/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2006-2014 QLogic Corporation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * The following controllers are supported by this driver: * BCM5706C A2, A3 * BCM5706S A2, A3 * BCM5708C B1, B2 * BCM5708S B1, B2 * BCM5709C A1, C0 * BCM5709S A1, C0 * BCM5716C C0 * BCM5716S C0 * * The following controllers are not supported by this driver: * BCM5706C A0, A1 (pre-production) * BCM5706S A0, A1 (pre-production) * BCM5708C A0, B0 (pre-production) * BCM5708S A0, B0 (pre-production) * BCM5709C A0 B0, B1, B2 (pre-production) * BCM5709S A0, B0, B1, B2 (pre-production) */ #include "opt_bce.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miidevs.h" #include #include #include #include "miibus_if.h" #include #include /****************************************************************************/ /* BCE Debug Options */ /****************************************************************************/ #ifdef BCE_DEBUG u32 bce_debug = BCE_WARN; /* 0 = Never */ /* 1 = 1 in 2,147,483,648 */ /* 256 = 1 in 8,388,608 */ /* 2048 = 1 in 1,048,576 */ /* 65536 = 1 in 32,768 */ /* 1048576 = 1 in 2,048 */ /* 268435456 = 1 in 8 */ /* 536870912 = 1 in 4 */ /* 1073741824 = 1 in 2 */ /* Controls how often the l2_fhdr frame error check will fail. */ int l2fhdr_error_sim_control = 0; /* Controls how often the unexpected attention check will fail. */ int unexpected_attention_sim_control = 0; /* Controls how often to simulate an mbuf allocation failure. */ int mbuf_alloc_failed_sim_control = 0; /* Controls how often to simulate a DMA mapping failure. */ int dma_map_addr_failed_sim_control = 0; /* Controls how often to simulate a bootcode failure. */ int bootcode_running_failure_sim_control = 0; #endif /****************************************************************************/ /* PCI Device ID Table */ /* */ /* Used by bce_probe() to identify the devices supported by this driver. */ /****************************************************************************/ #define BCE_DEVDESC_MAX 64 static const struct bce_type bce_devs[] = { /* BCM5706C Controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, "HP NC370T Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, "HP NC370i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, "HP NC371i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5706 1000Base-T" }, /* BCM5706S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, "HP NC370F Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5706 1000Base-SX" }, /* BCM5708C controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, "HP NC373T PCIe Multifunction Gig Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, "HP NC373i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, "HP NC374m PCIe Multifunction Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5708 1000Base-T" }, /* BCM5708S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, "HP NC373m Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, "HP NC373i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, "HP NC373F PCIe Multifunc Giga Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5708 1000Base-SX" }, /* BCM5709C controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, "HP NC382i DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5709 1000Base-T" }, /* BCM5709S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, "HP NC382i DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5709 1000Base-SX" }, /* BCM5716 controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM5716 1000Base-T" }, { 0, 0, 0, 0, NULL } }; /****************************************************************************/ /* Supported Flash NVRAM device data. */ /****************************************************************************/ static const struct flash_spec flash_table[] = { #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) #define NONBUFFERED_FLAGS (BCE_NV_WREN) /* Slow EEPROM */ {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - slow"}, /* Expansion entry 0001 */ {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0001"}, /* Saifun SA25F010 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, "Non-buffered flash (128kB)"}, /* Saifun SA25F020 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, "Non-buffered flash (256kB)"}, /* Expansion entry 0100 */ {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0100"}, /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, /* Entry 0110: ST M45PE20 (non-buffered flash)*/ {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, /* Saifun SA25F005 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, "Non-buffered flash (64kB)"}, /* Fast EEPROM */ {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - fast"}, /* Expansion entry 1001 */ {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1001"}, /* Expansion entry 1010 */ {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1010"}, /* ATMEL AT45DB011B (buffered flash) */ {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, "Buffered flash (128kB)"}, /* Expansion entry 1100 */ {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1100"}, /* Expansion entry 1101 */ {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1101"}, /* Ateml Expansion entry 1110 */ {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, 0, "Entry 1110 (Atmel)"}, /* ATMEL AT45DB021B (buffered flash) */ {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, "Buffered flash (256kB)"}, }; /* * The BCM5709 controllers transparently handle the * differences between Atmel 264 byte pages and all * flash devices which use 256 byte pages, so no * logical-to-physical mapping is required in the * driver. */ static const struct flash_spec flash_5709 = { .flags = BCE_NV_BUFFERED, .page_bits = BCM5709_FLASH_PAGE_BITS, .page_size = BCM5709_FLASH_PAGE_SIZE, .