS_OK; } /* This function read the relevant field from the module (SFP+), and verify it * is compliant with this board */ static elink_status_t elink_verify_sfp_module(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint32_t val, cmd; uint32_t fw_resp, fw_cmd_param; char vendor_name[ELINK_SFP_EEPROM_VENDOR_NAME_SIZE+1]; char vendor_pn[ELINK_SFP_EEPROM_PART_NO_SIZE+1]; phy->flags &= ~ELINK_FLAGS_SFP_NOT_APPROVED; val = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port].config)); if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) == PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_NO_ENFORCEMENT) { ELINK_DEBUG_P0(sc, "NOT enforcing module verification\n"); return ELINK_STATUS_OK; } if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY) { /* Use specific phy request */ cmd = DRV_MSG_CODE_VRFY_SPECIFIC_PHY_OPT_MDL; } else if (params->feature_config_flags & ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY) { /* Use first phy request only in case of non-dual media*/ if (ELINK_DUAL_MEDIA(params)) { ELINK_DEBUG_P0(sc, "FW does not support OPT MDL verification\n"); return ELINK_STATUS_ERROR; } cmd = DRV_MSG_CODE_VRFY_FIRST_PHY_OPT_MDL; } else { /* No support in OPT MDL detection */ ELINK_DEBUG_P0(sc, "FW does not support OPT MDL verification\n"); return ELINK_STATUS_ERROR; } fw_cmd_param = ELINK_FW_PARAM_SET(phy->addr, phy->type, phy->mdio_ctrl); fw_resp = elink_cb_fw_command(sc, cmd, fw_cmd_param); if (fw_resp == FW_MSG_CODE_VRFY_OPT_MDL_SUCCESS) { ELINK_DEBUG_P0(sc, "Approved module\n"); return ELINK_STATUS_OK; } /* Format the warning message */ if (elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, ELINK_SFP_EEPROM_VENDOR_NAME_ADDR, ELINK_SFP_EEPROM_VENDOR_NAME_SIZE, (uint8_t *)vendor_name)) vendor_name[0] = '\0'; else vendor_name[ELINK_SFP_EEPROM_VENDOR_NAME_SIZE] = '\0'; if (elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, ELINK_SFP_EEPROM_PART_NO_ADDR, ELINK_SFP_EEPROM_PART_NO_SIZE, (uint8_t *)vendor_pn)) vendor_pn[0] = '\0'; else vendor_pn[ELINK_SFP_EEPROM_PART_NO_SIZE] = '\0'; elink_cb_event_log(sc, ELINK_LOG_ID_UNQUAL_IO_MODULE, params->port, vendor_name, vendor_pn); // "Warning: Unqualified SFP+ module detected," // " Port %d from %s part number %s\n", if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) != PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_WARNING_MSG) phy->flags |= ELINK_FLAGS_SFP_NOT_APPROVED; return ELINK_STATUS_ERROR; } static elink_status_t elink_wait_for_sfp_module_initialized(struct elink_phy *phy, struct elink_params *params) { uint8_t val; elink_status_t rc; struct bxe_softc *sc = params->sc; uint16_t timeout; /* Initialization time after hot-plug may take up to 300ms for * some phys type ( e.g. JDSU ) */ for (timeout = 0; timeout < 60; timeout++) { if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) rc = elink_warpcore_read_sfp_module_eeprom( phy, params, ELINK_I2C_DEV_ADDR_A0, 1, 1, &val, 1); else rc = elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, 1, 1, &val); if (rc == 0) { ELINK_DEBUG_P1(sc, "SFP+ module initialization took %d ms\n", timeout * 5); return ELINK_STATUS_OK; } DELAY(1000 * 5); } rc = elink_read_sfp_module_eeprom(phy, params, ELINK_I2C_DEV_ADDR_A0, 1, 1, &val); return rc; } static void elink_8727_power_module(struct bxe_softc *sc, struct elink_phy *phy, uint8_t is_power_up) { /* Make sure GPIOs are not using for LED mode */ uint16_t val; /* In the GPIO register, bit 4 is use to determine if the GPIOs are * operating as INPUT or as OUTPUT. Bit 1 is for input, and 0 for * output * Bits 0-1 determine the GPIOs value for OUTPUT in case bit 4 val is 0 * Bits 8-9 determine the GPIOs value for INPUT in case bit 4 val is 1 * where the 1st bit is the over-current(only input), and 2nd bit is * for power( only output ) * * In case of NOC feature is disabled and power is up, set GPIO control * as input to enable listening of over-current indication */ if (phy->flags & ELINK_FLAGS_NOC) return; if (is_power_up) val = (1<<4); else /* Set GPIO control to OUTPUT, and set the power bit * to according to the is_power_up */ val = (1<<1); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_GPIO_CTRL, val); } static elink_status_t elink_8726_set_limiting_mode(struct bxe_softc *sc, struct elink_phy *phy, uint16_t edc_mode) { uint16_t cur_limiting_mode; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, &cur_limiting_mode); ELINK_DEBUG_P1(sc, "Current Limiting mode is 0x%x\n", cur_limiting_mode); if (edc_mode == ELINK_EDC_MODE_LIMITING) { ELINK_DEBUG_P0(sc, "Setting LIMITING MODE\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, ELINK_EDC_MODE_LIMITING); } else { /* LRM mode ( default )*/ ELINK_DEBUG_P0(sc, "Setting LRM MODE\n"); /* Changing to LRM mode takes quite few seconds. So do it only * if current mode is limiting (default is LRM) */ if (cur_limiting_mode != ELINK_EDC_MODE_LIMITING) return ELINK_STATUS_OK; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_LRM_MODE, 0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, 0x128); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL0, 0x4008); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_LRM_MODE, 0xaaaa); } return ELINK_STATUS_OK; } static elink_status_t elink_8727_set_limiting_mode(struct bxe_softc *sc, struct elink_phy *phy, uint16_t edc_mode) { uint16_t phy_identifier; uint16_t rom_ver2_val; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &phy_identifier); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, (phy_identifier & ~(1<<9))); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, &rom_ver2_val); /* Keep the MSB 8-bits, and set the LSB 8-bits with the edc_mode */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER2, (rom_ver2_val & 0xff00) | (edc_mode & 0x00ff)); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, (phy_identifier | (1<<9))); return ELINK_STATUS_OK; } static void elink_8727_specific_func(struct elink_phy *phy, struct elink_params *params, uint32_t action) { struct bxe_softc *sc = params->sc; uint16_t val; switch (action) { case ELINK_DISABLE_TX: elink_sfp_set_transmitter(params, phy, 0); break; case ELINK_ENABLE_TX: if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED)) elink_sfp_set_transmitter(params, phy, 1); break; case ELINK_PHY_INIT: elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, (1<<2) | (1<<5)); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXCTRL, 0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x0006); /* Make MOD_ABS give interrupt on change */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_OPT_CTRL, &val); val |= (1<<12); if (phy->flags & ELINK_FLAGS_NOC) val |= (3<<5); /* Set 8727 GPIOs to input to allow reading from the 8727 GPIO0 * status which reflect SFP+ module over-current */ if (!(phy->flags & ELINK_FLAGS_NOC)) val &= 0xff8f; /* Reset bits 4-6 */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_OPT_CTRL, val); break; default: ELINK_DEBUG_P1(sc, "Function 0x%x not supported by 8727\n", action); return; } } static void elink_set_e1e2_module_fault_led(struct elink_params *params, uint8_t gpio_mode) { struct bxe_softc *sc = params->sc; uint32_t fault_led_gpio = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].sfp_ctrl)) & PORT_HW_CFG_FAULT_MODULE_LED_MASK; switch (fault_led_gpio) { case PORT_HW_CFG_FAULT_MODULE_LED_DISABLED: return; case PORT_HW_CFG_FAULT_MODULE_LED_GPIO0: case PORT_HW_CFG_FAULT_MODULE_LED_GPIO1: case PORT_HW_CFG_FAULT_MODULE_LED_GPIO2: case PORT_HW_CFG_FAULT_MODULE_LED_GPIO3: { uint8_t gpio_port = elink_get_gpio_port(params); uint16_t gpio_pin = fault_led_gpio - PORT_HW_CFG_FAULT_MODULE_LED_GPIO0; ELINK_DEBUG_P3(sc, "Set fault module-detected led " "pin %x port %x mode %x\n", gpio_pin, gpio_port, gpio_mode); elink_cb_gpio_write(sc, gpio_pin, gpio_mode, gpio_port); } break; default: ELINK_DEBUG_P1(sc, "Error: Invalid fault led mode 0x%x\n", fault_led_gpio); } } static void elink_set_e3_module_fault_led(struct elink_params *params, uint8_t gpio_mode) { uint32_t pin_cfg; uint8_t port = params->port; struct bxe_softc *sc = params->sc; pin_cfg = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_sfp_ctrl)) & PORT_HW_CFG_E3_FAULT_MDL_LED_MASK) >> PORT_HW_CFG_E3_FAULT_MDL_LED_SHIFT; ELINK_DEBUG_P2(sc, "Setting Fault LED to %d using pin cfg %d\n", gpio_mode, pin_cfg); elink_set_cfg_pin(sc, pin_cfg, gpio_mode); } static void elink_set_sfp_module_fault_led(struct elink_params *params, uint8_t gpio_mode) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P1(sc, "Setting SFP+ module fault LED to %d\n", gpio_mode); if (CHIP_IS_E3(sc)) { /* Low ==> if SFP+ module is supported otherwise * High ==> if SFP+ module is not on the approved vendor list */ elink_set_e3_module_fault_led(params, gpio_mode); } else elink_set_e1e2_module_fault_led(params, gpio_mode); } static void elink_warpcore_hw_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; elink_warpcore_power_module(params, 0); /* Put Warpcore in low power mode */ REG_WR(sc, MISC_REG_WC0_RESET, 0x0c0e); /* Put LCPLL in low power mode */ REG_WR(sc, MISC_REG_LCPLL_E40_PWRDWN, 1); REG_WR(sc, MISC_REG_LCPLL_E40_RESETB_ANA, 0); REG_WR(sc, MISC_REG_LCPLL_E40_RESETB_DIG, 0); } static void elink_power_sfp_module(struct elink_params *params, struct elink_phy *phy, uint8_t power) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P1(sc, "Setting SFP+ power to %x\n", power); switch (phy->type) { case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722: elink_8727_power_module(params->sc, phy, power); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT: elink_warpcore_power_module(params, power); break; default: break; } } static void elink_warpcore_set_limiting_mode(struct elink_params *params, struct elink_phy *phy, uint16_t edc_mode) { uint16_t val = 0; uint16_t mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT; struct bxe_softc *sc = params->sc; uint8_t lane = elink_get_warpcore_lane(phy, params); /* This is a global register which controls all lanes */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, &val); val &= ~(0xf << (lane << 2)); switch (edc_mode) { case ELINK_EDC_MODE_LINEAR: case ELINK_EDC_MODE_LIMITING: mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_DEFAULT; break; case ELINK_EDC_MODE_PASSIVE_DAC: case ELINK_EDC_MODE_ACTIVE_DAC: mode = MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE_SFP_DAC; break; default: break; } val |= (mode << (lane << 2)); elink_cl45_write(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, val); /* A must read */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_UC_INFO_B1_FIRMWARE_MODE, &val); /* Restart microcode to re-read the new mode */ elink_warpcore_reset_lane(sc, phy, 1); elink_warpcore_reset_lane(sc, phy, 0); } static void elink_set_limiting_mode(struct elink_params *params, struct elink_phy *phy, uint16_t edc_mode) { switch (phy->type) { case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726: elink_8726_set_limiting_mode(params->sc, phy, edc_mode); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722: elink_8727_set_limiting_mode(params->sc, phy, edc_mode); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT: elink_warpcore_set_limiting_mode(params, phy, edc_mode); break; } } elink_status_t elink_sfp_module_detection(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t edc_mode; elink_status_t rc = ELINK_STATUS_OK; uint32_t val = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port].config)); /* Enabled transmitter by default */ elink_sfp_set_transmitter(params, phy, 1); ELINK_DEBUG_P1(sc, "SFP+ module plugged in/out detected on port %d\n", params->port); /* Power up module */ elink_power_sfp_module(params, phy, 1); if (elink_get_edc_mode(phy, params, &edc_mode) != 0) { ELINK_DEBUG_P0(sc, "Failed to get valid module type\n"); return ELINK_STATUS_ERROR; } else if (elink_verify_sfp_module(phy, params) != 0) { /* Check SFP+ module compatibility */ ELINK_DEBUG_P0(sc, "Module verification failed!!\n"); rc = ELINK_STATUS_ERROR; /* Turn on fault module-detected led */ elink_set_sfp_module_fault_led(params, MISC_REGISTERS_GPIO_HIGH); /* Check if need to power down the SFP+ module */ if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) == PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_POWER_DOWN) { ELINK_DEBUG_P0(sc, "Shutdown SFP+ module!!\n"); elink_power_sfp_module(params, phy, 0); return rc; } } else { /* Turn off fault module-detected led */ elink_set_sfp_module_fault_led(params, MISC_REGISTERS_GPIO_LOW); } /* Check and set limiting mode / LRM mode on 8726. On 8727 it * is done automatically */ elink_set_limiting_mode(params, phy, edc_mode); /* Disable transmit for this module if the module is not approved, and * laser needs to be disabled. */ if ((rc != 0) && ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) == PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_DISABLE_TX_LASER)) elink_sfp_set_transmitter(params, phy, 0); return rc; } void elink_handle_module_detect_int(struct elink_params *params) { struct bxe_softc *sc = params->sc; struct elink_phy *phy; uint32_t gpio_val; uint8_t gpio_num, gpio_port; if (CHIP_IS_E3(sc)) { phy = ¶ms->phy[ELINK_INT_PHY]; /* Always enable TX laser,will be disabled in case of fault */ elink_sfp_set_transmitter(params, phy, 1); } else { phy = ¶ms->phy[ELINK_EXT_PHY1]; } if (elink_get_mod_abs_int_cfg(sc, params->chip_id, params->shmem_base, params->port, &gpio_num, &gpio_port) == ELINK_STATUS_ERROR) { ELINK_DEBUG_P0(sc, "Failed to get MOD_ABS interrupt config\n"); return; } /* Set valid module led off */ elink_set_sfp_module_fault_led(params, MISC_REGISTERS_GPIO_HIGH); /* Get current gpio val reflecting module plugged in / out*/ gpio_val = elink_cb_gpio_read(sc, gpio_num, gpio_port); /* Call the handling function in case module is detected */ if (gpio_val == 0) { elink_set_mdio_emac_per_phy(sc, params); elink_set_aer_mmd(params, phy); elink_power_sfp_module(params, phy, 1); elink_cb_gpio_int_write(sc, gpio_num, MISC_REGISTERS_GPIO_INT_OUTPUT_CLR, gpio_port); if (elink_wait_for_sfp_module_initialized(phy, params) == 0) { elink_sfp_module_detection(phy, params); if (CHIP_IS_E3(sc)) { uint16_t rx_tx_in_reset; /* In case WC is out of reset, reconfigure the * link speed while taking into account 1G * module limitation. */ elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_DIGITAL5_MISC6, &rx_tx_in_reset); if ((!rx_tx_in_reset) && (params->link_flags & ELINK_PHY_INITIALIZED)) { elink_warpcore_reset_lane(sc, phy, 1); elink_warpcore_config_sfi(phy, params); elink_warpcore_reset_lane(sc, phy, 0); } } } else { ELINK_DEBUG_P0(sc, "SFP+ module is not initialized\n"); } } else { elink_cb_gpio_int_write(sc, gpio_num, MISC_REGISTERS_GPIO_INT_OUTPUT_SET, gpio_port); /* Module was plugged out. * Disable transmit for this module */ phy->media_type = ELINK_ETH_PHY_NOT_PRESENT; } } /******************************************************************/ /* Used by 8706 and 8727 */ /******************************************************************/ static void elink_sfp_mask_fault(struct bxe_softc *sc, struct elink_phy *phy, uint16_t alarm_status_offset, uint16_t alarm_ctrl_offset) { uint16_t alarm_status, val; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, alarm_status_offset, &alarm_status); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, alarm_status_offset, &alarm_status); /* Mask or enable the fault event. */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, alarm_ctrl_offset, &val); if (alarm_status & (1<<0)) val &= ~(1<<0); else val |= (1<<0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, alarm_ctrl_offset, val); } /******************************************************************/ /* common BCM8706/BCM8726 PHY SECTION */ /******************************************************************/ static uint8_t elink_8706_8726_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint8_t link_up = 0; uint16_t val1, val2, rx_sd, pcs_status; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "XGXS 8706/8726\n"); /* Clear RX Alarm*/ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &val2); elink_sfp_mask_fault(sc, phy, MDIO_PMA_LASI_TXSTAT, MDIO_PMA_LASI_TXCTRL); /* Clear LASI indication*/ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val2); ELINK_DEBUG_P2(sc, "8706/8726 LASI status 0x%x--> 0x%x\n", val1, val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_RX_SD, &rx_sd); elink_cl45_read(sc, phy, MDIO_PCS_DEVAD, MDIO_PCS_REG_STATUS, &pcs_status); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &val2); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LINK_STATUS, &val2); ELINK_DEBUG_P3(sc, "8706/8726 rx_sd 0x%x pcs_status 0x%x 1Gbps" " link_status 0x%x\n", rx_sd, pcs_status, val2); /* Link is up if both bit 0 of pmd_rx_sd and bit 0 of pcs_status * are set, or if the autoneg bit 1 is set */ link_up = ((rx_sd & pcs_status & 0x1) || (val2 & (1<<1))); if (link_up) { if (val2 & (1<<1)) vars->line_speed = ELINK_SPEED_1000; else vars->line_speed = ELINK_SPEED_10000; elink_ext_phy_resolve_fc(phy, params, vars); vars->duplex = DUPLEX_FULL; } /* Capture 10G link fault. Read twice to clear stale value. */ if (vars->line_speed == ELINK_SPEED_10000) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXSTAT, &val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXSTAT, &val1); if (val1 & (1<<0)) vars->fault_detected = 1; } return link_up; } /******************************************************************/ /* BCM8706 PHY SECTION */ /******************************************************************/ static uint8_t elink_8706_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint32_t tx_en_mode; uint16_t cnt, val, tmp1; struct bxe_softc *sc = params->sc; elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port); /* HW reset */ elink_ext_phy_hw_reset(sc, params->port); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0xa040); elink_wait_reset_complete(sc, phy, params); /* Wait until fw is loaded */ for (cnt = 0; cnt < 100; cnt++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_ROM_VER1, &val); if (val) break; DELAY(1000 * 10); } ELINK_DEBUG_P1(sc, "XGXS 8706 is initialized after %d ms\n", cnt); if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) { uint8_t i; uint16_t reg; for (i = 0; i < 4; i++) { reg = MDIO_XS_8706_REG_BANK_RX0 + i*(MDIO_XS_8706_REG_BANK_RX1 - MDIO_XS_8706_REG_BANK_RX0); elink_cl45_read(sc, phy, MDIO_XS_DEVAD, reg, &val); /* Clear first 3 bits of the control */ val &= ~0x7; /* Set control bits according to configuration */ val |= (phy->rx_preemphasis[i] & 0x7); ELINK_DEBUG_P2(sc, "Setting RX Equalizer to BCM8706" " reg 0x%x <-- val 0x%x\n", reg, val); elink_cl45_write(sc, phy, MDIO_XS_DEVAD, reg, val); } } /* Force speed */ if (phy->req_line_speed == ELINK_SPEED_10000) { ELINK_DEBUG_P0(sc, "XGXS 8706 force 10Gbps\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_DIGITAL_CTRL, 0x400); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXCTRL, 0); /* Arm LASI for link and Tx fault. */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 3); } else { /* Force 1Gbps using autoneg with 1G advertisement */ /* Allow CL37 through CL73 */ ELINK_DEBUG_P0(sc, "XGXS 8706 AutoNeg\n"); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_CL73, 0x040c); /* Enable Full-Duplex advertisement on CL37 */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LP, 0x0020); /* Enable CL37 AN */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000); /* 1G support */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV, (1<<5)); /* Enable clause 73 AN */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, 0x0400); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x0004); } elink_save_bcm_spirom_ver(sc, phy, params->port); /* If TX Laser is controlled by GPIO_0, do not let PHY go into low * power mode, if TX Laser is disabled */ tx_en_mode = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].sfp_ctrl)) & PORT_HW_CFG_TX_LASER_MASK; if (tx_en_mode == PORT_HW_CFG_TX_LASER_GPIO0) { ELINK_DEBUG_P0(sc, "Enabling TXONOFF_PWRDN_DIS\n"); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_DIGITAL_CTRL, &tmp1); tmp1 |= 0x1; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_DIGITAL_CTRL, tmp1); } return ELINK_STATUS_OK; } static elink_status_t elink_8706_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { return elink_8706_8726_read_status(phy, params, vars); } /******************************************************************/ /* BCM8726 PHY SECTION */ /******************************************************************/ static void elink_8726_config_loopback(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "PMA/PMD ext_phy_loopback: 8726\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x0001); } static void elink_8726_external_rom_boot(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; /* Need to wait 100ms after reset */ DELAY(1000 * 100); /* Micro controller re-boot */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x018B); /* Set soft reset */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL1, 0x0001); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP); /* Wait for 150ms for microcode load */ DELAY(1000 * 150); /* Disable serial boot control, tristates pins SS_N, SCK, MOSI, MISO */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_MISC_CTRL1, 0x0000); DELAY(1000 * 200); elink_save_bcm_spirom_ver(sc, phy, params->port); } static uint8_t elink_8726_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t val1; uint8_t link_up = elink_8706_8726_read_status(phy, params, vars); if (link_up) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &val1); if (val1 & (1<<15)) { ELINK_DEBUG_P0(sc, "Tx is disabled\n"); link_up = 0; vars->line_speed = 0; } } return link_up; } static elink_status_t elink_8726_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "Initializing BCM8726\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15); elink_wait_reset_complete(sc, phy, params); elink_8726_external_rom_boot(phy, params); /* Need to call module detected on initialization since the module * detection triggered by actual module insertion might occur before * driver is loaded, and when driver is loaded, it reset all * registers, including the transmitter */ elink_sfp_module_detection(phy, params); if (phy->req_line_speed == ELINK_SPEED_1000) { ELINK_DEBUG_P0(sc, "Setting 1G force\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x40); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0xD); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x5); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, 0x400); } else if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G) && ((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) != PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { ELINK_DEBUG_P0(sc, "Setting 1G clause37\n"); /* Set Flow control */ elink_ext_phy_set_pause(params, phy, vars); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_ADV, 0x20); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_CL73, 0x040c); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LD, 0x0020); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1000); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x1200); /* Enable RX-ALARM control to receive interrupt for 1G speed * change */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x4); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, 0x400); } else { /* Default 10G. Set only LASI control */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 1); } /* Set TX PreEmphasis if needed */ if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) { ELINK_DEBUG_P2(sc, "Setting TX_CTRL1 0x%x, TX_CTRL2 0x%x\n", phy->tx_preemphasis[0], phy->tx_preemphasis[1]); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8726_TX_CTRL1, phy->tx_preemphasis[0]); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8726_TX_CTRL2, phy->tx_preemphasis[1]); } return ELINK_STATUS_OK; } static void elink_8726_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P1(sc, "elink_8726_link_reset port %d\n", params->port); /* Set serial boot control for external load */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_GEN_CTRL, 0x0001); } /******************************************************************/ /* BCM8727 PHY SECTION */ /******************************************************************/ static void elink_8727_set_link_led(struct elink_phy *phy, struct elink_params *params, uint8_t mode) { struct bxe_softc *sc = params->sc; uint16_t led_mode_bitmask = 0; uint16_t gpio_pins_bitmask = 0; uint16_t val; /* Only NOC flavor requires to set the LED specifically */ if (!(phy->flags & ELINK_FLAGS_NOC)) return; switch (mode) { case ELINK_LED_MODE_FRONT_PANEL_OFF: case ELINK_LED_MODE_OFF: led_mode_bitmask = 0; gpio_pins_bitmask = 0x03; break; case ELINK_LED_MODE_ON: led_mode_bitmask = 0; gpio_pins_bitmask = 0x02; break; case ELINK_LED_MODE_OPER: led_mode_bitmask = 0x60; gpio_pins_bitmask = 0x11; break; } elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_OPT_CTRL, &val); val &= 0xff8f; val |= led_mode_bitmask; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_OPT_CTRL, val); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_GPIO_CTRL, &val); val &= 0xffe0; val |= gpio_pins_bitmask; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_GPIO_CTRL, val); } static void elink_8727_hw_reset(struct elink_phy *phy, struct elink_params *params) { uint32_t swap_val, swap_override; uint8_t port; /* The PHY reset is controlled by GPIO 1. Fake the port number * to cancel the swap done in set_gpio() */ struct bxe_softc *sc = params->sc; swap_val = REG_RD(sc, NIG_REG_PORT_SWAP); swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE); port = (swap_val && swap_override) ^ 1; elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, port); } static void elink_8727_config_speed(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t tmp1, val; /* Set option 1G speed */ if ((phy->req_line_speed == ELINK_SPEED_1000) || (phy->media_type == ELINK_ETH_PHY_SFP_1G_FIBER)) { ELINK_DEBUG_P0(sc, "Setting 1G force\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x40); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0xD); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, &tmp1); ELINK_DEBUG_P1(sc, "1.7 = 0x%x\n", tmp1); /* Power down the XAUI until link is up in case of dual-media * and 1G */ if (ELINK_DUAL_MEDIA(params)) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_GP, &val); val |= (3<<10); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_GP, val); } } else if ((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && ((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) && ((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) != PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { ELINK_DEBUG_P0(sc, "Setting 1G clause37\n"); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8727_MISC_CTRL, 0); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x1300); } else { /* Since the 8727 has only single reset pin, need to set the 10G * registers although it is default */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8727_MISC_CTRL, 0x0020); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_AN, 0x0100); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x2040); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_10G_CTRL2, 0x0008); } } static elink_status_t elink_8727_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint32_t tx_en_mode; uint16_t tmp1, mod_abs, tmp2; struct bxe_softc *sc = params->sc; /* Enable PMD link, MOD_ABS_FLT, and 1G link alarm */ elink_wait_reset_complete(sc, phy, params); ELINK_DEBUG_P0(sc, "Initializing BCM8727\n"); elink_8727_specific_func(phy, params, ELINK_PHY_INIT); /* Initially configure MOD_ABS to interrupt when module is * presence( bit 8) */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &mod_abs); /* Set EDC off by setting OPTXLOS signal input to low (bit 9). * When the EDC is off it locks onto a reference clock and avoids * becoming 'lost' */ mod_abs &= ~(1<<8); if (!(phy->flags & ELINK_FLAGS_NOC)) mod_abs &= ~(1<<9); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs); /* Enable/Disable PHY transmitter output */ elink_set_disable_pmd_transmit(params, phy, 0); elink_8727_power_module(sc, phy, 1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &tmp1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &tmp1); elink_8727_config_speed(phy, params); /* Set TX PreEmphasis if needed */ if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED)) { ELINK_DEBUG_P2(sc, "Setting TX_CTRL1 0x%x, TX_CTRL2 0x%x\n", phy->tx_preemphasis[0], phy->tx_preemphasis[1]); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TX_CTRL1, phy->tx_preemphasis[0]); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_TX_CTRL2, phy->tx_preemphasis[1]); } /* If TX Laser is controlled by GPIO_0, do not let PHY go into low * power mode, if TX Laser is disabled */ tx_en_mode = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].sfp_ctrl)) & PORT_HW_CFG_TX_LASER_MASK; if (tx_en_mode == PORT_HW_CFG_TX_LASER_GPIO0) { ELINK_DEBUG_P0(sc, "Enabling TXONOFF_PWRDN_DIS\n"); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_OPT_CFG_REG, &tmp2); tmp2 |= 0x1000; tmp2 &= 0xFFEF; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_OPT_CFG_REG, tmp2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &tmp2); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, (tmp2 & 0x7fff)); } return ELINK_STATUS_OK; } static void elink_8727_handle_mod_abs(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t mod_abs, rx_alarm_status; uint32_t val = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port]. config)); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &mod_abs); if (mod_abs & (1<<8)) { /* Module is absent */ ELINK_DEBUG_P0(sc, "MOD_ABS indication show module is absent\n"); phy->media_type = ELINK_ETH_PHY_NOT_PRESENT; /* 1. Set mod_abs to detect next module * presence event * 2. Set EDC off by setting OPTXLOS signal input to low * (bit 9). * When the EDC is off it locks onto a reference clock and * avoids becoming 'lost'. */ mod_abs &= ~(1<<8); if (!(phy->flags & ELINK_FLAGS_NOC)) mod_abs &= ~(1<<9); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs); /* Clear RX alarm since it stays up as long as * the mod_abs wasn't changed */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &rx_alarm_status); } else { /* Module is present */ ELINK_DEBUG_P0(sc, "MOD_ABS indication show module is present\n"); /* First disable transmitter, and if the module is ok, the * module_detection will enable it * 1. Set mod_abs to detect next module absent event ( bit 8) * 2. Restore the default polarity of the OPRXLOS signal and * this signal will then correctly indicate the presence or * absence of the Rx signal. (bit 9) */ mod_abs |= (1<<8); if (!(phy->flags & ELINK_FLAGS_NOC)) mod_abs |= (1<<9); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, mod_abs); /* Clear RX alarm since it stays up as long as the mod_abs * wasn't changed. This is need to be done before calling the * module detection, otherwise it will clear* the link update * alarm */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &rx_alarm_status); if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) == PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_DISABLE_TX_LASER) elink_sfp_set_transmitter(params, phy, 0); if (elink_wait_for_sfp_module_initialized(phy, params) == 0) elink_sfp_module_detection(phy, params); else ELINK_DEBUG_P0(sc, "SFP+ module is not initialized\n"); /* Reconfigure link speed based on module type limitations */ elink_8727_config_speed(phy, params); } ELINK_DEBUG_P1(sc, "8727 RX_ALARM_STATUS 0x%x\n", rx_alarm_status); /* No need to check link status in case of module plugged in/out */ } static uint8_t elink_8727_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t link_up = 0; uint16_t link_status = 0; uint16_t rx_alarm_status, lasi_ctrl, val1; /* If PHY is not initialized, do not check link status */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, &lasi_ctrl); if (!lasi_ctrl) return 0; /* Check the LASI on Rx */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &rx_alarm_status); vars->line_speed = 0; ELINK_DEBUG_P1(sc, "8727 RX_ALARM_STATUS 0x%x\n", rx_alarm_status); elink_sfp_mask_fault(sc, phy, MDIO_PMA_LASI_TXSTAT, MDIO_PMA_LASI_TXCTRL); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1); ELINK_DEBUG_P1(sc, "8727 LASI status 0x%x\n", val1); /* Clear MSG-OUT */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_M8051_MSGOUT_REG, &val1); /* If a module is present and there is need to check * for over current */ if (!(phy->flags & ELINK_FLAGS_NOC) && !(rx_alarm_status & (1<<5))) { /* Check over-current using 8727 GPIO0 input*/ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_GPIO_CTRL, &val1); if ((val1 & (1<<8)) == 0) { uint8_t oc_port = params->port; if (!CHIP_IS_E1x(sc)) oc_port = SC_PATH(sc) + (params->port << 1); ELINK_DEBUG_P1(sc, "8727 Power fault has been detected on port %d\n", oc_port); elink_cb_event_log(sc, ELINK_LOG_ID_OVER_CURRENT, oc_port); //"Error: Power fault on Port %d has " // "been detected and the power to " // "that SFP+ module has been removed " // "to prevent failure of the card. " // "Please remove the SFP+ module and " // "restart the system to clear this " // "error.\n", /* Disable all RX_ALARMs except for mod_abs */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, (1<<5)); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, &val1); /* Wait for module_absent_event */ val1 |= (1<<8); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_PHY_IDENTIFIER, val1); /* Clear RX alarm */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXSTAT, &rx_alarm_status); elink_8727_power_module(params->sc, phy, 0); return 0; } } /* Over current check */ /* When module absent bit is set, check module */ if (rx_alarm_status & (1<<5)) { elink_8727_handle_mod_abs(phy, params); /* Enable all mod_abs and link detection bits */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_RXCTRL, ((1<<5) | (1<<2))); } if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED)) { ELINK_DEBUG_P0(sc, "Enabling 8727 TX laser\n"); elink_sfp_set_transmitter(params, phy, 1); } else { ELINK_DEBUG_P0(sc, "Tx is disabled\n"); return 0; } elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8073_SPEED_LINK_STATUS, &link_status); /* Bits 0..2 --> speed detected, * Bits 13..15--> link is down */ if ((link_status & (1<<2)) && (!(link_status & (1<<15)))) { link_up = 1; vars->line_speed = ELINK_SPEED_10000; ELINK_DEBUG_P1(sc, "port %x: External link up in 10G\n", params->port); } else if ((link_status & (1<<0)) && (!