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, .name = "5709/5716 buffered flash (256kB)", }; /****************************************************************************/ /* FreeBSD device entry points. */ /****************************************************************************/ static int bce_probe (device_t); static int bce_attach (device_t); static int bce_detach (device_t); static int bce_shutdown (device_t); /****************************************************************************/ /* BCE Debug Data Structure Dump Routines */ /****************************************************************************/ #ifdef BCE_DEBUG static u32 bce_reg_rd (struct bce_softc *, u32); static void bce_reg_wr (struct bce_softc *, u32, u32); static void bce_reg_wr16 (struct bce_softc *, u32, u16); static u32 bce_ctx_rd (struct bce_softc *, u32, u32); static void bce_dump_enet (struct bce_softc *, struct mbuf *); static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *); static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); static void bce_dump_ctx (struct bce_softc *, u16); static void bce_dump_ftqs (struct bce_softc *); static void bce_dump_tx_chain (struct bce_softc *, u16, int); static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); static void bce_dump_pg_chain (struct bce_softc *, u16, int); static void bce_dump_status_block (struct bce_softc *); static void bce_dump_stats_block (struct bce_softc *); static void bce_dump_driver_state (struct bce_softc *); static void bce_dump_hw_state (struct bce_softc *); static void bce_dump_shmem_state (struct bce_softc *); static void bce_dump_mq_regs (struct bce_softc *); static void bce_dump_bc_state (struct bce_softc *); static void bce_dump_txp_state (struct bce_softc *, int); static void bce_dump_rxp_state (struct bce_softc *, int); static void bce_dump_tpat_state (struct bce_softc *, int); static void bce_dump_cp_state (struct bce_softc *, int); static void bce_dump_com_state (struct bce_softc *, int); static void bce_dump_rv2p_state (struct bce_softc *); static void bce_breakpoint (struct bce_softc *); #endif /*BCE_DEBUG */ /****************************************************************************/ /* BCE Register/Memory Access Routines */ /****************************************************************************/ static u32 bce_reg_rd_ind (struct bce_softc *, u32); static void bce_reg_wr_ind (struct bce_softc *, u32, u32); static void bce_shmem_wr (struct bce_softc *, u32, u32); static u32 bce_shmem_rd (struct bce_softc *, u32); static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); static int bce_miibus_read_reg (device_t, int, int); static int bce_miibus_write_reg (device_t, int, int, int); static void bce_miibus_statchg (device_t); #ifdef BCE_DEBUG static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); #ifdef BCE_NVRAM_WRITE_SUPPORT static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); #endif #endif /****************************************************************************/ /* BCE NVRAM Access Routines */ /****************************************************************************/ static int bce_acquire_nvram_lock (struct bce_softc *); static int bce_release_nvram_lock (struct bce_softc *); static void bce_enable_nvram_access(struct bce_softc *); static void bce_disable_nvram_access(struct bce_softc *); static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); static int bce_init_nvram (struct bce_softc *); static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); static int bce_nvram_test (struct bce_softc *); #ifdef BCE_NVRAM_WRITE_SUPPORT static int bce_enable_nvram_write (struct bce_softc *); static void bce_disable_nvram_write(struct bce_softc *); static int bce_nvram_erase_page (struct bce_softc *, u32); static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); #endif /****************************************************************************/ /* */ /****************************************************************************/ static void bce_get_rx_buffer_sizes(struct bce_softc *, int); static void bce_get_media (struct bce_softc *); static void bce_init_media (struct bce_softc *); static u32 bce_get_rphy_link (struct bce_softc *); static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); static int bce_dma_alloc (device_t); static void bce_dma_free (struct bce_softc *); static void bce_release_resources (struct bce_softc *); /****************************************************************************/ /* BCE Firmware Synchronization and Load */ /****************************************************************************/ static void bce_fw_cap_init (struct bce_softc *); static int bce_fw_sync (struct bce_softc *, u32); static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32, u32); static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); static void bce_start_rxp_cpu (struct bce_softc *); static void bce_init_rxp_cpu (struct bce_softc *); static void bce_init_txp_cpu (struct bce_softc *); static void bce_init_tpat_cpu (struct bce_softc *); static void bce_init_cp_cpu (struct bce_softc *); static void bce_init_com_cpu (struct bce_softc *); static void bce_init_cpus (struct bce_softc *); static void bce_print_adapter_info (struct bce_softc *); static void bce_probe_pci_caps (device_t, struct bce_softc *); static void bce_stop (struct bce_softc *); static int bce_reset (struct bce_softc *, u32); static int bce_chipinit (struct bce_softc *); static int bce_blockinit (struct bce_softc *); static int bce_init_tx_chain (struct bce_softc *); static void bce_free_tx_chain (struct bce_softc *); static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *); static int bce_init_rx_chain (struct bce_softc *); static void bce_fill_rx_chain (struct bce_softc *); static void bce_free_rx_chain (struct bce_softc *); static int bce_get_pg_buf (struct bce_softc *, u16, u16); static int bce_init_pg_chain (struct bce_softc *); static void bce_fill_pg_chain (struct bce_softc *); static void bce_free_pg_chain (struct bce_softc *); static struct mbuf *bce_tso_setup (struct bce_softc *, struct mbuf **, u16 *); static int bce_tx_encap (struct bce_softc *, struct mbuf **); static void bce_start_locked (struct ifnet *); static void bce_start (struct ifnet *); static int bce_ioctl (struct ifnet *, u_long, caddr_t); static uint64_t bce_get_counter (struct ifnet *, ift_counter); static void bce_watchdog (struct bce_softc *); static int bce_ifmedia_upd (struct ifnet *); static int bce_ifmedia_upd_locked (struct ifnet *); static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); static void bce_init_locked (struct bce_softc *); static void bce_init (void *); static void bce_mgmt_init_locked (struct bce_softc *sc); static int bce_init_ctx (struct bce_softc *); static void bce_get_mac_addr (struct bce_softc *); static void bce_set_mac_addr (struct bce_softc *); static void bce_phy_intr (struct bce_softc *); static inline u16 bce_get_hw_rx_cons (struct bce_softc *); static void bce_rx_intr (struct bce_softc *); static void bce_tx_intr (struct bce_softc *); static void bce_disable_intr (struct bce_softc *); static void bce_enable_intr (struct bce_softc *, int); static void bce_intr (void *); static void bce_set_rx_mode (struct bce_softc *); static void bce_stats_update (struct bce_softc *); static void bce_tick (void *); static void bce_pulse (void *); static void bce_add_sysctls (struct bce_softc *); /****************************************************************************/ /* FreeBSD device dispatch table. */ /****************************************************************************/ static device_method_t bce_methods[] = { /* Device interface (device_if.h) */ DEVMETHOD(device_probe, bce_probe), DEVMETHOD(device_attach, bce_attach), DEVMETHOD(device_detach, bce_detach), DEVMETHOD(device_shutdown, bce_shutdown), /* Supported by device interface but not used here. */ /* DEVMETHOD(device_identify, bce_identify), */ /* DEVMETHOD(device_suspend, bce_suspend), */ /* DEVMETHOD(device_resume, bce_resume), */ /* DEVMETHOD(device_quiesce, bce_quiesce), */ /* MII interface (miibus_if.h) */ DEVMETHOD(miibus_readreg, bce_miibus_read_reg), DEVMETHOD(miibus_writereg, bce_miibus_write_reg), DEVMETHOD(miibus_statchg, bce_miibus_statchg), /* Supported by MII interface but not used here. */ /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ DEVMETHOD_END }; static driver_t bce_driver = { "bce", bce_methods, sizeof(struct bce_softc) }; static devclass_t bce_devclass; MODULE_DEPEND(bce, pci, 1, 1, 1); MODULE_DEPEND(bce, ether, 1, 1, 1); MODULE_DEPEND(bce, miibus, 1, 1, 1); DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL); DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce, bce_devs, nitems(bce_devs) - 1); /****************************************************************************/ /* Tunable device values */ /****************************************************************************/ static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "bce driver parameters"); /* Allowable values are TRUE or FALSE */ static int bce_verbose = TRUE; SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, "Verbose output enable/disable"); /* Allowable values are TRUE or FALSE */ static int bce_tso_enable = TRUE; SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, "TSO Enable/Disable"); /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ /* ToDo: Add MSI-X support. */ static int bce_msi_enable = 1; SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, "MSI-X|MSI|INTx selector"); /* Allowable values are 1, 2, 4, 8. */ static int bce_rx_pages = DEFAULT_RX_PAGES; SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); /* Allowable values are 1, 2, 4, 8. */ static int bce_tx_pages = DEFAULT_TX_PAGES; SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); /* Allowable values are TRUE or FALSE. */ static int bce_hdr_split = TRUE; SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, "Frame header/payload splitting Enable/Disable"); /* Allowable values are TRUE or FALSE. */ static int bce_strict_rx_mtu = FALSE; SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, &bce_strict_rx_mtu, 0, "Enable/Disable strict RX frame size checking"); /* Allowable values are 0 ... 