(link_status & (1<<13)))) { link_up = 1; vars->line_speed = ELINK_SPEED_1000; ELINK_DEBUG_P1(sc, "port %x: External link up in 1G\n", params->port); } else { link_up = 0; ELINK_DEBUG_P1(sc, "port %x: External link is down\n", params->port); } /* Capture 10G link fault. */ if (vars->line_speed == ELINK_SPEED_10000) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXSTAT, &val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_TXSTAT, &val1); if (val1 & (1<<0)) { vars->fault_detected = 1; } } if (link_up) { elink_ext_phy_resolve_fc(phy, params, vars); vars->duplex = DUPLEX_FULL; ELINK_DEBUG_P1(sc, "duplex = 0x%x\n", vars->duplex); } if ((ELINK_DUAL_MEDIA(params)) && (phy->req_line_speed == ELINK_SPEED_1000)) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_GP, &val1); /* In case of dual-media board and 1G, power up the XAUI side, * otherwise power it down. For 10G it is done automatically */ if (link_up) val1 &= ~(3<<10); else val1 |= (3<<10); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8727_PCS_GP, val1); } return link_up; } static void elink_8727_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; /* Enable/Disable PHY transmitter output */ elink_set_disable_pmd_transmit(params, phy, 1); /* Disable Transmitter */ elink_sfp_set_transmitter(params, phy, 0); /* Clear LASI */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0); } /******************************************************************/ /* BCM8481/BCM84823/BCM84833 PHY SECTION */ /******************************************************************/ static int elink_is_8483x_8485x(struct elink_phy *phy) { return ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) || (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) || (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858)); } static void elink_save_848xx_spirom_version(struct elink_phy *phy, struct bxe_softc *sc, uint8_t port) { uint16_t val, fw_ver2, cnt, i; static struct elink_reg_set reg_set[] = { {MDIO_PMA_DEVAD, 0xA819, 0x0014}, {MDIO_PMA_DEVAD, 0xA81A, 0xc200}, {MDIO_PMA_DEVAD, 0xA81B, 0x0000}, {MDIO_PMA_DEVAD, 0xA81C, 0x0300}, {MDIO_PMA_DEVAD, 0xA817, 0x0009} }; uint16_t fw_ver1; if (elink_is_8483x_8485x(phy)) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, 0x400f, &fw_ver1); elink_save_spirom_version(sc, port, fw_ver1 & 0xfff, phy->ver_addr); } else { /* For 32-bit registers in 848xx, access via MDIO2ARM i/f. */ /* (1) set reg 0xc200_0014(SPI_BRIDGE_CTRL_2) to 0x03000000 */ for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); for (cnt = 0; cnt < 100; cnt++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA818, &val); if (val & 1) break; DELAY(5); } if (cnt == 100) { ELINK_DEBUG_P0(sc, "Unable to read 848xx " "phy fw version(1)\n"); elink_save_spirom_version(sc, port, 0, phy->ver_addr); return; } /* 2) read register 0xc200_0000 (SPI_FW_STATUS) */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA819, 0x0000); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA81A, 0xc200); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, 0xA817, 0x000A); for (cnt = 0; cnt < 100; cnt++) { elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA818, &val); if (val & 1) break; DELAY(5); } if (cnt == 100) { ELINK_DEBUG_P0(sc, "Unable to read 848xx phy fw " "version(2)\n"); elink_save_spirom_version(sc, port, 0, phy->ver_addr); return; } /* lower 16 bits of the register SPI_FW_STATUS */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA81B, &fw_ver1); /* upper 16 bits of register SPI_FW_STATUS */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, 0xA81C, &fw_ver2); elink_save_spirom_version(sc, port, (fw_ver2<<16) | fw_ver1, phy->ver_addr); } } static void elink_848xx_set_led(struct bxe_softc *sc, struct elink_phy *phy) { uint16_t val, offset, i; static struct elink_reg_set reg_set[] = { {MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0080}, {MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x0018}, {MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x0006}, {MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_BLINK, 0x0000}, {MDIO_PMA_DEVAD, MDIO_PMA_REG_84823_CTL_SLOW_CLK_CNT_HIGH, MDIO_PMA_REG_84823_BLINK_RATE_VAL_15P9HZ}, {MDIO_AN_DEVAD, 0xFFFB, 0xFFFD} }; /* PHYC_CTL_LED_CTL */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, &val); val &= 0xFE00; val |= 0x0092; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, val); for (i = 0; i < ARRAY_SIZE(reg_set); i++) elink_cl45_write(sc, phy, reg_set[i].devad, reg_set[i].reg, reg_set[i].val); if (elink_is_8483x_8485x(phy)) offset = MDIO_PMA_REG_84833_CTL_LED_CTL_1; else offset = MDIO_PMA_REG_84823_CTL_LED_CTL_1; /* stretch_en for LED3*/ elink_cl45_read_or_write(sc, phy, MDIO_PMA_DEVAD, offset, MDIO_PMA_REG_84823_LED3_STRETCH_EN); } static void elink_848xx_specific_func(struct elink_phy *phy, struct elink_params *params, uint32_t action) { struct bxe_softc *sc = params->sc; switch (action) { case ELINK_PHY_INIT: if (!elink_is_8483x_8485x(phy)) { /* Save spirom version */ elink_save_848xx_spirom_version(phy, sc, params->port); } /* This phy uses the NIG latch mechanism since link indication * arrives through its LED4 and not via its LASI signal, so we * get steady signal instead of clear on read */ elink_bits_en(sc, NIG_REG_LATCH_BC_0 + params->port*4, 1 << ELINK_NIG_LATCH_BC_ENABLE_MI_INT); elink_848xx_set_led(sc, phy); break; } } static elink_status_t elink_848xx_cmn_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t autoneg_val, an_1000_val, an_10_100_val; elink_848xx_specific_func(phy, params, ELINK_PHY_INIT); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x0000); /* set 1000 speed advertisement */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_1000T_CTRL, &an_1000_val); elink_ext_phy_set_pause(params, phy, vars); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_AN_ADV, &an_10_100_val); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_CTRL, &autoneg_val); /* Disable forced speed */ autoneg_val &= ~((1<<6) | (1<<8) | (1<<9) | (1<<12) | (1<<13)); an_10_100_val &= ~((1<<5) | (1<<6) | (1<<7) | (1<<8)); if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) || (phy->req_line_speed == ELINK_SPEED_1000)) { an_1000_val |= (1<<8); autoneg_val |= (1<<9 | 1<<12); if (phy->req_duplex == DUPLEX_FULL) an_1000_val |= (1<<9); ELINK_DEBUG_P0(sc, "Advertising 1G\n"); } else an_1000_val &= ~((1<<8) | (1<<9)); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_1000T_CTRL, an_1000_val); /* Set 10/100 speed advertisement */ if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) { if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL) { /* Enable autoneg and restart autoneg for legacy speeds */ autoneg_val |= (1<<9 | 1<<12); an_10_100_val |= (1<<8); ELINK_DEBUG_P0(sc, "Advertising 100M-FD\n"); } if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF) { /* Enable autoneg and restart autoneg for legacy speeds */ autoneg_val |= (1<<9 | 1<<12); an_10_100_val |= (1<<7); ELINK_DEBUG_P0(sc, "Advertising 100M-HD\n"); } if ((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) && (phy->supported & ELINK_SUPPORTED_10baseT_Full)) { an_10_100_val |= (1<<6); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 10M-FD\n"); } if ((phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF) && (phy->supported & ELINK_SUPPORTED_10baseT_Half)) { an_10_100_val |= (1<<5); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 10M-HD\n"); } } /* Only 10/100 are allowed to work in FORCE mode */ if ((phy->req_line_speed == ELINK_SPEED_100) && (phy->supported & (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full))) { autoneg_val |= (1<<13); /* Enabled AUTO-MDIX when autoneg is disabled */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_AUX_CTRL, (1<<15 | 1<<9 | 7<<0)); /* The PHY needs this set even for forced link. */ an_10_100_val |= (1<<8) | (1<<7); ELINK_DEBUG_P0(sc, "Setting 100M force\n"); } if ((phy->req_line_speed == ELINK_SPEED_10) && (phy->supported & (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full))) { /* Enabled AUTO-MDIX when autoneg is disabled */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_AUX_CTRL, (1<<15 | 1<<9 | 7<<0)); ELINK_DEBUG_P0(sc, "Setting 10M force\n"); } elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_AN_ADV, an_10_100_val); if (phy->req_duplex == DUPLEX_FULL) autoneg_val |= (1<<8); /* Always write this if this is not 84833/4. * For 84833/4, write it only when it's a forced speed. */ if (!elink_is_8483x_8485x(phy) || ((autoneg_val & (1<<12)) == 0)) elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_CTRL, autoneg_val); if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) || (phy->req_line_speed == ELINK_SPEED_10000)) { ELINK_DEBUG_P0(sc, "Advertising 10G\n"); /* Restart autoneg for 10G*/ elink_cl45_read_or_write( sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_10GBASE_T_AN_CTRL, 0x1000); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x3200); } else elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_10GBASE_T_AN_CTRL, 1); return ELINK_STATUS_OK; } static elink_status_t elink_8481_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; /* Restore normal power mode*/ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port); /* HW reset */ elink_ext_phy_hw_reset(sc, params->port); elink_wait_reset_complete(sc, phy, params); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15); return elink_848xx_cmn_config_init(phy, params, vars); } #define PHY848xx_CMDHDLR_WAIT 300 #define PHY848xx_CMDHDLR_MAX_ARGS 5 static elink_status_t elink_84858_cmd_hdlr(struct elink_phy *phy, struct elink_params *params, uint16_t fw_cmd, uint16_t cmd_args[], int argc) { int idx; uint16_t val; struct bxe_softc *sc = params->sc; /* Step 1: Poll the STATUS register to see whether the previous command * is in progress or the system is busy (CMD_IN_PROGRESS or * SYSTEM_BUSY). If previous command is in progress or system is busy, * check again until the previous command finishes execution and the * system is available for taking command */ for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, &val); if ((val != PHY84858_STATUS_CMD_IN_PROGRESS) && (val != PHY84858_STATUS_CMD_SYSTEM_BUSY)) break; DELAY(1000 * 1); } if (idx >= PHY848xx_CMDHDLR_WAIT) { ELINK_DEBUG_P0(sc, "FW cmd: FW not ready.\n"); return ELINK_STATUS_ERROR; } /* Step2: If any parameters are required for the function, write them * to the required DATA registers */ for (idx = 0; idx < argc; idx++) { elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_DATA1 + idx, cmd_args[idx]); } /* Step3: When the firmware is ready for commands, write the 'Command * code' to the CMD register */ elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_COMMAND, fw_cmd); /* Step4: Once the command has been written, poll the STATUS register * to check whether the command has completed (CMD_COMPLETED_PASS/ * CMD_FOR_CMDS or CMD_COMPLETED_ERROR). */ for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, &val); if ((val == PHY84858_STATUS_CMD_COMPLETE_PASS) || (val == PHY84858_STATUS_CMD_COMPLETE_ERROR)) break; DELAY(1000 * 1); } if ((idx >= PHY848xx_CMDHDLR_WAIT) || (val == PHY84858_STATUS_CMD_COMPLETE_ERROR)) { ELINK_DEBUG_P0(sc, "FW cmd failed.\n"); return ELINK_STATUS_ERROR; } /* Step5: Once the command has completed, read the specficied DATA * registers for any saved results for the command, if applicable */ /* Gather returning data */ for (idx = 0; idx < argc; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_DATA1 + idx, &cmd_args[idx]); } return ELINK_STATUS_OK; } static elink_status_t elink_84833_cmd_hdlr(struct elink_phy *phy, struct elink_params *params, uint16_t fw_cmd, uint16_t cmd_args[], int argc, int process) { int idx; uint16_t val; struct bxe_softc *sc = params->sc; elink_status_t rc = ELINK_STATUS_OK; if (process == PHY84833_MB_PROCESS2) { /* Write CMD_OPEN_OVERRIDE to STATUS reg */ elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, PHY84833_STATUS_CMD_OPEN_OVERRIDE); } for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, &val); if (val == PHY84833_STATUS_CMD_OPEN_FOR_CMDS) break; DELAY(1000 * 1); } if (idx >= PHY848xx_CMDHDLR_WAIT) { ELINK_DEBUG_P0(sc, "FW cmd: FW not ready.\n"); /* if the status is CMD_COMPLETE_PASS or CMD_COMPLETE_ERROR * clear the status to CMD_CLEAR_COMPLETE */ if (val == PHY84833_STATUS_CMD_COMPLETE_PASS || val == PHY84833_STATUS_CMD_COMPLETE_ERROR) { elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, PHY84833_STATUS_CMD_CLEAR_COMPLETE); } return ELINK_STATUS_ERROR; } if (process == PHY84833_MB_PROCESS1 || process == PHY84833_MB_PROCESS2) { /* Prepare argument(s) */ for (idx = 0; idx < argc; idx++) { elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_DATA1 + idx, cmd_args[idx]); } } /* Issue command */ elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_COMMAND, fw_cmd); for (idx = 0; idx < PHY848xx_CMDHDLR_WAIT; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, &val); if ((val == PHY84833_STATUS_CMD_COMPLETE_PASS) || (val == PHY84833_STATUS_CMD_COMPLETE_ERROR)) break; DELAY(1000 * 1); } if ((idx >= PHY848xx_CMDHDLR_WAIT) || (val == PHY84833_STATUS_CMD_COMPLETE_ERROR)) { ELINK_DEBUG_P0(sc, "FW cmd failed.\n"); rc = ELINK_STATUS_ERROR; } if (process == PHY84833_MB_PROCESS3 && rc == ELINK_STATUS_OK) { /* Gather returning data */ for (idx = 0; idx < argc; idx++) { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_DATA1 + idx, &cmd_args[idx]); } } if (val == PHY84833_STATUS_CMD_COMPLETE_ERROR || val == PHY84833_STATUS_CMD_COMPLETE_PASS) { elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_848xx_CMD_HDLR_STATUS, PHY84833_STATUS_CMD_CLEAR_COMPLETE); } return rc; } static elink_status_t elink_848xx_cmd_hdlr(struct elink_phy *phy, struct elink_params *params, uint16_t fw_cmd, uint16_t cmd_args[], int argc, int process) { struct bxe_softc *sc = params->sc; if ((phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858) || (REG_RD(sc, params->shmem2_base + offsetof(struct shmem2_region, link_attr_sync[params->port])) & LINK_ATTR_84858)) { return elink_84858_cmd_hdlr(phy, params, fw_cmd, cmd_args, argc); } else { return elink_84833_cmd_hdlr(phy, params, fw_cmd, cmd_args, argc, process); } } static elink_status_t elink_848xx_pair_swap_cfg(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint32_t pair_swap; uint16_t data[PHY848xx_CMDHDLR_MAX_ARGS]; elink_status_t status; struct bxe_softc *sc = params->sc; /* Check for configuration. */ pair_swap = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].xgbt_phy_cfg)) & PORT_HW_CFG_RJ45_PAIR_SWAP_MASK; if (pair_swap == 0) return ELINK_STATUS_OK; /* Only the second argument is used for this command */ data[1] = (uint16_t)pair_swap; status = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_PAIR_SWAP, data, 2, PHY84833_MB_PROCESS2); if (status == ELINK_STATUS_OK) ELINK_DEBUG_P1(sc, "Pairswap OK, val=0x%x\n", data[1]); return status; } static uint8_t elink_84833_get_reset_gpios(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t chip_id) { uint32_t reset_pin[2]; uint32_t idx; uint8_t reset_gpios; if (CHIP_IS_E3(sc)) { /* Assume that these will be GPIOs, not EPIOs. */ for (idx = 0; idx < 2; idx++) { /* Map config param to register bit. */ reset_pin[idx] = REG_RD(sc, shmem_base_path[idx] + offsetof(struct shmem_region, dev_info.port_hw_config[0].e3_cmn_pin_cfg)); reset_pin[idx] = (reset_pin[idx] & PORT_HW_CFG_E3_PHY_RESET_MASK) >> PORT_HW_CFG_E3_PHY_RESET_SHIFT; reset_pin[idx] -= PIN_CFG_GPIO0_P0; reset_pin[idx] = (1 << reset_pin[idx]); } reset_gpios = (uint8_t)(reset_pin[0] | reset_pin[1]); } else { /* E2, look from diff place of shmem. */ for (idx = 0; idx < 2; idx++) { reset_pin[idx] = REG_RD(sc, shmem_base_path[idx] + offsetof(struct shmem_region, dev_info.port_hw_config[0].default_cfg)); reset_pin[idx] &= PORT_HW_CFG_EXT_PHY_GPIO_RST_MASK; reset_pin[idx] -= PORT_HW_CFG_EXT_PHY_GPIO_RST_GPIO0_P0; reset_pin[idx] >>= PORT_HW_CFG_EXT_PHY_GPIO_RST_SHIFT; reset_pin[idx] = (1 << reset_pin[idx]); } reset_gpios = (uint8_t)(reset_pin[0] | reset_pin[1]); } return reset_gpios; } static elink_status_t elink_84833_hw_reset_phy(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t reset_gpios; uint32_t other_shmem_base_addr = REG_RD(sc, params->shmem2_base + offsetof(struct shmem2_region, other_shmem_base_addr)); uint32_t shmem_base_path[2]; /* Work around for 84833 LED failure inside RESET status */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_CTRL, MDIO_AN_REG_8481_MII_CTRL_FORCE_1G); elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_1G_100T_EXT_CTRL, MIDO_AN_REG_8481_EXT_CTRL_FORCE_LEDS_OFF); shmem_base_path[0] = params->shmem_base; shmem_base_path[1] = other_shmem_base_addr; reset_gpios = elink_84833_get_reset_gpios(sc, shmem_base_path, params->chip_id); elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_LOW); DELAY(10); ELINK_DEBUG_P1(sc, "84833 hw reset on pin values 0x%x\n", reset_gpios); return ELINK_STATUS_OK; } static elink_status_t elink_8483x_disable_eee(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { elink_status_t rc; struct bxe_softc *sc = params->sc; uint16_t cmd_args = 0; ELINK_DEBUG_P0(sc, "Don't Advertise 10GBase-T EEE\n"); /* Prevent Phy from working in EEE and advertising it */ rc = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_EEE_MODE, &cmd_args, 1, PHY84833_MB_PROCESS1); if (rc != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "EEE disable failed.\n"); return rc; } return elink_eee_disable(phy, params, vars); } static elink_status_t elink_8483x_enable_eee(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { elink_status_t rc; struct bxe_softc *sc = params->sc; uint16_t cmd_args = 1; rc = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_EEE_MODE, &cmd_args, 1, PHY84833_MB_PROCESS1); if (rc != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "EEE enable failed.\n"); return rc; } return elink_eee_advertise(phy, params, vars, SHMEM_EEE_10G_ADV); } #define PHY84833_CONSTANT_LATENCY 1193 static elink_status_t elink_848x3_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t port, initialize = 1; uint16_t val; uint32_t actual_phy_selection; uint16_t cmd_args[PHY848xx_CMDHDLR_MAX_ARGS]; elink_status_t rc = ELINK_STATUS_OK; DELAY(1000 * 1); if (!(CHIP_IS_E1x(sc))) port = SC_PATH(sc); else port = params->port; if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) { elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_3, MISC_REGISTERS_GPIO_OUTPUT_HIGH, port); } else { /* MDIO reset */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 0x8000); } elink_wait_reset_complete(sc, phy, params); /* Wait for GPHY to come out of reset */ DELAY(1000 * 50); if (!elink_is_8483x_8485x(phy)) { /* BCM84823 requires that XGXS links up first @ 10G for normal * behavior. */ uint16_t temp; temp = vars->line_speed; vars->line_speed = ELINK_SPEED_10000; elink_set_autoneg(¶ms->phy[ELINK_INT_PHY], params, vars, 0); elink_program_serdes(¶ms->phy[ELINK_INT_PHY], params, vars); vars->line_speed = temp; } /* Check if this is actually BCM84858 */ if (phy->type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858) { uint16_t hw_rev; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_848xx_ID_MSB, &hw_rev); if (hw_rev == BCM84858_PHY_ID) { params->link_attr_sync |= LINK_ATTR_84858; elink_update_link_attr(params, params->link_attr_sync); } } /* Set dual-media configuration according to configuration */ elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_CTL_REG_84823_MEDIA, &val); val &= ~(MDIO_CTL_REG_84823_MEDIA_MAC_MASK | MDIO_CTL_REG_84823_MEDIA_LINE_MASK | MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN | MDIO_CTL_REG_84823_MEDIA_PRIORITY_MASK | MDIO_CTL_REG_84823_MEDIA_FIBER_1G); if (CHIP_IS_E3(sc)) { val &= ~(MDIO_CTL_REG_84823_MEDIA_MAC_MASK | MDIO_CTL_REG_84823_MEDIA_LINE_MASK); } else { val |= (MDIO_CTL_REG_84823_CTRL_MAC_XFI | MDIO_CTL_REG_84823_MEDIA_LINE_XAUI_L); } actual_phy_selection = elink_phy_selection(params); switch (actual_phy_selection) { case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: /* Do nothing. Essentially this is like the priority copper */ break; case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: val |= MDIO_CTL_REG_84823_MEDIA_PRIORITY_COPPER; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: val |= MDIO_CTL_REG_84823_MEDIA_PRIORITY_FIBER; break; case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: /* Do nothing here. The first PHY won't be initialized at all */ break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: val |= MDIO_CTL_REG_84823_MEDIA_COPPER_CORE_DOWN; initialize = 0; break; } if (params->phy[ELINK_EXT_PHY2].req_line_speed == ELINK_SPEED_1000) val |= MDIO_CTL_REG_84823_MEDIA_FIBER_1G; elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_CTL_REG_84823_MEDIA, val); ELINK_DEBUG_P2(sc, "Multi_phy config = 0x%x, Media control = 0x%x\n", params->multi_phy_config, val); if (elink_is_8483x_8485x(phy)) { elink_848xx_pair_swap_cfg(phy, params, vars); /* Keep AutogrEEEn disabled. */ cmd_args[0] = 0x0; cmd_args[1] = 0x0; cmd_args[2] = PHY84833_CONSTANT_LATENCY + 1; cmd_args[3] = PHY84833_CONSTANT_LATENCY; rc = elink_848xx_cmd_hdlr(phy, params, PHY848xx_CMD_SET_EEE_MODE, cmd_args, 4, PHY84833_MB_PROCESS1); if (rc != ELINK_STATUS_OK) ELINK_DEBUG_P0(sc, "Cfg AutogrEEEn failed.\n"); } if (initialize) rc = elink_848xx_cmn_config_init(phy, params, vars); else elink_save_848xx_spirom_version(phy, sc, params->port); /* 84833 PHY has a better feature and doesn't need to support this. */ if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) { uint32_t cms_enable = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_ENABLE_CMS_MASK; elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_CTL_REG_84823_USER_CTRL_REG, &val); if (cms_enable) val |= MDIO_CTL_REG_84823_USER_CTRL_CMS; else val &= ~MDIO_CTL_REG_84823_USER_CTRL_CMS; elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_CTL_REG_84823_USER_CTRL_REG, val); } elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_84833_TOP_CFG_FW_REV, &val); /* Configure EEE support */ if ((val >= MDIO_84833_TOP_CFG_FW_EEE) && (val != MDIO_84833_TOP_CFG_FW_NO_EEE) && elink_eee_has_cap(params)) { rc = elink_eee_initial_config(params, vars, SHMEM_EEE_10G_ADV); if (rc != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "Failed to configure EEE timers\n"); elink_8483x_disable_eee(phy, params, vars); return rc; } if ((phy->req_duplex == DUPLEX_FULL) && (params->eee_mode & ELINK_EEE_MODE_ADV_LPI) && (elink_eee_calc_timer(params) || !(params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI))) rc = elink_8483x_enable_eee(phy, params, vars); else rc = elink_8483x_disable_eee(phy, params, vars); if (rc != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "Failed to set EEE advertisement\n"); return rc; } } else { vars->eee_status &= ~SHMEM_EEE_SUPPORTED_MASK; } if (elink_is_8483x_8485x(phy)) { /* Bring PHY out of super isolate mode as the final step. */ elink_cl45_read_and_write(sc, phy, MDIO_CTL_DEVAD, MDIO_84833_TOP_CFG_XGPHY_STRAP1, (uint16_t)~MDIO_84833_SUPER_ISOLATE); } return rc; } static uint8_t elink_848xx_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t val, val1, val2; uint8_t link_up = 0; /* Check 10G-BaseT link status */ /* Check PMD signal ok */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, 0xFFFA, &val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_PMD_SIGNAL, &val2); ELINK_DEBUG_P1(sc, "BCM848xx: PMD_SIGNAL 1.a811 = 0x%x\n", val2); /* Check link 10G */ if (val2 & (1<<11)) { vars->line_speed = ELINK_SPEED_10000; vars->duplex = DUPLEX_FULL; link_up = 1; elink_ext_phy_10G_an_resolve(sc, phy, vars); } else { /* Check Legacy speed link */ uint16_t legacy_status, legacy_speed; /* Enable expansion register 0x42 (Operation mode status) */ elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_EXPANSION_REG_ACCESS, 0xf42); /* Get legacy speed operation status */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_EXPANSION_REG_RD_RW, &legacy_status); ELINK_DEBUG_P1(sc, "Legacy speed status = 0x%x\n", legacy_status); link_up = ((legacy_status & (1<<11)) == (1<<11)); legacy_speed = (legacy_status & (3<<9)); if (legacy_speed == (0<<9)) vars->line_speed = ELINK_SPEED_10; else if (legacy_speed == (1<<9)) vars->line_speed = ELINK_SPEED_100; else if (legacy_speed == (2<<9)) vars->line_speed = ELINK_SPEED_1000; else { /* Should not happen: Treat as link down */ vars->line_speed = 0; link_up = 0; } if (params->feature_config_flags & ELINK_FEATURE_CONFIG_IEEE_PHY_TEST) { uint16_t mii_ctrl; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_CTRL, &mii_ctrl); /* For IEEE testing, check for a fake link. */ link_up |= ((mii_ctrl & 0x3040) == 0x40); } if (link_up) { if (legacy_status & (1<<8)) vars->duplex = DUPLEX_FULL; else vars->duplex = DUPLEX_HALF; ELINK_DEBUG_P2(sc, "Link is up in %dMbps, is_duplex_full= %d\n", vars->line_speed, (vars->duplex == DUPLEX_FULL)); /* Check legacy speed AN resolution */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_MII_STATUS, &val); if (val & (1<<5)) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_8481_LEGACY_AN_EXPANSION, &val); if ((val & (1<<0)) == 0) vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED; } } if (link_up) { ELINK_DEBUG_P1(sc, "BCM848x3: link speed is %d\n", vars->line_speed); elink_ext_phy_resolve_fc(phy, params, vars); /* Read LP advertised speeds */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CL37_FC_LP, &val); if (val & (1<<5)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10THD_CAPABLE; if (val & (1<<6)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE; if (val & (1<<7)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE; if (val & (1<<8)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE; if (val & (1<<9)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100T4_CAPABLE; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_1000T_STATUS, &val); if (val & (1<<10)) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE; if (val & (1<<11)) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE; elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_MASTER_STATUS, &val); if (val & (1<<11)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; /* Determine if EEE was negotiated */ if (elink_is_8483x_8485x(phy)) elink_eee_an_resolve(phy, params, vars); } return link_up; } static elink_status_t elink_848xx_format_ver(uint32_t raw_ver, uint8_t *str, uint16_t *len) { elink_status_t status = ELINK_STATUS_OK; uint32_t spirom_ver; spirom_ver = ((raw_ver & 0xF80) >> 7) << 16 | (raw_ver & 0x7F); status = elink_format_ver(spirom_ver, str, len); return status; } static void elink_8481_hw_reset(struct elink_phy *phy, struct elink_params *params) { elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, 0); elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, 1); } static void elink_8481_link_reset(struct elink_phy *phy, struct elink_params *params) { elink_cl45_write(params->sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, 0x0000); elink_cl45_write(params->sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1); } static void elink_848x3_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint8_t port; uint16_t val16; if (!(CHIP_IS_E1x(sc))) port = SC_PATH(sc); else port = params->port; if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823) { elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_3, MISC_REGISTERS_GPIO_OUTPUT_LOW, port); } else { elink_cl45_read(sc, phy, MDIO_CTL_DEVAD, MDIO_84833_TOP_CFG_XGPHY_STRAP1, &val16); val16 |= MDIO_84833_SUPER_ISOLATE; elink_cl45_write(sc, phy, MDIO_CTL_DEVAD, MDIO_84833_TOP_CFG_XGPHY_STRAP1, val16); } } static void elink_848xx_set_link_led(struct elink_phy *phy, struct elink_params *params, uint8_t mode) { struct bxe_softc *sc = params->sc; uint16_t val; uint8_t port; if (!(CHIP_IS_E1x(sc))) port = SC_PATH(sc); else port = params->port; switch (mode) { case ELINK_LED_MODE_OFF: ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE OFF\n", port); if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY1) { /* Set LED masks */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED5_MASK, 0x0); } else { elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0); } break; case ELINK_LED_MODE_FRONT_PANEL_OFF: ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE FRONT PANEL OFF\n", port); if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY1) { /* Set LED masks */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED5_MASK, 0x20); } else { elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0); if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) { /* Disable MI_INT interrupt before setting LED4 * source to constant off. */ if (REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4) & ELINK_NIG_MASK_MI_INT) { params->link_flags |= ELINK_LINK_FLAGS_INT_DISABLED; elink_bits_dis( sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4, ELINK_NIG_MASK_MI_INT); } elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_SIGNAL_MASK, 0x0); } } break; case ELINK_LED_MODE_ON: ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE ON\n", port); if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY1) { /* Set control reg */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, &val); val &= 0x8000; val |= 0x2492; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, val); /* Set LED masks */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x0); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x20); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x20); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED5_MASK, 0x0); } else { elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x20); if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) { /* Disable MI_INT interrupt before setting LED4 * source to constant on. */ if (REG_RD(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4) & ELINK_NIG_MASK_MI_INT) { params->link_flags |= ELINK_LINK_FLAGS_INT_DISABLED; elink_bits_dis( sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4, ELINK_NIG_MASK_MI_INT); } elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_SIGNAL_MASK, 0x20); } } break; case ELINK_LED_MODE_OPER: ELINK_DEBUG_P1(sc, "Port 0x%x: LED MODE OPER\n", port); if ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY1) { /* Set control reg */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, &val); if (!((val & MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_MASK) >> MDIO_PMA_REG_8481_LINK_SIGNAL_LED4_ENABLE_SHIFT)) { ELINK_DEBUG_P0(sc, "Setting LINK_SIGNAL\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, 0xa492); } /* Set LED masks */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, 0x10); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED2_MASK, 0x80); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED3_MASK, 0x98); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED5_MASK, 0x40); } else { /* EXTPHY2 LED mode indicate that the 100M/1G/10G LED * sources are all wired through LED1, rather than only * 10G in other modes. */ val = ((params->hw_led_mode << SHARED_HW_CFG_LED_MODE_SHIFT) == SHARED_HW_CFG_LED_EXTPHY2) ? 0x98 : 0x80; elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LED1_MASK, val); /* Tell LED3 to blink on source */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, &val); val &= ~(7<<6); val |= (1<<6); /* A83B[8:6]= 1 */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_LINK_SIGNAL, val); if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834) { /* Restore LED4 source to external link, * and re-enable interrupts. */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_8481_SIGNAL_MASK, 0x40); if (params->link_flags & ELINK_LINK_FLAGS_INT_DISABLED) { elink_link_int_enable(params); params->link_flags &= ~ELINK_LINK_FLAGS_INT_DISABLED; } } } break; } /* This is a workaround for E3+84833 until autoneg * restart is fixed in f/w */ if (CHIP_IS_E3(sc)) { elink_cl45_read(sc, phy, MDIO_WC_DEVAD, MDIO_WC_REG_GP2_STATUS_GP_2_1, &val); } } /******************************************************************/ /* 54618SE PHY SECTION */ /******************************************************************/ static void elink_54618se_specific_func(struct elink_phy *phy, struct elink_params *params, uint32_t action) { struct bxe_softc *sc = params->sc; uint16_t temp; switch (action) { case ELINK_PHY_INIT: /* Configure LED4: set to INTR (0x6). */ /* Accessing shadow register 0xe. */ elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_LED_SEL2); elink_cl22_read(sc, phy, MDIO_REG_GPHY_SHADOW, &temp); temp &= ~(0xf << 4); temp |= (0x6 << 4); elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_WR_ENA | temp); /* Configure INTR based on link status change. */ elink_cl22_write(sc, phy, MDIO_REG_INTR_MASK, ~MDIO_REG_INTR_MASK_LINK_STATUS); break; } } static elink_status_t elink_54618se_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t port; uint16_t autoneg_val, an_1000_val, an_10_100_val, fc_val, temp; uint32_t cfg_pin; ELINK_DEBUG_P0(sc, "54618SE cfg init\n"); DELAY(1000 * 1); /* This works with E3 only, no need to check the chip * before determining the port. */ port = params->port; cfg_pin = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_cmn_pin_cfg)) & PORT_HW_CFG_E3_PHY_RESET_MASK) >> PORT_HW_CFG_E3_PHY_RESET_SHIFT; /* Drive pin high to bring the GPHY out of reset. */ elink_set_cfg_pin(sc, cfg_pin, 1); /* wait for GPHY to reset */ DELAY(1000 * 50); /* reset phy */ elink_cl22_write(sc, phy, MDIO_PMA_REG_CTRL, 0x8000); elink_wait_reset_complete(sc, phy, params); /* Wait for GPHY to reset */ DELAY(1000 * 50); elink_54618se_specific_func(phy, params, ELINK_PHY_INIT); /* Flip the signal detect polarity (set 0x1c.0x1e[8]). */ elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_AUTO_DET_MED); elink_cl22_read(sc, phy, MDIO_REG_GPHY_SHADOW, &temp); temp |= MDIO_REG_GPHY_SHADOW_INVERT_FIB_SD; elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_WR_ENA | temp); /* Set up fc */ /* Please refer to Table 28B-3 of 802.3ab-1999 spec. */ elink_calc_ieee_aneg_adv(phy, params, &vars->ieee_fc); fc_val = 0; if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC) fc_val |= MDIO_AN_REG_ADV_PAUSE_ASYMMETRIC; if ((vars->ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) == MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) fc_val |= MDIO_AN_REG_ADV_PAUSE_PAUSE; /* Read all advertisement */ elink_cl22_read(sc, phy, 0x09, &an_1000_val); elink_cl22_read(sc, phy, 0x04, &an_10_100_val); elink_cl22_read(sc, phy, MDIO_PMA_REG_CTRL, &autoneg_val); /* Disable forced speed */ autoneg_val &= ~((1<<6) | (1<<8) | (1<<9) | (1<<12) | (1<<13)); an_10_100_val &= ~((1<<5) | (1<<6) | (1<<7) | (1<<8) | (1<<10) | (1<<11)); if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) || (phy->req_line_speed == ELINK_SPEED_1000)) { an_1000_val |= (1<<8); autoneg_val |= (1<<9 | 1<<12); if (phy->req_duplex == DUPLEX_FULL) an_1000_val |= (1<<9); ELINK_DEBUG_P0(sc, "Advertising 1G\n"); } else an_1000_val &= ~((1<<8) | (1<<9)); elink_cl22_write(sc, phy, 0x09, an_1000_val); elink_cl22_read(sc, phy, 0x09, &an_1000_val); /* Advertise 10/100 link speed */ if (phy->req_line_speed == ELINK_SPEED_AUTO_NEG) { if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF) { an_10_100_val |= (1<<5); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 10M-HD\n"); } if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) { an_10_100_val |= (1<<6); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 10M-FD\n"); } if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF) { an_10_100_val |= (1<<7); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 100M-HD\n"); } if (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL) { an_10_100_val |= (1<<8); autoneg_val |= (1<<9 | 1<<12); ELINK_DEBUG_P0(sc, "Advertising 100M-FD\n"); } } /* Only 10/100 are allowed to work in FORCE mode */ if (phy->req_line_speed == ELINK_SPEED_100) { autoneg_val |= (1<<13); /* Enabled AUTO-MDIX when autoneg is disabled */ elink_cl22_write(sc, phy, 0x18, (1<<15 | 1<<9 | 7<<0)); ELINK_DEBUG_P0(sc, "Setting 100M force\n"); } if (phy->req_line_speed == ELINK_SPEED_10) { /* Enabled AUTO-MDIX when autoneg is disabled */ elink_cl22_write(sc, phy, 0x18, (1<<15 | 1<<9 | 7<<0)); ELINK_DEBUG_P0(sc, "Setting 10M force\n"); } if ((phy->flags & ELINK_FLAGS_EEE) && elink_eee_has_cap(params)) { elink_status_t rc; elink_cl22_write(sc, phy, MDIO_REG_GPHY_EXP_ACCESS, MDIO_REG_GPHY_EXP_ACCESS_TOP | MDIO_REG_GPHY_EXP_TOP_2K_BUF); elink_cl22_read(sc, phy, MDIO_REG_GPHY_EXP_ACCESS_GATE, &temp); temp &= 0xfffe; elink_cl22_write(sc, phy, MDIO_REG_GPHY_EXP_ACCESS_GATE, temp); rc = elink_eee_initial_config(params, vars, SHMEM_EEE_1G_ADV); if (rc != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "Failed to configure EEE timers\n"); elink_eee_disable(phy, params, vars); } else if ((params->eee_mode & ELINK_EEE_MODE_ADV_LPI) && (phy->req_duplex == DUPLEX_FULL) && (elink_eee_calc_timer(params) || !(params->eee_mode & ELINK_EEE_MODE_ENABLE_LPI))) { /* Need to advertise EEE only when requested, * and either no LPI assertion was requested, * or it was requested and a valid timer was set. * Also notice full duplex is required for EEE. */ elink_eee_advertise(phy, params, vars, SHMEM_EEE_1G_ADV); } else { ELINK_DEBUG_P0(sc, "Don't Advertise 1GBase-T EEE\n"); elink_eee_disable(phy, params, vars); } } else { vars->eee_status &= ((uint32_t)(~SHMEM_EEE_1G_ADV) << SHMEM_EEE_SUPPORTED_SHIFT); if (phy->flags & ELINK_FLAGS_EEE) { /* Handle legacy auto-grEEEn */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED) { temp = 6; ELINK_DEBUG_P0(sc, "Enabling Auto-GrEEEn\n"); } else { temp = 0; ELINK_DEBUG_P0(sc, "Don't Adv. EEE\n"); } elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_EEE_ADV, temp); } } elink_cl22_write(sc, phy, 0x04, an_10_100_val | fc_val); if (phy->req_duplex == DUPLEX_FULL) autoneg_val |= (1<<8); elink_cl22_write(sc, phy, MDIO_PMA_REG_CTRL, autoneg_val); return ELINK_STATUS_OK; } static void elink_5461x_set_link_led(struct elink_phy *phy, struct elink_params *params, uint8_t mode) { struct bxe_softc *sc = params->sc; uint16_t temp; elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_LED_SEL1); elink_cl22_read(sc, phy, MDIO_REG_GPHY_SHADOW, &temp); temp &= 0xff00; ELINK_DEBUG_P1(sc, "54618x set link led (mode=%x)\n", mode); switch (mode) { case ELINK_LED_MODE_FRONT_PANEL_OFF: case ELINK_LED_MODE_OFF: temp |= 0x00ee; break; case ELINK_LED_MODE_OPER: temp |= 0x0001; break; case ELINK_LED_MODE_ON: temp |= 0x00ff; break; default: break; } elink_cl22_write(sc, phy, MDIO_REG_GPHY_SHADOW, MDIO_REG_GPHY_SHADOW_WR_ENA | temp); return; } static void elink_54618se_link_reset(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint32_t cfg_pin; uint8_t port; /* In case of no EPIO routed to reset the GPHY, put it * in low power mode. */ elink_cl22_write(sc, phy, MDIO_PMA_REG_CTRL, 0x800); /* This works with E3 only, no need to check the chip * before determining the port. */ port = params->port; cfg_pin = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_cmn_pin_cfg)) & PORT_HW_CFG_E3_PHY_RESET_MASK) >> PORT_HW_CFG_E3_PHY_RESET_SHIFT; /* Drive pin low to put GPHY in reset. */ elink_set_cfg_pin(sc, cfg_pin, 0); } static uint8_t elink_54618se_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint16_t val; uint8_t link_up = 0; uint16_t legacy_status, legacy_speed; /* Get speed operation status */ elink_cl22_read(sc, phy, MDIO_REG_GPHY_AUX_STATUS, &legacy_status); ELINK_DEBUG_P1(sc, "54618SE read_status: 0x%x\n", legacy_status); /* Read status to clear the PHY interrupt. */ elink_cl22_read(sc, phy, MDIO_REG_INTR_STATUS, &val); link_up = ((legacy_status & (1<<2)) == (1<<2)); if (link_up) { legacy_speed = (legacy_status & (7<<8)); if (legacy_speed == (7<<8)) { vars->line_speed = ELINK_SPEED_1000; vars->duplex = DUPLEX_FULL; } else if (legacy_speed == (6<<8)) { vars->line_speed = ELINK_SPEED_1000; vars->duplex = DUPLEX_HALF; } else if (legacy_speed == (5<<8)) { vars->line_speed = ELINK_SPEED_100; vars->duplex = DUPLEX_FULL; } /* Omitting 100Base-T4 for now */ else if (legacy_speed == (3<<8)) { vars->line_speed = ELINK_SPEED_100; vars->duplex = DUPLEX_HALF; } else if (legacy_speed == (2<<8)) { vars->line_speed = ELINK_SPEED_10; vars->duplex = DUPLEX_FULL; } else if (legacy_speed == (1<<8)) { vars->line_speed = ELINK_SPEED_10; vars->duplex = DUPLEX_HALF; } else /* Should not happen */ vars->line_speed = 0; ELINK_DEBUG_P2(sc, "Link is up in %dMbps, is_duplex_full= %d\n", vars->line_speed, (vars->duplex == DUPLEX_FULL)); /* Check legacy speed AN resolution */ elink_cl22_read(sc, phy, 0x01, &val); if (val & (1<<5)) vars->link_status |= LINK_STATUS_AUTO_NEGOTIATE_COMPLETE; elink_cl22_read(sc, phy, 0x06, &val); if ((val & (1<<0)) == 0) vars->link_status |= LINK_STATUS_PARALLEL_DETECTION_USED; ELINK_DEBUG_P1(sc, "BCM54618SE: link speed is %d\n", vars->line_speed); elink_ext_phy_resolve_fc(phy, params, vars); if (vars->link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) { /* Report LP advertised speeds */ elink_cl22_read(sc, phy, 0x5, &val); if (val & (1<<5)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10THD_CAPABLE; if (val & (1<<6)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE; if (val & (1<<7)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE; if (val & (1<<8)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE; if (val & (1<<9)) vars->link_status |= LINK_STATUS_LINK_PARTNER_100T4_CAPABLE; elink_cl22_read(sc, phy, 0xa, &val); if (val & (1<<10)) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE; if (val & (1<<11)) vars->link_status |= LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE; if ((phy->flags & ELINK_FLAGS_EEE) && elink_eee_has_cap(params)) elink_eee_an_resolve(phy, params, vars); } } return link_up; } static void elink_54618se_config_loopback(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; uint16_t val; uint32_t umac_base = params->port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; ELINK_DEBUG_P0(sc, "2PMA/PMD ext_phy_loopback: 54618se\n"); /* Enable master/slave manual mmode and set to master */ /* mii write 9 [bits set 11 12] */ elink_cl22_write(sc, phy, 0x09, 3<<11); /* forced 1G and disable autoneg */ /* set val [mii read 0] */ /* set val [expr $val & [bits clear 6 12 13]] */ /* set val [expr $val | [bits set 6 8]] */ /* mii write 0 $val */ elink_cl22_read(sc, phy, 0x00, &val); val &= ~((1<<6) | (1<<12) | (1<<13)); val |= (1<<6) | (1<<8); elink_cl22_write(sc, phy, 0x00, val); /* Set external loopback and Tx using 6dB coding */ /* mii write 0x18 7 */ /* set val [mii read 0x18] */ /* mii write 0x18 [expr $val | [bits set 10 15]] */ elink_cl22_write(sc, phy, 0x18, 7); elink_cl22_read(sc, phy, 0x18, &val); elink_cl22_write(sc, phy, 0x18, val | (1<<10) | (1<<15)); /* This register opens the gate for the UMAC despite its name */ REG_WR(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4, 1); /* Maximum Frame Length (RW). Defines a 14-Bit maximum frame * length used by the MAC receive logic to check frames. */ REG_WR(sc, umac_base + UMAC_REG_MAXFR, 0x2710); } /******************************************************************/ /* SFX7101 PHY SECTION */ /******************************************************************/ static void elink_7101_config_loopback(struct elink_phy *phy, struct elink_params *params) { struct bxe_softc *sc = params->sc; /* SFX7101_XGXS_TEST1 */ elink_cl45_write(sc, phy, MDIO_XS_DEVAD, MDIO_XS_SFX7101_XGXS_TEST1, 0x100); } static elink_status_t elink_7101_config_init(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { uint16_t fw_ver1, fw_ver2, val; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "Setting the SFX7101 LASI indication\n"); /* Restore normal power mode*/ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, params->port); /* HW reset */ elink_ext_phy_hw_reset(sc, params->port); elink_wait_reset_complete(sc, phy, params); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_CTRL, 0x1); ELINK_DEBUG_P0(sc, "Setting the SFX7101 LED to blink on traffic\n"); elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7107_LED_CNTL, (1<<3)); elink_ext_phy_set_pause(params, phy, vars); /* Restart autoneg */ elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, &val); val |= 0x200; elink_cl45_write(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_CTRL, val); /* Save spirom version */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_VER1, &fw_ver1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_VER2, &fw_ver2); elink_save_spirom_version(sc, params->port, (uint32_t)(fw_ver1<<16 | fw_ver2), phy->ver_addr); return ELINK_STATUS_OK; } static uint8_t elink_7101_read_status(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint8_t link_up; uint16_t val1, val2; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_LASI_STAT, &val1); ELINK_DEBUG_P2(sc, "10G-base-T LASI status 0x%x->0x%x\n", val2, val1); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val2); elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_STATUS, &val1); ELINK_DEBUG_P2(sc, "10G-base-T PMA status 0x%x->0x%x\n", val2, val1); link_up = ((val1 & 4) == 4); /* If link is up print the AN outcome of the SFX7101 PHY */ if (link_up) { elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_MASTER_STATUS, &val2); vars->line_speed = ELINK_SPEED_10000; vars->duplex = DUPLEX_FULL; ELINK_DEBUG_P2(sc, "SFX7101 AN status 0x%x->Master=%x\n", val2, (val2 & (1<<14))); elink_ext_phy_10G_an_resolve(sc, phy, vars); elink_ext_phy_resolve_fc(phy, params, vars); /* Read LP advertised speeds */ if (val2 & (1<<11)) vars->link_status |= LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE; } return link_up; } static elink_status_t elink_7101_format_ver(uint32_t spirom_ver, uint8_t *str, uint16_t *len) { if (*len < 5) return ELINK_STATUS_ERROR; str[0] = (spirom_ver & 0xFF); str[1] = (spirom_ver & 0xFF00) >> 8; str[2] = (spirom_ver & 0xFF0000) >> 16; str[3] = (spirom_ver & 0xFF000000) >> 24; str[4] = '\0'; *len -= 5; return ELINK_STATUS_OK; } void elink_sfx7101_sp_sw_reset(struct bxe_softc *sc, struct elink_phy *phy) { uint16_t val, cnt; elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_RESET, &val); for (cnt = 0; cnt < 10; cnt++) { DELAY(1000 * 50); /* Writes a self-clearing reset */ elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_RESET, (val | (1<<15))); /* Wait for clear */ elink_cl45_read(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7101_RESET, &val); if ((val & (1<<15)) == 0) break; } } static void elink_7101_hw_reset(struct elink_phy *phy, struct elink_params *params) { /* Low power mode is controlled by GPIO 2 */ elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_LOW, params->port); /* The PHY reset is controlled by GPIO 1 */ elink_cb_gpio_write(params->sc, MISC_REGISTERS_GPIO_1, MISC_REGISTERS_GPIO_OUTPUT_LOW, params->port); } static void elink_7101_set_link_led(struct elink_phy *phy, struct elink_params *params, uint8_t mode) { uint16_t val = 0; struct bxe_softc *sc = params->sc; switch (mode) { case ELINK_LED_MODE_FRONT_PANEL_OFF: case ELINK_LED_MODE_OFF: val = 2; break; case ELINK_LED_MODE_ON: val = 1; break; case ELINK_LED_MODE_OPER: val = 0; break; } elink_cl45_write(sc, phy, MDIO_PMA_DEVAD, MDIO_PMA_REG_7107_LINK_LED_CNTL, val); } /******************************************************************/ /* STATIC PHY DECLARATION */ /******************************************************************/ static const struct elink_phy phy_null = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN, .addr = 0, .def_md_devad = 0, .flags = ELINK_FLAGS_INIT_XGXS_FIRST, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = 0, .media_type = ELINK_ETH_PHY_NOT_PRESENT, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)NULL, .read_status = (read_status_t)NULL, .link_reset = (link_reset_t)NULL, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)NULL, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_serdes = { .type = PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT, .addr = 0xff, .def_md_devad = 0, .flags = 0, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_2500baseX_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_xgxs_config_init, .read_status = (read_status_t)elink_link_settings_status, .link_reset = (link_reset_t)elink_int_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)NULL, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_xgxs = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT, .addr = 0xff, .def_md_devad = 0, .flags = 0, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_2500baseX_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_CX4, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_xgxs_config_init, .read_status = (read_status_t)elink_link_settings_status, .link_reset = (link_reset_t)elink_int_link_reset, .config_loopback = (config_loopback_t)elink_set_xgxs_loopback, .format_fw_ver = (format_fw_ver_t)NULL, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)elink_xgxs_specific_func }; static const struct elink_phy phy_warpcore = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_TX_ERROR_CHECK, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_1000baseKX_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_10000baseKR_Full | ELINK_SUPPORTED_20000baseKR2_Full | ELINK_SUPPORTED_20000baseMLD2_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_UNSPECIFIED, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, /* req_duplex = */0, /* rsrv = */0, .config_init = (config_init_t)elink_warpcore_config_init, .read_status = (read_status_t)elink_warpcore_read_status, .link_reset = (link_reset_t)elink_warpcore_link_reset, .config_loopback = (config_loopback_t)elink_set_warpcore_loopback, .format_fw_ver = (format_fw_ver_t)NULL, .hw_reset = (hw_reset_t)elink_warpcore_hw_reset, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_7101 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_7101_config_init, .read_status = (read_status_t)elink_7101_read_status, .link_reset = (link_reset_t)elink_common_ext_link_reset, .config_loopback = (config_loopback_t)elink_7101_config_loopback, .format_fw_ver = (format_fw_ver_t)elink_7101_format_ver, .hw_reset = (hw_reset_t)elink_7101_hw_reset, .set_link_led = (set_link_led_t)elink_7101_set_link_led, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_8073 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073, .addr = 0xff, .def_md_devad = 0, .flags = 0, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_2500baseX_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_KR, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8073_config_init, .read_status = (read_status_t)elink_8073_read_status, .link_reset = (link_reset_t)elink_8073_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_format_ver, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)elink_8073_specific_func }; static const struct elink_phy phy_8705 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_INIT_XGXS_FIRST, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_XFP_FIBER, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8705_config_init, .read_status = (read_status_t)elink_8705_read_status, .link_reset = (link_reset_t)elink_common_ext_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_null_format_ver, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_8706 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_INIT_XGXS_FIRST, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_SFPP_10G_FIBER, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8706_config_init, .read_status = (read_status_t)elink_8706_read_status, .link_reset = (link_reset_t)elink_common_ext_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_format_ver, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_8726 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726, .addr = 0xff, .def_md_devad = 0, .flags = (ELINK_FLAGS_INIT_XGXS_FIRST | ELINK_FLAGS_TX_ERROR_CHECK), .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_NOT_PRESENT, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8726_config_init, .read_status = (read_status_t)elink_8726_read_status, .link_reset = (link_reset_t)elink_8726_link_reset, .config_loopback = (config_loopback_t)elink_8726_config_loopback, .format_fw_ver = (format_fw_ver_t)elink_format_ver, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)NULL, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_8727 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727, .addr = 0xff, .def_md_devad = 0, .flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_TX_ERROR_CHECK), .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_NOT_PRESENT, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8727_config_init, .read_status = (read_status_t)elink_8727_read_status, .link_reset = (link_reset_t)elink_8727_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_format_ver, .hw_reset = (hw_reset_t)elink_8727_hw_reset, .set_link_led = (set_link_led_t)elink_8727_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_8727_specific_func }; static const struct elink_phy phy_8481 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_REARM_LATCH_SIGNAL, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_8481_config_init, .read_status = (read_status_t)elink_848xx_read_status, .link_reset = (link_reset_t)elink_8481_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver, .hw_reset = (hw_reset_t)elink_8481_hw_reset, .set_link_led = (set_link_led_t)elink_848xx_set_link_led, .phy_specific_func = (phy_specific_func_t)NULL }; static const struct elink_phy phy_84823 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823, .addr = 0xff, .def_md_devad = 0, .flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_REARM_LATCH_SIGNAL | ELINK_FLAGS_TX_ERROR_CHECK), .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_848x3_config_init, .read_status = (read_status_t)elink_848xx_read_status, .link_reset = (link_reset_t)elink_848x3_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)elink_848xx_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func }; static const struct elink_phy phy_84833 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833, .addr = 0xff, .def_md_devad = 0, .flags = (ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_REARM_LATCH_SIGNAL | ELINK_FLAGS_TX_ERROR_CHECK | ELINK_FLAGS_TEMPERATURE), .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_848x3_config_init, .read_status = (read_status_t)elink_848xx_read_status, .link_reset = (link_reset_t)elink_848x3_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver, .hw_reset = (hw_reset_t)elink_84833_hw_reset_phy, .set_link_led = (set_link_led_t)elink_848xx_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func }; static const struct elink_phy phy_84834 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_REARM_LATCH_SIGNAL, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_848x3_config_init, .read_status = (read_status_t)elink_848xx_read_status, .link_reset = (link_reset_t)elink_848x3_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver, .hw_reset = (hw_reset_t)elink_84833_hw_reset_phy, .set_link_led = (set_link_led_t)elink_848xx_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func }; static const struct elink_phy phy_84858 = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_FAN_FAILURE_DET_REQ | ELINK_FLAGS_REARM_LATCH_SIGNAL, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, .req_duplex = 0, .rsrv = 0, .config_init = (config_init_t)elink_848x3_config_init, .read_status = (read_status_t)elink_848xx_read_status, .link_reset = (link_reset_t)elink_848x3_link_reset, .config_loopback = (config_loopback_t)NULL, .format_fw_ver = (format_fw_ver_t)elink_848xx_format_ver, .hw_reset = (hw_reset_t)elink_84833_hw_reset_phy, .set_link_led = (set_link_led_t)elink_848xx_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_848xx_specific_func }; static const struct elink_phy phy_54618se = { .type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE, .addr = 0xff, .def_md_devad = 0, .flags = ELINK_FLAGS_INIT_XGXS_FIRST, .rx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .tx_preemphasis = {0xffff, 0xffff, 0xffff, 0xffff}, .mdio_ctrl = 0, .supported = (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause), .media_type = ELINK_ETH_PHY_BASE_T, .ver_addr = 0, .req_flow_ctrl = 0, .req_line_speed = 0, .speed_cap_mask = 0, /* req_duplex = */0, /* rsrv = */0, .config_init = (config_init_t)elink_54618se_config_init, .read_status = (read_status_t)elink_54618se_read_status, .link_reset = (link_reset_t)elink_54618se_link_reset, .config_loopback = (config_loopback_t)elink_54618se_config_loopback, .format_fw_ver = (format_fw_ver_t)NULL, .hw_reset = (hw_reset_t)NULL, .set_link_led = (set_link_led_t)elink_5461x_set_link_led, .phy_specific_func = (phy_specific_func_t)elink_54618se_specific_func }; /*****************************************************************/ /* */ /* Populate the phy according. Main function: elink_populate_phy */ /* */ /*****************************************************************/ static void elink_populate_preemphasis(struct bxe_softc *sc, uint32_t shmem_base, struct elink_phy *phy, uint8_t port, uint8_t phy_index) { /* Get the 4 lanes xgxs config rx and tx */ uint32_t rx = 0, tx = 0, i; for (i = 0; i < 2; i++) { /* INT_PHY and ELINK_EXT_PHY1 share the same value location in * the shmem. When num_phys is greater than 1, than this value * applies only to ELINK_EXT_PHY1 */ if (phy_index == ELINK_INT_PHY || phy_index == ELINK_EXT_PHY1) { rx = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].xgxs_config_rx[i<<1])); tx = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].xgxs_config_tx[i<<1])); } else { rx = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].xgxs_config2_rx[i<<1])); tx = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].xgxs_config2_rx[i<<1])); } phy->rx_preemphasis[i << 1] = ((rx>>16) & 0xffff); phy->rx_preemphasis[(i << 1) + 1] = (rx & 0xffff); phy->tx_preemphasis[i << 1] = ((tx>>16) & 0xffff); phy->tx_preemphasis[(i << 1) + 1] = (tx & 0xffff); ELINK_DEBUG_P2(sc,"phy->rx_preemphasis = %x, phy->tx_preemphasis = %x\n", phy->rx_preemphasis[i << 1], phy->tx_preemphasis[i << 1]); } } static uint32_t elink_get_ext_phy_config(struct bxe_softc *sc, uint32_t shmem_base, uint8_t phy_index, uint8_t port) { uint32_t ext_phy_config = 0; switch (phy_index) { case ELINK_EXT_PHY1: ext_phy_config = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].external_phy_config)); break; case ELINK_EXT_PHY2: ext_phy_config = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].external_phy_config2)); break; default: ELINK_DEBUG_P1(sc, "Invalid phy_index %d\n", phy_index); return ELINK_STATUS_ERROR; } return ext_phy_config; } static elink_status_t elink_populate_int_phy(struct bxe_softc *sc, uint32_t shmem_base, uint8_t port, struct elink_phy *phy) { uint32_t phy_addr; uint32_t chip_id; uint32_t switch_cfg = (REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.port_feature_config[port].link_config)) & PORT_FEATURE_CONNECTED_SWITCH_MASK); chip_id = (REG_RD(sc, MISC_REG_CHIP_NUM) << 16) | ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12); ELINK_DEBUG_P1(sc, ":chip_id = 0x%x\n", chip_id); if (USES_WARPCORE(sc)) { uint32_t serdes_net_if; phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); *phy = phy_warpcore; if (REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR) == 0x3) phy->flags |= ELINK_FLAGS_4_PORT_MODE; else phy->flags &= ~ELINK_FLAGS_4_PORT_MODE; /* Check Dual mode */ serdes_net_if = (REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[port].default_cfg)) & PORT_HW_CFG_NET_SERDES_IF_MASK); /* Set the appropriate supported and flags indications per * interface type of the chip */ switch (serdes_net_if) { case PORT_HW_CFG_NET_SERDES_IF_SGMII: phy->supported &= (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); phy->media_type = ELINK_ETH_PHY_BASE_T; break; case PORT_HW_CFG_NET_SERDES_IF_XFI: phy->supported &= (ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); phy->media_type = ELINK_ETH_PHY_XFP_FIBER; break; case PORT_HW_CFG_NET_SERDES_IF_SFI: phy->supported &= (ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); phy->media_type = ELINK_ETH_PHY_SFPP_10G_FIBER; break; case PORT_HW_CFG_NET_SERDES_IF_KR: phy->media_type = ELINK_ETH_PHY_KR; phy->supported &= (ELINK_SUPPORTED_1000baseKX_Full | ELINK_SUPPORTED_10000baseKR_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); break; case PORT_HW_CFG_NET_SERDES_IF_DXGXS: phy->media_type = ELINK_ETH_PHY_KR; phy->flags |= ELINK_FLAGS_WC_DUAL_MODE; phy->supported &= (ELINK_SUPPORTED_20000baseMLD2_Full | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); break; case PORT_HW_CFG_NET_SERDES_IF_KR2: phy->media_type = ELINK_ETH_PHY_KR; phy->flags |= ELINK_FLAGS_WC_DUAL_MODE; phy->supported &= (ELINK_SUPPORTED_20000baseKR2_Full | ELINK_SUPPORTED_10000baseKR_Full | ELINK_SUPPORTED_1000baseKX_Full | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); phy->flags &= ~ELINK_FLAGS_TX_ERROR_CHECK; break; default: ELINK_DEBUG_P1(sc, "Unknown WC interface type 0x%x\n", serdes_net_if); break; } /* Enable MDC/MDIO work-around for E3 A0 since free running MDC * was not set as expected. For B0, ECO will be enabled so there * won't be an issue there */ if (CHIP_REV(sc) == CHIP_REV_Ax) phy->flags |= ELINK_FLAGS_MDC_MDIO_WA; else phy->flags |= ELINK_FLAGS_MDC_MDIO_WA_B0; ELINK_DEBUG_P3(sc, "media_type = %x, flags = %x, supported = %x\n", phy->media_type, phy->flags, phy->supported); } else { switch (switch_cfg) { case ELINK_SWITCH_CFG_1G: phy_addr = REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10); *phy = phy_serdes; break; case ELINK_SWITCH_CFG_10G: phy_addr = REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18); *phy = phy_xgxs; break; default: ELINK_DEBUG_P0(sc, "Invalid switch_cfg\n"); return ELINK_STATUS_ERROR; } } phy->addr = (uint8_t)phy_addr; phy->mdio_ctrl = elink_get_emac_base(sc, SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH, port); if (CHIP_IS_E2(sc)) phy->def_md_devad = ELINK_E2_DEFAULT_PHY_DEV_ADDR; else phy->def_md_devad = ELINK_DEFAULT_PHY_DEV_ADDR; ELINK_DEBUG_P3(sc, "Internal phy port=%d, addr=0x%x, mdio_ctl=0x%x\n", port, phy->addr, phy->mdio_ctrl); elink_populate_preemphasis(sc, shmem_base, phy, port, ELINK_INT_PHY); return ELINK_STATUS_OK; } static elink_status_t elink_populate_ext_phy(struct bxe_softc *sc, uint8_t phy_index, uint32_t shmem_base, uint32_t shmem2_base, uint8_t port, struct elink_phy *phy) { uint32_t ext_phy_config, phy_type, config2; uint32_t mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_BOTH; ext_phy_config = elink_get_ext_phy_config(sc, shmem_base, phy_index, port); phy_type = ELINK_XGXS_EXT_PHY_TYPE(ext_phy_config); /* Select the phy type */ switch (phy_type) { case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073: mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_SWAPPED; *phy = phy_8073; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705: *phy = phy_8705; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706: *phy = phy_8706; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726: mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1; *phy = phy_8726; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC: /* BCM8727_NOC => BCM8727 no over current */ mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1; *phy = phy_8727; phy->flags |= ELINK_FLAGS_NOC; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727: mdc_mdio_access = SHARED_HW_CFG_MDC_MDIO_ACCESS1_EMAC1; *phy = phy_8727; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481: *phy = phy_8481; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823: *phy = phy_84823; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833: *phy = phy_84833; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834: *phy = phy_84834; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858: *phy = phy_84858; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54616: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE: *phy = phy_54618se; if (phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM54618SE) phy->flags |= ELINK_FLAGS_EEE; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101: *phy = phy_7101; break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE: *phy = phy_null; return ELINK_STATUS_ERROR; default: *phy = phy_null; /* In case external PHY wasn't found */ if ((phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) && (phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) return ELINK_STATUS_ERROR; return ELINK_STATUS_OK; } phy->addr = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); elink_populate_preemphasis(sc, shmem_base, phy, port, phy_index); /* The shmem address of the phy version is located on different * structures. In case this structure is too old, do not set * the address */ config2 = REG_RD(sc, shmem_base + offsetof(struct shmem_region, dev_info.shared_hw_config.config2)); if (phy_index == ELINK_EXT_PHY1) { phy->ver_addr = shmem_base + offsetof(struct shmem_region, port_mb[port].ext_phy_fw_version); /* Check specific mdc mdio settings */ if (config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS1_MASK) mdc_mdio_access = config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS1_MASK; } else { uint32_t size = REG_RD(sc, shmem2_base); if (size > offsetof(struct shmem2_region, ext_phy_fw_version2)) { phy->ver_addr = shmem2_base + offsetof(struct shmem2_region, ext_phy_fw_version2[port]); } /* Check specific mdc mdio settings */ if (config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS2_MASK) mdc_mdio_access = (config2 & SHARED_HW_CFG_MDC_MDIO_ACCESS2_MASK) >> (SHARED_HW_CFG_MDC_MDIO_ACCESS2_SHIFT - SHARED_HW_CFG_MDC_MDIO_ACCESS1_SHIFT); } phy->mdio_ctrl = elink_get_emac_base(sc, mdc_mdio_access, port); if (elink_is_8483x_8485x(phy) && (phy->ver_addr)) { /* Remove 100Mb link supported for BCM84833/4 when phy fw * version lower than or equal to 1.39 */ uint32_t raw_ver = REG_RD(sc, phy->ver_addr); if (((raw_ver & 0x7F) <= 39) && (((raw_ver & 0xF80) >> 7) <= 1)) phy->supported &= ~(ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full); } ELINK_DEBUG_P3(sc, "phy_type 0x%x port %d found in index %d\n", phy_type, port, phy_index); ELINK_DEBUG_P2(sc, " addr=0x%x, mdio_ctl=0x%x\n", phy->addr, phy->mdio_ctrl); return ELINK_STATUS_OK; } static elink_status_t elink_populate_phy(struct bxe_softc *sc, uint8_t phy_index, uint32_t shmem_base, uint32_t shmem2_base, uint8_t port, struct elink_phy *phy) { elink_status_t status = ELINK_STATUS_OK; phy->type = PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN; if (phy_index == ELINK_INT_PHY) return elink_populate_int_phy(sc, shmem_base, port, phy); status = elink_populate_ext_phy(sc, phy_index, shmem_base, shmem2_base, port, phy); return status; } static void elink_phy_def_cfg(struct elink_params *params, struct elink_phy *phy, uint8_t phy_index) { struct bxe_softc *sc = params->sc; uint32_t link_config; /* Populate the default phy configuration for MF mode */ if (phy_index == ELINK_EXT_PHY2) { link_config = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port].link_config2)); phy->speed_cap_mask = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].speed_capability_mask2)); } else { link_config = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_feature_config[params->port].link_config)); phy->speed_cap_mask = REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].speed_capability_mask)); } ELINK_DEBUG_P3(sc, "Default config phy idx %x cfg 0x%x speed_cap_mask 0x%x\n", phy_index, link_config, phy->speed_cap_mask); phy->req_duplex = DUPLEX_FULL; switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { case PORT_FEATURE_LINK_SPEED_10M_HALF: phy->req_duplex = DUPLEX_HALF; case PORT_FEATURE_LINK_SPEED_10M_FULL: phy->req_line_speed = ELINK_SPEED_10; break; case PORT_FEATURE_LINK_SPEED_100M_HALF: phy->req_duplex = DUPLEX_HALF; case PORT_FEATURE_LINK_SPEED_100M_FULL: phy->req_line_speed = ELINK_SPEED_100; break; case PORT_FEATURE_LINK_SPEED_1G: phy->req_line_speed = ELINK_SPEED_1000; break; case PORT_FEATURE_LINK_SPEED_2_5G: phy->req_line_speed = ELINK_SPEED_2500; break; case PORT_FEATURE_LINK_SPEED_10G_CX4: phy->req_line_speed = ELINK_SPEED_10000; break; default: phy->req_line_speed = ELINK_SPEED_AUTO_NEG; break; } ELINK_DEBUG_P2(sc, "Default config phy idx %x, req_duplex config %x\n", phy_index, phy->req_duplex); switch (link_config & PORT_FEATURE_FLOW_CONTROL_MASK) { case PORT_FEATURE_FLOW_CONTROL_AUTO: phy->req_flow_ctrl = ELINK_FLOW_CTRL_AUTO; break; case PORT_FEATURE_FLOW_CONTROL_TX: phy->req_flow_ctrl = ELINK_FLOW_CTRL_TX; break; case PORT_FEATURE_FLOW_CONTROL_RX: phy->req_flow_ctrl = ELINK_FLOW_CTRL_RX; break; case PORT_FEATURE_FLOW_CONTROL_BOTH: phy->req_flow_ctrl = ELINK_FLOW_CTRL_BOTH; break; default: phy->req_flow_ctrl = ELINK_FLOW_CTRL_NONE; break; } ELINK_DEBUG_P3(sc, "Requested Duplex = %x, line_speed = %x, flow_ctrl = %x\n", phy->req_duplex, phy->req_line_speed, phy->req_flow_ctrl); } uint32_t elink_phy_selection(struct elink_params *params) { uint32_t phy_config_swapped, prio_cfg; uint32_t return_cfg = PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT; phy_config_swapped = params->multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED; prio_cfg = params->multi_phy_config & PORT_HW_CFG_PHY_SELECTION_MASK; if (phy_config_swapped) { switch (prio_cfg) { case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: return_cfg = PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: return_cfg = PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: return_cfg = PORT_HW_CFG_PHY_SELECTION_FIRST_PHY; break; case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: return_cfg = PORT_HW_CFG_PHY_SELECTION_SECOND_PHY; break; } } else return_cfg = prio_cfg; return return_cfg; } elink_status_t elink_phy_probe(struct elink_params *params) { uint8_t phy_index, actual_phy_idx; uint32_t phy_config_swapped, sync_offset, media_types; struct bxe_softc *sc = params->sc; struct elink_phy *phy; params->num_phys = 0; ELINK_DEBUG_P0(sc, "Begin phy probe\n"); #ifdef ELINK_INCLUDE_EMUL if (CHIP_REV_IS_EMUL(sc)) return ELINK_STATUS_OK; #endif phy_config_swapped = params->multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED; for (phy_index = ELINK_INT_PHY; phy_index < ELINK_MAX_PHYS; phy_index++) { actual_phy_idx = phy_index; if (phy_config_swapped) { if (phy_index == ELINK_EXT_PHY1) actual_phy_idx = ELINK_EXT_PHY2; else if (phy_index == ELINK_EXT_PHY2) actual_phy_idx = ELINK_EXT_PHY1; } ELINK_DEBUG_P3(sc, "phy_config_swapped %x, phy_index %x," " actual_phy_idx %x\n", phy_config_swapped, phy_index, actual_phy_idx); phy = ¶ms->phy[actual_phy_idx]; if (elink_populate_phy(sc, phy_index, params->shmem_base, params->shmem2_base, params->port, phy) != ELINK_STATUS_OK) { params->num_phys = 0; ELINK_DEBUG_P1(sc, "phy probe failed in phy index %d\n", phy_index); for (phy_index = ELINK_INT_PHY; phy_index < ELINK_MAX_PHYS; phy_index++) *phy = phy_null; return ELINK_STATUS_ERROR; } if (phy->type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN) break; if (params->feature_config_flags & ELINK_FEATURE_CONFIG_DISABLE_REMOTE_FAULT_DET) phy->flags &= ~ELINK_FLAGS_TX_ERROR_CHECK; if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_MT_SUPPORT)) phy->flags |= ELINK_FLAGS_MDC_MDIO_WA_G; sync_offset = params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[params->port].media_type); media_types = REG_RD(sc, sync_offset); /* Update media type for non-PMF sync only for the first time * In case the media type changes afterwards, it will be updated * using the update_status function */ if ((media_types & (PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK << (PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * actual_phy_idx))) == 0) { media_types |= ((phy->media_type & PORT_HW_CFG_MEDIA_TYPE_PHY0_MASK) << (PORT_HW_CFG_MEDIA_TYPE_PHY1_SHIFT * actual_phy_idx)); } REG_WR(sc, sync_offset, media_types); elink_phy_def_cfg(params, phy, phy_index); params->num_phys++; } ELINK_DEBUG_P1(sc, "End phy probe. #phys found %x\n", params->num_phys); return ELINK_STATUS_OK; } #ifdef ELINK_INCLUDE_EMUL static elink_status_t elink_init_e3_emul_mac(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->line_speed = params->req_line_speed[0]; /* In case link speed is auto, set speed the highest as possible */ if (params->req_line_speed[0] == ELINK_SPEED_AUTO_NEG) { if (params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC) vars->line_speed = ELINK_SPEED_2500; else if (elink_is_4_port_mode(sc)) vars->line_speed = ELINK_SPEED_10000; else vars->line_speed = ELINK_SPEED_20000; } if (vars->line_speed < ELINK_SPEED_10000) { if ((params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC)) { ELINK_DEBUG_P1(sc, "Invalid line speed %d while UMAC is" " disabled!\n", params->req_line_speed[0]); return ELINK_STATUS_ERROR; } switch (vars->line_speed) { case ELINK_SPEED_10: vars->link_status = ELINK_LINK_10TFD; break; case ELINK_SPEED_100: vars->link_status = ELINK_LINK_100TXFD; break; case ELINK_SPEED_1000: vars->link_status = ELINK_LINK_1000TFD; break; case ELINK_SPEED_2500: vars->link_status = ELINK_LINK_2500TFD; break; default: ELINK_DEBUG_P1(sc, "Invalid line speed %d for UMAC\n", vars->line_speed); return ELINK_STATUS_ERROR; } vars->link_status |= LINK_STATUS_LINK_UP; if (params->loopback_mode == ELINK_LOOPBACK_UMAC) elink_umac_enable(params, vars, 1); else elink_umac_enable(params, vars, 0); } else { /* Link speed >= 10000 requires XMAC enabled */ if (params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC) { ELINK_DEBUG_P1(sc, "Invalid line speed %d while XMAC is" " disabled!\n", params->req_line_speed[0]); return ELINK_STATUS_ERROR; } /* Check link speed */ switch (vars->line_speed) { case ELINK_SPEED_10000: vars->link_status = ELINK_LINK_10GTFD; break; case ELINK_SPEED_20000: vars->link_status = ELINK_LINK_20GTFD; break; default: ELINK_DEBUG_P1(sc, "Invalid line speed %d for XMAC\n", vars->line_speed); return ELINK_STATUS_ERROR; } vars->link_status |= LINK_STATUS_LINK_UP; if (params->loopback_mode == ELINK_LOOPBACK_XMAC) elink_xmac_enable(params, vars, 1); else elink_xmac_enable(params, vars, 0); } return ELINK_STATUS_OK; } static elink_status_t elink_init_emul(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; if (CHIP_IS_E3(sc)) { if (elink_init_e3_emul_mac(params, vars) != ELINK_STATUS_OK) return ELINK_STATUS_ERROR; } else { if (params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC) { vars->line_speed = ELINK_SPEED_1000; vars->link_status = (LINK_STATUS_LINK_UP | ELINK_LINK_1000XFD); if (params->loopback_mode == ELINK_LOOPBACK_EMAC) elink_emac_enable(params, vars, 1); else elink_emac_enable(params, vars, 0); } else { vars->line_speed = ELINK_SPEED_10000; vars->link_status = (LINK_STATUS_LINK_UP | ELINK_LINK_10GTFD); if (params->loopback_mode == ELINK_LOOPBACK_BMAC) elink_bmac_enable(params, vars, 1, 1); else elink_bmac_enable(params, vars, 0, 1); } } vars->link_up = 1; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; if (CHIP_IS_E1x(sc)) elink_pbf_update(params, vars->flow_ctrl, vars->line_speed); /* Disable drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); /* update shared memory */ elink_update_mng(params, vars->link_status); return ELINK_STATUS_OK; } #endif #ifdef ELINK_INCLUDE_FPGA static elink_status_t elink_init_fpga(struct elink_params *params, struct elink_vars *vars) { /* Enable on E1.5 FPGA */ struct bxe_softc *sc = params->sc; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; if (!(CHIP_IS_E1(sc))) { vars->flow_ctrl = (ELINK_FLOW_CTRL_TX | ELINK_FLOW_CTRL_RX); vars->link_status |= (LINK_STATUS_TX_FLOW_CONTROL_ENABLED | LINK_STATUS_RX_FLOW_CONTROL_ENABLED); } if (CHIP_IS_E3(sc)) { vars->line_speed = params->req_line_speed[0]; switch (vars->line_speed) { case ELINK_SPEED_AUTO_NEG: vars->line_speed = ELINK_SPEED_2500; case ELINK_SPEED_2500: vars->link_status = ELINK_LINK_2500TFD; break; case ELINK_SPEED_1000: vars->link_status = ELINK_LINK_1000XFD; break; case ELINK_SPEED_100: vars->link_status = ELINK_LINK_100TXFD; break; case ELINK_SPEED_10: vars->link_status = ELINK_LINK_10TFD; break; default: ELINK_DEBUG_P1(sc, "Invalid link speed %d\n", params->req_line_speed[0]); return ELINK_STATUS_ERROR; } vars->link_status |= LINK_STATUS_LINK_UP; if (params->loopback_mode == ELINK_LOOPBACK_UMAC) elink_umac_enable(params, vars, 1); else elink_umac_enable(params, vars, 0); } else { vars->line_speed = ELINK_SPEED_10000; vars->link_status = (LINK_STATUS_LINK_UP | ELINK_LINK_10GTFD); if (params->loopback_mode == ELINK_LOOPBACK_EMAC) elink_emac_enable(params, vars, 1); else elink_emac_enable(params, vars, 0); } vars->link_up = 1; if (CHIP_IS_E1x(sc)) elink_pbf_update(params, vars->flow_ctrl, vars->line_speed); /* Disable drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); /* Update shared memory */ elink_update_mng(params, vars->link_status); return ELINK_STATUS_OK; } #endif static void elink_init_bmac_loopback(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->link_up = 1; vars->line_speed = ELINK_SPEED_10000; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_BMAC; vars->phy_flags = PHY_XGXS_FLAG; elink_xgxs_deassert(params); /* Set bmac loopback */ elink_bmac_enable(params, vars, 1, 1); REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); } static void elink_init_emac_loopback(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->link_up = 1; vars->line_speed = ELINK_SPEED_1000; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_EMAC; vars->phy_flags = PHY_XGXS_FLAG; elink_xgxs_deassert(params); /* Set bmac loopback */ elink_emac_enable(params, vars, 1); elink_emac_program(params, vars); REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); } static void elink_init_xmac_loopback(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->link_up = 1; if (!params->req_line_speed[0]) vars->line_speed = ELINK_SPEED_10000; else vars->line_speed = params->req_line_speed[0]; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_XMAC; vars->phy_flags = PHY_XGXS_FLAG; /* Set WC to loopback mode since link is required to provide clock * to the XMAC in 20G mode */ elink_set_aer_mmd(params, ¶ms->phy[0]); elink_warpcore_reset_lane(sc, ¶ms->phy[0], 0); params->phy[ELINK_INT_PHY].config_loopback( ¶ms->phy[ELINK_INT_PHY], params); elink_xmac_enable(params, vars, 1); REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); } static void elink_init_umac_loopback(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->link_up = 1; vars->line_speed = ELINK_SPEED_1000; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_UMAC; vars->phy_flags = PHY_XGXS_FLAG; elink_umac_enable(params, vars, 1); REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); } static void elink_init_xgxs_loopback(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; struct elink_phy *int_phy = ¶ms->phy[ELINK_INT_PHY]; vars->link_up = 1; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->duplex = DUPLEX_FULL; if (params->req_line_speed[0] == ELINK_SPEED_1000) vars->line_speed = ELINK_SPEED_1000; else if ((params->req_line_speed[0] == ELINK_SPEED_20000) || (int_phy->flags & ELINK_FLAGS_WC_DUAL_MODE)) vars->line_speed = ELINK_SPEED_20000; else vars->line_speed = ELINK_SPEED_10000; if (!USES_WARPCORE(sc)) elink_xgxs_deassert(params); elink_link_initialize(params, vars); if (params->req_line_speed[0] == ELINK_SPEED_1000) { if (USES_WARPCORE(sc)) elink_umac_enable(params, vars, 0); else { elink_emac_program(params, vars); elink_emac_enable(params, vars, 0); } } else { if (USES_WARPCORE(sc)) elink_xmac_enable(params, vars, 0); else elink_bmac_enable(params, vars, 0, 1); } if (params->loopback_mode == ELINK_LOOPBACK_XGXS) { /* Set 10G XGXS loopback */ int_phy->config_loopback(int_phy, params); } else { /* Set external phy loopback */ uint8_t phy_index; for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) if (params->phy[phy_index].config_loopback) params->phy[phy_index].config_loopback( ¶ms->phy[phy_index], params); } REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); elink_set_led(params, vars, ELINK_LED_MODE_OPER, vars->line_speed); } void elink_set_rx_filter(struct elink_params *params, uint8_t en) { struct bxe_softc *sc = params->sc; uint8_t val = en * 0x1F; /* Open / close the gate between the NIG and the BRB */ if (!CHIP_IS_E1x(sc)) val |= en * 0x20; REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + params->port*4, val); if (!CHIP_IS_E1(sc)) { REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + params->port*4, en*0x3); } REG_WR(sc, (params->port ? NIG_REG_LLH1_BRB1_NOT_MCP : NIG_REG_LLH0_BRB1_NOT_MCP), en); } static elink_status_t elink_avoid_link_flap(struct elink_params *params, struct elink_vars *vars) { uint32_t phy_idx; uint32_t dont_clear_stat, lfa_sts; struct bxe_softc *sc = params->sc; elink_set_mdio_emac_per_phy(sc, params); /* Sync the link parameters */ elink_link_status_update(params, vars); /* * The module verification was already done by previous link owner, * so this call is meant only to get warning message */ for (phy_idx = ELINK_INT_PHY; phy_idx < params->num_phys; phy_idx++) { struct elink_phy *phy = ¶ms->phy[phy_idx]; if (phy->phy_specific_func) { ELINK_DEBUG_P0(sc, "Calling PHY specific func\n"); phy->phy_specific_func(phy, params, ELINK_PHY_INIT); } if ((phy->media_type == ELINK_ETH_PHY_SFPP_10G_FIBER) || (phy->media_type == ELINK_ETH_PHY_SFP_1G_FIBER) || (phy->media_type == ELINK_ETH_PHY_DA_TWINAX)) elink_verify_sfp_module(phy, params); } lfa_sts = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, lfa_sts)); dont_clear_stat = lfa_sts & SHMEM_LFA_DONT_CLEAR_STAT; /* Re-enable the NIG/MAC */ if (CHIP_IS_E3(sc)) { if (!dont_clear_stat) { REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_MSTAT0 << params->port)); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, (MISC_REGISTERS_RESET_REG_2_MSTAT0 << params->port)); } if (vars->line_speed < ELINK_SPEED_10000) elink_umac_enable(params, vars, 0); else elink_xmac_enable(params, vars, 0); } else { if (vars->line_speed < ELINK_SPEED_10000) elink_emac_enable(params, vars, 0); else elink_bmac_enable(params, vars, 0, !dont_clear_stat); } /* Increment LFA count */ lfa_sts = ((lfa_sts & ~LINK_FLAP_AVOIDANCE_COUNT_MASK) | (((((lfa_sts & LINK_FLAP_AVOIDANCE_COUNT_MASK) >> LINK_FLAP_AVOIDANCE_COUNT_OFFSET) + 1) & 0xff) << LINK_FLAP_AVOIDANCE_COUNT_OFFSET)); /* Clear link flap reason */ lfa_sts &= ~LFA_LINK_FLAP_REASON_MASK; REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, lfa_sts), lfa_sts); /* Disable NIG DRAIN */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); /* Enable interrupts */ elink_link_int_enable(params); return ELINK_STATUS_OK; } static void elink_cannot_avoid_link_flap(struct elink_params *params, struct elink_vars *vars, int lfa_status) { uint32_t lfa_sts, cfg_idx, tmp_val; struct bxe_softc *sc = params->sc; elink_link_reset(params, vars, 1); if (!params->lfa_base) return; /* Store the new link parameters */ REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, req_duplex), params->req_duplex[0] | (params->req_duplex[1] << 16)); REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, req_flow_ctrl), params->req_flow_ctrl[0] | (params->req_flow_ctrl[1] << 16)); REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, req_line_speed), params->req_line_speed[0] | (params->req_line_speed[1] << 16)); for (cfg_idx = 0; cfg_idx < SHMEM_LINK_CONFIG_SIZE; cfg_idx++) { REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, speed_cap_mask[cfg_idx]), params->speed_cap_mask[cfg_idx]); } tmp_val = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, additional_config)); tmp_val &= ~REQ_FC_AUTO_ADV_MASK; tmp_val |= params->req_fc_auto_adv; REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, additional_config), tmp_val); lfa_sts = REG_RD(sc, params->lfa_base + offsetof(struct shmem_lfa, lfa_sts)); /* Clear the "Don't Clear Statistics" bit, and set reason */ lfa_sts &= ~SHMEM_LFA_DONT_CLEAR_STAT; /* Set link flap reason */ lfa_sts &= ~LFA_LINK_FLAP_REASON_MASK; lfa_sts |= ((lfa_status & LFA_LINK_FLAP_REASON_MASK) << LFA_LINK_FLAP_REASON_OFFSET); /* Increment link flap counter */ lfa_sts = ((lfa_sts & ~LINK_FLAP_COUNT_MASK) | (((((lfa_sts & LINK_FLAP_COUNT_MASK) >> LINK_FLAP_COUNT_OFFSET) + 1) & 0xff) << LINK_FLAP_COUNT_OFFSET)); REG_WR(sc, params->lfa_base + offsetof(struct shmem_lfa, lfa_sts), lfa_sts); /* Proceed with regular link initialization */ } elink_status_t elink_phy_init(struct elink_params *params, struct elink_vars *vars) { int lfa_status; struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "Phy Initialization started\n"); ELINK_DEBUG_P2(sc, "(1) req_speed %d, req_flowctrl %d\n", params->req_line_speed[0], params->req_flow_ctrl[0]); ELINK_DEBUG_P2(sc, "(2) req_speed %d, req_flowctrl %d\n", params->req_line_speed[1], params->req_flow_ctrl[1]); ELINK_DEBUG_P1(sc, "req_adv_flow_ctrl 0x%x\n", params->req_fc_auto_adv); vars->link_status = 0; vars->phy_link_up = 0; vars->link_up = 0; vars->line_speed = 0; vars->duplex = DUPLEX_FULL; vars->flow_ctrl = ELINK_FLOW_CTRL_NONE; vars->mac_type = ELINK_MAC_TYPE_NONE; vars->phy_flags = 0; vars->check_kr2_recovery_cnt = 0; params->link_flags = ELINK_PHY_INITIALIZED; /* Driver opens NIG-BRB filters */ elink_set_rx_filter(params, 1); elink_chng_link_count(params, 1); /* Check if link flap can be avoided */ lfa_status = elink_check_lfa(params); ELINK_DEBUG_P3(sc, " params : port = %x, loopback_mode = %x req_duplex = %x\n", params->port, params->loopback_mode, params->req_duplex[0]); ELINK_DEBUG_P3(sc, " params : switch_cfg = %x, lane_config = %x req_duplex[1] = %x\n", params->switch_cfg, params->lane_config, params->req_duplex[1]); ELINK_DEBUG_P3(sc, " params : chip_id = %x, feature_config_flags = %x, num_phys = %x\n", params->chip_id, params->feature_config_flags, params->num_phys); ELINK_DEBUG_P3(sc, " params : rsrv = %x, eee_mode = %x, hw_led_mode = x\n", params->rsrv, params->eee_mode, params->hw_led_mode); ELINK_DEBUG_P3(sc, " params : multi_phy = %x, req_fc_auto_adv = %x, link_flags = %x\n", params->multi_phy_config, params->req_fc_auto_adv, params->link_flags); ELINK_DEBUG_P2(sc, " params : lfa_base = %x, link_attr = %x\n", params->lfa_base, params->link_attr_sync); if (lfa_status == 0) { ELINK_DEBUG_P0(sc, "Link Flap Avoidance in progress\n"); return elink_avoid_link_flap(params, vars); } ELINK_DEBUG_P1(sc, "Cannot avoid link flap lfa_sta=0x%x\n", lfa_status); elink_cannot_avoid_link_flap(params, vars, lfa_status); /* Disable attentions */ elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4, (ELINK_NIG_MASK_XGXS0_LINK_STATUS | ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); #ifdef ELINK_INCLUDE_EMUL if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC)) #endif elink_emac_init(params, vars); if (params->feature_config_flags & ELINK_FEATURE_CONFIG_PFC_ENABLED) vars->link_status |= LINK_STATUS_PFC_ENABLED; if ((params->num_phys == 0) && !CHIP_REV_IS_SLOW(sc)) { ELINK_DEBUG_P0(sc, "No phy found for initialization !!\n"); return ELINK_STATUS_ERROR; } set_phy_vars(params, vars); ELINK_DEBUG_P1(sc, "Num of phys on board: %d\n", params->num_phys); #ifdef ELINK_INCLUDE_FPGA if (CHIP_REV_IS_FPGA(sc)) { return elink_init_fpga(params, vars); } else #endif #ifdef ELINK_INCLUDE_EMUL if (CHIP_REV_IS_EMUL(sc)) { return elink_init_emul(params, vars); } else #endif switch (params->loopback_mode) { case ELINK_LOOPBACK_BMAC: elink_init_bmac_loopback(params, vars); break; case ELINK_LOOPBACK_EMAC: elink_init_emac_loopback(params, vars); break; case ELINK_LOOPBACK_XMAC: elink_init_xmac_loopback(params, vars); break; case ELINK_LOOPBACK_UMAC: elink_init_umac_loopback(params, vars); break; case ELINK_LOOPBACK_XGXS: case ELINK_LOOPBACK_EXT_PHY: elink_init_xgxs_loopback(params, vars); break; default: if (!CHIP_IS_E3(sc)) { if (params->switch_cfg == ELINK_SWITCH_CFG_10G) elink_xgxs_deassert(params); else elink_serdes_deassert(sc, params->port); } elink_link_initialize(params, vars); DELAY(1000 * 30); elink_link_int_enable(params); break; } elink_update_mng(params, vars->link_status); elink_update_mng_eee(params, vars->eee_status); return ELINK_STATUS_OK; } elink_status_t elink_link_reset(struct elink_params *params, struct elink_vars *vars, uint8_t reset_ext_phy) { struct bxe_softc *sc = params->sc; uint8_t phy_index, port = params->port, clear_latch_ind = 0; ELINK_DEBUG_P1(sc, "Resetting the link of port %d\n", port); /* Disable attentions */ vars->link_status = 0; elink_chng_link_count(params, 1); elink_update_mng(params, vars->link_status); vars->eee_status &= ~(SHMEM_EEE_LP_ADV_STATUS_MASK | SHMEM_EEE_ACTIVE_BIT); elink_update_mng_eee(params, vars->eee_status); elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, (ELINK_NIG_MASK_XGXS0_LINK_STATUS | ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); /* Activate nig drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + port*4, 1); /* Disable nig egress interface */ if (!CHIP_IS_E3(sc)) { REG_WR(sc, NIG_REG_BMAC0_OUT_EN + port*4, 0); REG_WR(sc, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0); } #ifdef ELINK_INCLUDE_EMUL /* Stop BigMac rx */ if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC)) #endif if (!CHIP_IS_E3(sc)) elink_set_bmac_rx(sc, params->chip_id, port, 0); #ifdef ELINK_INCLUDE_EMUL /* Stop XMAC/UMAC rx */ if (!(params->feature_config_flags & ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC)) #endif if (CHIP_IS_E3(sc) && !CHIP_REV_IS_FPGA(sc)) { elink_set_xmac_rxtx(params, 0); elink_set_umac_rxtx(params, 0); } /* Disable emac */ if (!CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_NIG_EMAC0_EN + port*4, 0); DELAY(1000 * 10); /* The PHY reset is controlled by GPIO 1 * Hold it as vars low */ /* Clear link led */ elink_set_mdio_emac_per_phy(sc, params); elink_set_led(params, vars, ELINK_LED_MODE_OFF, 0); if (reset_ext_phy && (!CHIP_REV_IS_SLOW(sc))) { for (phy_index = ELINK_EXT_PHY1; phy_index < params->num_phys; phy_index++) { if (params->phy[phy_index].link_reset) { elink_set_aer_mmd(params, ¶ms->phy[phy_index]); params->phy[phy_index].link_reset( ¶ms->phy[phy_index], params); } if (params->phy[phy_index].flags & ELINK_FLAGS_REARM_LATCH_SIGNAL) clear_latch_ind = 1; } } if (clear_latch_ind) { /* Clear latching indication */ elink_rearm_latch_signal(sc, port, 0); elink_bits_dis(sc, NIG_REG_LATCH_BC_0 + port*4, 1 << ELINK_NIG_LATCH_BC_ENABLE_MI_INT); } #if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA) if (!CHIP_REV_IS_SLOW(sc)) #endif if (params->phy[ELINK_INT_PHY].link_reset) params->phy[ELINK_INT_PHY].link_reset( ¶ms->phy[ELINK_INT_PHY], params); /* Disable nig ingress interface */ if (!CHIP_IS_E3(sc)) { /* Reset BigMac */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port)); REG_WR(sc, NIG_REG_BMAC0_IN_EN + port*4, 0); REG_WR(sc, NIG_REG_EMAC0_IN_EN + port*4, 0); } else { uint32_t xmac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; elink_set_xumac_nig(params, 0, 0); if (REG_RD(sc, MISC_REG_RESET_REG_2) & MISC_REGISTERS_RESET_REG_2_XMAC) REG_WR(sc, xmac_base + XMAC_REG_CTRL, XMAC_CTRL_REG_SOFT_RESET); } vars->link_up = 0; vars->phy_flags = 0; return ELINK_STATUS_OK; } elink_status_t elink_lfa_reset(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; vars->link_up = 0; vars->phy_flags = 0; params->link_flags &= ~ELINK_PHY_INITIALIZED; if (!params->lfa_base) return elink_link_reset(params, vars, 1); /* * Activate NIG drain so that during this time the device won't send * anything while it is unable to response. */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 1); /* * Close gracefully the gate from BMAC to NIG such that no half packets * are passed. */ if (!CHIP_IS_E3(sc)) elink_set_bmac_rx(sc, params->chip_id, params->port, 0); if (CHIP_IS_E3(sc)) { elink_set_xmac_rxtx(params, 0); elink_set_umac_rxtx(params, 0); } /* Wait 10ms for the pipe to clean up*/ DELAY(1000 * 10); /* Clean the NIG-BRB using the network filters in a way that will * not cut a packet in the middle. */ elink_set_rx_filter(params, 0); /* * Re-open the gate between the BMAC and the NIG, after verifying the * gate to the BRB is closed, otherwise packets may arrive to the * firmware before driver had initialized it. The target is to achieve * minimum management protocol down time. */ if (!CHIP_IS_E3(sc)) elink_set_bmac_rx(sc, params->chip_id, params->port, 1); if (CHIP_IS_E3(sc)) { elink_set_xmac_rxtx(params, 1); elink_set_umac_rxtx(params, 1); } /* Disable NIG drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); return ELINK_STATUS_OK; } /****************************************************************************/ /* Common function */ /****************************************************************************/ static elink_status_t elink_8073_common_init_phy(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t shmem2_base_path[], uint8_t phy_index, uint32_t chip_id) { struct elink_phy phy[PORT_MAX]; struct elink_phy *phy_blk[PORT_MAX]; uint16_t val; int8_t port = 0; int8_t port_of_path = 0; uint32_t swap_val, swap_override; swap_val = REG_RD(sc, NIG_REG_PORT_SWAP); swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE); port ^= (swap_val && swap_override); elink_ext_phy_hw_reset(sc, port); /* PART1 - Reset both phys */ for (port = PORT_MAX - 1; port >= PORT_0; port--) { uint32_t shmem_base, shmem2_base; /* In E2, same phy is using for port0 of the two paths */ if (CHIP_IS_E1x(sc)) { shmem_base = shmem_base_path[0]; shmem2_base = shmem2_base_path[0]; port_of_path = port; } else { shmem_base = shmem_base_path[port]; shmem2_base = shmem2_base_path[port]; port_of_path = 0; } /* Extract the ext phy address for the port */ if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base, port_of_path, &phy[port]) != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "populate_phy failed\n"); return ELINK_STATUS_ERROR; } /* Disable attentions */ elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port_of_path*4, (ELINK_NIG_MASK_XGXS0_LINK_STATUS | ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); /* Need to take the phy out of low power mode in order * to write to access its registers */ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_HIGH, port); /* Reset the phy */ elink_cl45_write(sc, &phy[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15); } /* Add delay of 150ms after reset */ DELAY(1000 * 150); if (phy[PORT_0].addr & 0x1) { phy_blk[PORT_0] = &(phy[PORT_1]); phy_blk[PORT_1] = &(phy[PORT_0]); } else { phy_blk[PORT_0] = &(phy[PORT_0]); phy_blk[PORT_1] = &(phy[PORT_1]); } /* PART2 - Download firmware to both phys */ for (port = PORT_MAX - 1; port >= PORT_0; port--) { if (CHIP_IS_E1x(sc)) port_of_path = port; else port_of_path = 0; ELINK_DEBUG_P1(sc, "Loading spirom for phy address 0x%x\n", phy_blk[port]->addr); if (elink_8073_8727_external_rom_boot(sc, phy_blk[port], port_of_path)) return ELINK_STATUS_ERROR; /* Only set bit 10 = 1 (Tx power down) */ elink_cl45_read(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_POWER_DOWN, &val); /* Phase1 of TX_POWER_DOWN reset */ elink_cl45_write(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_POWER_DOWN, (val | 1<<10)); } /* Toggle Transmitter: Power down and then up with 600ms delay * between */ DELAY(1000 * 600); /* PART3 - complete TX_POWER_DOWN process, and set GPIO2 back to low */ for (port = PORT_MAX - 1; port >= PORT_0; port--) { /* Phase2 of POWER_DOWN_RESET */ /* Release bit 10 (Release Tx power down) */ elink_cl45_read(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_POWER_DOWN, &val); elink_cl45_write(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_POWER_DOWN, (val & (~(1<<10)))); DELAY(1000 * 15); /* Read modify write the SPI-ROM version select register */ elink_cl45_read(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_EDC_FFE_MAIN, &val); elink_cl45_write(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_EDC_FFE_MAIN, (val | (1<<12))); /* set GPIO2 back to LOW */ elink_cb_gpio_write(sc, MISC_REGISTERS_GPIO_2, MISC_REGISTERS_GPIO_OUTPUT_LOW, port); } return ELINK_STATUS_OK; } static elink_status_t elink_8726_common_init_phy(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t shmem2_base_path[], uint8_t phy_index, uint32_t chip_id) { uint32_t val; int8_t port; struct elink_phy phy; /* Use port1 because of the static port-swap */ /* Enable the module detection interrupt */ val = REG_RD(sc, MISC_REG_GPIO_EVENT_EN); val |= ((1<= PORT_0; port--) { uint32_t shmem_base, shmem2_base; /* In E2, same phy is using for port0 of the two paths */ if (CHIP_IS_E1x(sc)) { shmem_base = shmem_base_path[0]; shmem2_base = shmem2_base_path[0]; port_of_path = port; } else { shmem_base = shmem_base_path[port]; shmem2_base = shmem2_base_path[port]; port_of_path = 0; } /* Extract the ext phy address for the port */ if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base, port_of_path, &phy[port]) != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "populate phy failed\n"); return ELINK_STATUS_ERROR; } /* disable attentions */ elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port_of_path*4, (ELINK_NIG_MASK_XGXS0_LINK_STATUS | ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); /* Reset the phy */ elink_cl45_write(sc, &phy[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_CTRL, 1<<15); } /* Add delay of 150ms after reset */ DELAY(1000 * 150); if (phy[PORT_0].addr & 0x1) { phy_blk[PORT_0] = &(phy[PORT_1]); phy_blk[PORT_1] = &(phy[PORT_0]); } else { phy_blk[PORT_0] = &(phy[PORT_0]); phy_blk[PORT_1] = &(phy[PORT_1]); } /* PART2 - Download firmware to both phys */ for (port = PORT_MAX - 1; port >= PORT_0; port--) { if (CHIP_IS_E1x(sc)) port_of_path = port; else port_of_path = 0; ELINK_DEBUG_P1(sc, "Loading spirom for phy address 0x%x\n", phy_blk[port]->addr); if (elink_8073_8727_external_rom_boot(sc, phy_blk[port], port_of_path)) return ELINK_STATUS_ERROR; /* Disable PHY transmitter output */ elink_cl45_write(sc, phy_blk[port], MDIO_PMA_DEVAD, MDIO_PMA_REG_TX_DISABLE, 1); } return ELINK_STATUS_OK; } static elink_status_t elink_84833_common_init_phy(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t shmem2_base_path[], uint8_t phy_index, uint32_t chip_id) { uint8_t reset_gpios; reset_gpios = elink_84833_get_reset_gpios(sc, shmem_base_path, chip_id); elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_LOW); DELAY(10); elink_cb_gpio_mult_write(sc, reset_gpios, MISC_REGISTERS_GPIO_OUTPUT_HIGH); ELINK_DEBUG_P1(sc, "84833 reset pulse on pin values 0x%x\n", reset_gpios); return ELINK_STATUS_OK; } static elink_status_t elink_ext_phy_common_init(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t shmem2_base_path[], uint8_t phy_index, uint32_t ext_phy_type, uint32_t chip_id) { elink_status_t rc = ELINK_STATUS_OK; switch (ext_phy_type) { case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073: rc = elink_8073_common_init_phy(sc, shmem_base_path, shmem2_base_path, phy_index, chip_id); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8722: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC: rc = elink_8727_common_init_phy(sc, shmem_base_path, shmem2_base_path, phy_index, chip_id); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726: /* GPIO1 affects both ports, so there's need to pull * it for single port alone */ rc = elink_8726_common_init_phy(sc, shmem_base_path, shmem2_base_path, phy_index, chip_id); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84834: case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84858: /* GPIO3's are linked, and so both need to be toggled * to obtain required 2us pulse. */ rc = elink_84833_common_init_phy(sc, shmem_base_path, shmem2_base_path, phy_index, chip_id); break; case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE: rc = ELINK_STATUS_ERROR; break; default: ELINK_DEBUG_P1(sc, "ext_phy 0x%x common init not required\n", ext_phy_type); break; } if (rc != ELINK_STATUS_OK) elink_cb_event_log(sc, ELINK_LOG_ID_PHY_UNINITIALIZED, 0); // "Warning: PHY was not initialized," // " Port %d\n", return rc; } elink_status_t elink_common_init_phy(struct bxe_softc *sc, uint32_t shmem_base_path[], uint32_t shmem2_base_path[], uint32_t chip_id, uint8_t one_port_enabled) { elink_status_t rc = ELINK_STATUS_OK; uint32_t phy_ver, val; uint8_t phy_index = 0; uint32_t ext_phy_type, ext_phy_config; #if defined(ELINK_INCLUDE_EMUL) || defined(ELINK_INCLUDE_FPGA) if (CHIP_REV_IS_EMUL(sc) || CHIP_REV_IS_FPGA(sc)) return ELINK_STATUS_OK; #endif elink_set_mdio_clk(sc, chip_id, GRCBASE_EMAC0); elink_set_mdio_clk(sc, chip_id, GRCBASE_EMAC1); ELINK_DEBUG_P0(sc, "Begin common phy init\n"); if (CHIP_IS_E3(sc)) { /* Enable EPIO */ val = REG_RD(sc, MISC_REG_GEN_PURP_HWG); REG_WR(sc, MISC_REG_GEN_PURP_HWG, val | 1); } /* Check if common init was already done */ phy_ver = REG_RD(sc, shmem_base_path[0] + offsetof(struct shmem_region, port_mb[PORT_0].ext_phy_fw_version)); if (phy_ver) { ELINK_DEBUG_P1(sc, "Not doing common init; phy ver is 0x%x\n", phy_ver); return ELINK_STATUS_OK; } /* Read the ext_phy_type for arbitrary port(0) */ for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS; phy_index++) { ext_phy_config = elink_get_ext_phy_config(sc, shmem_base_path[0], phy_index, 0); ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(ext_phy_config); rc |= elink_ext_phy_common_init(sc, shmem_base_path, shmem2_base_path, phy_index, ext_phy_type, chip_id); } return rc; } static void elink_check_over_curr(struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint32_t cfg_pin; uint8_t port = params->port; uint32_t pin_val; cfg_pin = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_cmn_pin_cfg1)) & PORT_HW_CFG_E3_OVER_CURRENT_MASK) >> PORT_HW_CFG_E3_OVER_CURRENT_SHIFT; /* Ignore check if no external input PIN available */ if (elink_get_cfg_pin(sc, cfg_pin, &pin_val) != ELINK_STATUS_OK) return; if (!pin_val) { if ((vars->phy_flags & PHY_OVER_CURRENT_FLAG) == 0) { elink_cb_event_log(sc, ELINK_LOG_ID_OVER_CURRENT, params->port); //"Error: Power fault on Port %d has" // " been detected and the power to " // "that SFP+ module has been removed" // " to prevent failure of the card." // " Please remove the SFP+ module and" // " restart the system to clear this" // " error.\n", vars->phy_flags |= PHY_OVER_CURRENT_FLAG; elink_warpcore_power_module(params, 0); } } else vars->phy_flags &= ~PHY_OVER_CURRENT_FLAG; } /* Returns 0 if no change occurred since last check; 1 otherwise. */ static uint8_t elink_analyze_link_error(struct elink_params *params, struct elink_vars *vars, uint32_t status, uint32_t phy_flag, uint32_t link_flag, uint8_t notify) { struct bxe_softc *sc = params->sc; /* Compare new value with previous value */ uint8_t led_mode; uint32_t old_status = (vars->phy_flags & phy_flag) ? 1 : 0; if ((status ^ old_status) == 0) return 0; /* If values differ */ switch (phy_flag) { case PHY_HALF_OPEN_CONN_FLAG: ELINK_DEBUG_P0(sc, "Analyze Remote Fault\n"); break; case PHY_SFP_TX_FAULT_FLAG: ELINK_DEBUG_P0(sc, "Analyze TX Fault\n"); break; default: ELINK_DEBUG_P0(sc, "Analyze UNKNOWN\n"); } ELINK_DEBUG_P3(sc, "Link changed:[%x %x]->%x\n", vars->link_up, old_status, status); /* Do not touch the link in case physical link down */ if ((vars->phy_flags & PHY_PHYSICAL_LINK_FLAG) == 0) return 1; /* a. Update shmem->link_status accordingly * b. Update elink_vars->link_up */ if (status) { vars->link_status &= ~LINK_STATUS_LINK_UP; vars->link_status |= link_flag; vars->link_up = 0; vars->phy_flags |= phy_flag; /* activate nig drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 1); /* Set LED mode to off since the PHY doesn't know about these * errors */ led_mode = ELINK_LED_MODE_OFF; } else { vars->link_status |= LINK_STATUS_LINK_UP; vars->link_status &= ~link_flag; vars->link_up = 1; vars->phy_flags &= ~phy_flag; led_mode = ELINK_LED_MODE_OPER; /* Clear nig drain */ REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + params->port*4, 0); } elink_sync_link(params, vars); /* Update the LED according to the link state */ elink_set_led(params, vars, led_mode, ELINK_SPEED_10000); /* Update link status in the shared memory */ elink_update_mng(params, vars->link_status); /* C. Trigger General Attention */ vars->periodic_flags |= ELINK_PERIODIC_FLAGS_LINK_EVENT; if (notify) elink_cb_notify_link_changed(sc); return 1; } /****************************************************************************** * Description: * This function checks for half opened connection change indication. * When such change occurs, it calls the elink_analyze_link_error * to check if Remote Fault is set or cleared. Reception of remote fault * status message in the MAC indicates that the peer's MAC has detected * a fault, for example, due to break in the TX side of fiber. * ******************************************************************************/ static elink_status_t elink_check_half_open_conn(struct elink_params *params, struct elink_vars *vars, uint8_t notify) { struct bxe_softc *sc = params->sc; uint32_t lss_status = 0; uint32_t mac_base; /* In case link status is physically up @ 10G do */ if (((vars->phy_flags & PHY_PHYSICAL_LINK_FLAG) == 0) || (REG_RD(sc, NIG_REG_EGRESS_EMAC0_PORT + params->port*4))) return ELINK_STATUS_OK; if (CHIP_IS_E3(sc) && (REG_RD(sc, MISC_REG_RESET_REG_2) & (MISC_REGISTERS_RESET_REG_2_XMAC))) { /* Check E3 XMAC */ /* Note that link speed cannot be queried here, since it may be * zero while link is down. In case UMAC is active, LSS will * simply not be set */ mac_base = (params->port) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; /* Clear stick bits (Requires rising edge) */ REG_WR(sc, mac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, 0); REG_WR(sc, mac_base + XMAC_REG_CLEAR_RX_LSS_STATUS, XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_LOCAL_FAULT_STATUS | XMAC_CLEAR_RX_LSS_STATUS_REG_CLEAR_REMOTE_FAULT_STATUS); if (REG_RD(sc, mac_base + XMAC_REG_RX_LSS_STATUS)) lss_status = 1; elink_analyze_link_error(params, vars, lss_status, PHY_HALF_OPEN_CONN_FLAG, LINK_STATUS_NONE, notify); } else if (REG_RD(sc, MISC_REG_RESET_REG_2) & (MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << params->port)) { /* Check E1X / E2 BMAC */ uint32_t lss_status_reg; uint32_t wb_data[2]; mac_base = params->port ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; /* Read BIGMAC_REGISTER_RX_LSS_STATUS */ if (CHIP_IS_E2(sc)) lss_status_reg = BIGMAC2_REGISTER_RX_LSS_STAT; else lss_status_reg = BIGMAC_REGISTER_RX_LSS_STATUS; REG_RD_DMAE(sc, mac_base + lss_status_reg, wb_data, 2); lss_status = (wb_data[0] > 0); elink_analyze_link_error(params, vars, lss_status, PHY_HALF_OPEN_CONN_FLAG, LINK_STATUS_NONE, notify); } return ELINK_STATUS_OK; } static void elink_sfp_tx_fault_detection(struct elink_phy *phy, struct elink_params *params, struct elink_vars *vars) { struct bxe_softc *sc = params->sc; uint32_t cfg_pin, value = 0; uint8_t led_change, port = params->port; /* Get The SFP+ TX_Fault controlling pin ([eg]pio) */ cfg_pin = (REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].e3_cmn_pin_cfg)) & PORT_HW_CFG_E3_TX_FAULT_MASK) >> PORT_HW_CFG_E3_TX_FAULT_SHIFT; if (elink_get_cfg_pin(sc, cfg_pin, &value)) { ELINK_DEBUG_P1(sc, "Failed to read pin 0x%02x\n", cfg_pin); return; } led_change = elink_analyze_link_error(params, vars, value, PHY_SFP_TX_FAULT_FLAG, LINK_STATUS_SFP_TX_FAULT, 1); if (led_change) { /* Change TX_Fault led, set link status for further syncs */ uint8_t led_mode; if (vars->phy_flags & PHY_SFP_TX_FAULT_FLAG) { led_mode = MISC_REGISTERS_GPIO_HIGH; vars->link_status |= LINK_STATUS_SFP_TX_FAULT; } else { led_mode = MISC_REGISTERS_GPIO_LOW; vars->link_status &= ~LINK_STATUS_SFP_TX_FAULT; } /* If module is unapproved, led should be on regardless */ if (!(phy->flags & ELINK_FLAGS_SFP_NOT_APPROVED)) { ELINK_DEBUG_P1(sc, "Change TX_Fault LED: ->%x\n", led_mode); elink_set_e3_module_fault_led(params, led_mode); } } } static void elink_kr2_recovery(struct elink_params *params, struct elink_vars *vars, struct elink_phy *phy) { struct bxe_softc *sc = params->sc; ELINK_DEBUG_P0(sc, "KR2 recovery\n"); elink_warpcore_enable_AN_KR2(phy, params, vars); elink_warpcore_restart_AN_KR(phy, params); } static void elink_check_kr2_wa(struct elink_params *params, struct elink_vars *vars, struct elink_phy *phy) { struct bxe_softc *sc = params->sc; uint16_t base_page, next_page, not_kr2_device, lane; int sigdet; /* Once KR2 was disabled, wait 5 seconds before checking KR2 recovery * Since some switches tend to reinit the AN process and clear the * the advertised BP/NP after ~2 seconds causing the KR2 to be disabled * and recovered many times */ if (vars->check_kr2_recovery_cnt > 0) { vars->check_kr2_recovery_cnt--; return; } sigdet = elink_warpcore_get_sigdet(phy, params); if (!sigdet) { if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) { elink_kr2_recovery(params, vars, phy); ELINK_DEBUG_P0(sc, "No sigdet\n"); } return; } lane = elink_get_warpcore_lane(phy, params); CL22_WR_OVER_CL45(sc, phy, MDIO_REG_BANK_AER_BLOCK, MDIO_AER_BLOCK_AER_REG, lane); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG, &base_page); elink_cl45_read(sc, phy, MDIO_AN_DEVAD, MDIO_AN_REG_LP_AUTO_NEG2, &next_page); elink_set_aer_mmd(params, phy); /* CL73 has not begun yet */ if (base_page == 0) { if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) { elink_kr2_recovery(params, vars, phy); ELINK_DEBUG_P0(sc, "No BP\n"); } return; } /* In case NP bit is not set in the BasePage, or it is set, * but only KX is advertised, declare this link partner as non-KR2 * device. */ not_kr2_device = (((base_page & 0x8000) == 0) || (((base_page & 0x8000) && ((next_page & 0xe0) == 0x20)))); /* In case KR2 is already disabled, check if we need to re-enable it */ if (!(params->link_attr_sync & LINK_ATTR_SYNC_KR2_ENABLE)) { if (!not_kr2_device) { ELINK_DEBUG_P2(sc, "BP=0x%x, NP=0x%x\n", base_page, next_page); elink_kr2_recovery(params, vars, phy); } return; } /* KR2 is enabled, but not KR2 device */ if (not_kr2_device) { /* Disable KR2 on both lanes */ ELINK_DEBUG_P2(sc, "BP=0x%x, NP=0x%x\n", base_page, next_page); elink_disable_kr2(params, vars, phy); /* Restart AN on leading lane */ elink_warpcore_restart_AN_KR(phy, params); return; } } void elink_period_func(struct elink_params *params, struct elink_vars *vars) { uint16_t phy_idx; struct bxe_softc *sc = params->sc; for (phy_idx = ELINK_INT_PHY; phy_idx < ELINK_MAX_PHYS; phy_idx++) { if (params->phy[phy_idx].flags & ELINK_FLAGS_TX_ERROR_CHECK) { elink_set_aer_mmd(params, ¶ms->phy[phy_idx]); if (elink_check_half_open_conn(params, vars, 1) != ELINK_STATUS_OK) ELINK_DEBUG_P0(sc, "Fault detection failed\n"); break; } } if (CHIP_IS_E3(sc)) { struct elink_phy *phy = ¶ms->phy[ELINK_INT_PHY]; elink_set_aer_mmd(params, phy); if (((phy->req_line_speed == ELINK_SPEED_AUTO_NEG) && (phy->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) || (phy->req_line_speed == ELINK_SPEED_20000)) elink_check_kr2_wa(params, vars, phy); elink_check_over_curr(params, vars); if (vars->rx_tx_asic_rst) elink_warpcore_config_runtime(phy, params, vars); if ((REG_RD(sc, params->shmem_base + offsetof(struct shmem_region, dev_info. port_hw_config[params->port].default_cfg)) & PORT_HW_CFG_NET_SERDES_IF_MASK) == PORT_HW_CFG_NET_SERDES_IF_SFI) { if (elink_is_sfp_module_plugged(phy, params)) { elink_sfp_tx_fault_detection(phy, params, vars); } else if (vars->link_status & LINK_STATUS_SFP_TX_FAULT) { /* Clean trail, interrupt corrects the leds */ vars->link_status &= ~LINK_STATUS_SFP_TX_FAULT; vars->phy_flags &= ~PHY_SFP_TX_FAULT_FLAG; /* Update link status in the shared memory */ elink_update_mng(params, vars->link_status); } } } } uint8_t elink_fan_failure_det_req(struct bxe_softc *sc, uint32_t shmem_base, uint32_t shmem2_base, uint8_t port) { uint8_t phy_index, fan_failure_det_req = 0; struct elink_phy phy; for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS; phy_index++) { if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base, port, &phy) != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "populate phy failed\n"); return 0; } fan_failure_det_req |= (phy.flags & ELINK_FLAGS_FAN_FAILURE_DET_REQ); } return fan_failure_det_req; } void elink_hw_reset_phy(struct elink_params *params) { uint8_t phy_index; struct bxe_softc *sc = params->sc; elink_update_mng(params, 0); elink_bits_dis(sc, NIG_REG_MASK_INTERRUPT_PORT0 + params->port*4, (ELINK_NIG_MASK_XGXS0_LINK_STATUS | ELINK_NIG_MASK_XGXS0_LINK10G | ELINK_NIG_MASK_SERDES0_LINK_STATUS | ELINK_NIG_MASK_MI_INT)); for (phy_index = ELINK_INT_PHY; phy_index < ELINK_MAX_PHYS; phy_index++) { if (params->phy[phy_index].hw_reset) { params->phy[phy_index].hw_reset( ¶ms->phy[phy_index], params); params->phy[phy_index] = phy_null; } } } void elink_init_mod_abs_int(struct bxe_softc *sc, struct elink_vars *vars, uint32_t chip_id, uint32_t shmem_base, uint32_t shmem2_base, uint8_t port) { uint8_t gpio_num = 0xff, gpio_port = 0xff, phy_index; uint32_t val; uint32_t offset, aeu_mask, swap_val, swap_override, sync_offset; if (CHIP_IS_E3(sc)) { if (elink_get_mod_abs_int_cfg(sc, chip_id, shmem_base, port, &gpio_num, &gpio_port) != ELINK_STATUS_OK) return; } else { struct elink_phy phy; for (phy_index = ELINK_EXT_PHY1; phy_index < ELINK_MAX_PHYS; phy_index++) { if (elink_populate_phy(sc, phy_index, shmem_base, shmem2_base, port, &phy) != ELINK_STATUS_OK) { ELINK_DEBUG_P0(sc, "populate phy failed\n"); return; } if (phy.type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726) { gpio_num = MISC_REGISTERS_GPIO_3; gpio_port = port; break; } } } if (gpio_num == 0xff) return; /* Set GPIO3 to trigger SFP+ module insertion/removal */ elink_cb_gpio_write(sc, gpio_num, MISC_REGISTERS_GPIO_INPUT_HI_Z, gpio_port); swap_val = REG_RD(sc, NIG_REG_PORT_SWAP); swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE); gpio_port ^= (swap_val && swap_override); vars->aeu_int_mask = AEU_INPUTS_ATTN_BITS_GPIO0_FUNCTION_0 << (gpio_num + (gpio_port << 2)); sync_offset = shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config[port].aeu_int_mask); REG_WR(sc, sync_offset, vars->aeu_int_mask); ELINK_DEBUG_P3(sc, "Setting MOD_ABS (GPIO%d_P%d) AEU to 0x%x\n", gpio_num, gpio_port, vars->aeu_int_mask); if (port == 0) offset = MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; else offset = MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0; /* Open appropriate AEU for interrupts */ aeu_mask = REG_RD(sc, offset); aeu_mask |= vars->aeu_int_mask; REG_WR(sc, offset, aeu_mask); /* Enable the GPIO to trigger interrupt */ val = REG_RD(sc, MISC_REG_GPIO_EVENT_EN); val |= 1 << (gpio_num + (gpio_port << 2)); REG_WR(sc, MISC_REG_GPIO_EVENT_EN, val); }