100 */ #ifdef BCE_DEBUG /* Generate 1 interrupt for every transmit completion. */ static int bce_tx_quick_cons_trip_int = 1; #else /* Generate 1 interrupt for every 20 transmit completions. */ static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, &bce_tx_quick_cons_trip_int, 0, "Transmit BD trip point during interrupts"); /* Allowable values are 0 ... 100 */ /* Generate 1 interrupt for every transmit completion. */ #ifdef BCE_DEBUG static int bce_tx_quick_cons_trip = 1; #else /* Generate 1 interrupt for every 20 transmit completions. */ static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, &bce_tx_quick_cons_trip, 0, "Transmit BD trip point"); /* Allowable values are 0 ... 100 */ #ifdef BCE_DEBUG /* Generate an interrupt if 0us have elapsed since the last TX completion. */ static int bce_tx_ticks_int = 0; #else /* Generate an interrupt if 80us have elapsed since the last TX completion. */ static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); /* Allowable values are 0 ... 100 */ #ifdef BCE_DEBUG /* Generate an interrupt if 0us have elapsed since the last TX completion. */ static int bce_tx_ticks = 0; #else /* Generate an interrupt if 80us have elapsed since the last TX completion. */ static int bce_tx_ticks = DEFAULT_TX_TICKS; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, &bce_tx_ticks, 0, "Transmit ticks count"); /* Allowable values are 1 ... 100 */ #ifdef BCE_DEBUG /* Generate 1 interrupt for every received frame. */ static int bce_rx_quick_cons_trip_int = 1; #else /* Generate 1 interrupt for every 6 received frames. */ static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, &bce_rx_quick_cons_trip_int, 0, "Receive BD trip point during interrupts"); /* Allowable values are 1 ... 100 */ #ifdef BCE_DEBUG /* Generate 1 interrupt for every received frame. */ static int bce_rx_quick_cons_trip = 1; #else /* Generate 1 interrupt for every 6 received frames. */ static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, &bce_rx_quick_cons_trip, 0, "Receive BD trip point"); /* Allowable values are 0 ... 100 */ #ifdef BCE_DEBUG /* Generate an int. if 0us have elapsed since the last received frame. */ static int bce_rx_ticks_int = 0; #else /* Generate an int. if 18us have elapsed since the last received frame. */ static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); /* Allowable values are 0 ... 100 */ #ifdef BCE_DEBUG /* Generate an int. if 0us have elapsed since the last received frame. */ static int bce_rx_ticks = 0; #else /* Generate an int. if 18us have elapsed since the last received frame. */ static int bce_rx_ticks = DEFAULT_RX_TICKS; #endif SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, &bce_rx_ticks, 0, "Receive ticks count"); /****************************************************************************/ /* Device probe function. */ /* */ /* Compares the device to the driver's list of supported devices and */ /* reports back to the OS whether this is the right driver for the device. */ /* */ /* Returns: */ /* BUS_PROBE_DEFAULT on success, positive value on failure. */ /****************************************************************************/ static int bce_probe(device_t dev) { const struct bce_type *t; struct bce_softc *sc; char *descbuf; u16 vid = 0, did = 0, svid = 0, sdid = 0; t = bce_devs; sc = device_get_softc(dev); sc->bce_unit = device_get_unit(dev); sc->bce_dev = dev; /* Get the data for the device to be probed. */ vid = pci_get_vendor(dev); did = pci_get_device(dev); svid = pci_get_subvendor(dev); sdid = pci_get_subdevice(dev); DBPRINT(sc, BCE_EXTREME_LOAD, "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); /* Look through the list of known devices for a match. */ while(t->bce_name != NULL) { if ((vid == t->bce_vid) && (did == t->bce_did) && ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); if (descbuf == NULL) return(ENOMEM); /* Print out the device identity. */ snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", t->bce_name, (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); device_set_desc_copy(dev, descbuf); free(descbuf, M_TEMP); return(BUS_PROBE_DEFAULT); } t++; } return(ENXIO); } /****************************************************************************/ /* PCI Capabilities Probe Function. */ /* */ /* Walks the PCI capabiites list for the device to find what features are */ /* supported. */ /* */ /* Returns: */ /* None. */ /****************************************************************************/ static void bce_print_adapter_info(struct bce_softc *sc) { int i = 0; DBENTER(BCE_VERBOSE_LOAD); if (bce_verbose || bootverbose) { BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); /* Bus info. */ if (sc->bce_flags & BCE_PCIE_FLAG) { printf("Bus (PCIe x%d, ", sc->link_width); switch (sc->link_speed) { case 1: printf("2.5Gbps); "); break; case 2: printf("5Gbps); "); break; default: printf("Unknown link speed); "); } } else { printf("Bus (PCI%s, %s, %dMHz); ", ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), sc->bus_speed_mhz); } /* Firmware version and device features. */ printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, (bce_hdr_split == TRUE ? sc->pg_pages: 0)); if (bce_hdr_split == TRUE) { printf("SPLT"); i++; } if (sc->bce_flags & BCE_USING_MSI_FLAG) { if (i > 0) printf("|"); printf("MSI"); i++; } if (sc->bce_flags & BCE_USING_MSIX_FLAG) { if (i > 0) printf("|"); printf("MSI-X"); i++; } if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { if (i > 0) printf("|"); printf("2.5G"); i++; } if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { if (i > 0) printf("|"); printf("Remote PHY(%s)", sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? "FIBER" : "TP"); i++; } if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { if (i > 0) printf("|"); printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); } else { printf(")\n"); } printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", sc->bce_rx_quick_cons_trip_int, sc->bce_rx_quick_cons_trip, sc->bce_rx_ticks_int, sc->bce_rx_ticks, sc->bce_tx_quick_cons_trip_int, sc->bce_tx_quick_cons_trip, sc->bce_tx_ticks_int, sc->bce_tx_ticks); } DBEXIT(BCE_VERBOSE_LOAD); } /****************************************************************************/ /* PCI Capabilities Probe Function. */ /* */ /* Walks the PCI capabiites list for the device to find what features are */ /* supported. */ /* */ /* Returns: */ /* None. */ /****************************************************************************/ static void bce_probe_pci_caps(device_t dev, struct bce_softc *sc) { u32 reg; DBENTER(BCE_VERBOSE_LOAD); /* Check if PCI-X capability is enabled. */ if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { if (reg != 0) sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; } /* Check if PCIe capability is enabled. */ if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { if (reg != 0) { u16 link_status = pci_read_config(dev, reg + 0x12, 2); DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " "0x%08X\n", link_status); sc->link_speed = link_status & 0xf; sc->link_width = (link_status >> 4) & 0x3f; sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; sc->bce_flags |= BCE_PCIE_FLAG; } } /* Check if MSI capability is enabled. */ if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { if (reg != 0) sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; } /* Check if MSI-X capability is enabled. */ if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { if (reg != 0) sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; } DBEXIT(BCE_VERBOSE_LOAD); } /****************************************************************************/ /* Load and validate user tunable settings. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_set_tunables(struct bce_softc *sc) { /* Set sysctl values for RX page count. */ switch (bce_rx_pages) { case 1: /* fall-through */ case 2: /* fall-through */ case 4: /* fall-through */ case 8: sc->rx_pages = bce_rx_pages; break; default: sc->rx_pages = DEFAULT_RX_PAGES; BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.rx_pages! Setting default of %d.\n", __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); } /* ToDo: Consider allowing user setting for pg_pages. */ sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); /* Set sysctl values for TX page count. */ switch (bce_tx_pages) { case 1: /* fall-through */ case 2: /* fall-through */ case 4: /* fall-through */ case 8: sc->tx_pages = bce_tx_pages; break; default: sc->tx_pages = DEFAULT_TX_PAGES; BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.tx_pages! Setting default of %d.\n", __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); } /* * Validate the TX trip point (i.e. the number of * TX completions before a status block update is * generated and an interrupt is asserted. */ if (bce_tx_quick_cons_trip_int <= 100) { sc->bce_tx_quick_cons_trip_int = bce_tx_quick_cons_trip_int; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", __FILE__, __LINE__, bce_tx_quick_cons_trip_int, DEFAULT_TX_QUICK_CONS_TRIP_INT); sc->bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; } if (bce_tx_quick_cons_trip <= 100) { sc->bce_tx_quick_cons_trip = bce_tx_quick_cons_trip; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", __FILE__, __LINE__, bce_tx_quick_cons_trip, DEFAULT_TX_QUICK_CONS_TRIP); sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; } /* * Validate the TX ticks count (i.e. the maximum amount * of time to wait after the last TX completion has * occurred before a status block update is generated * and an interrupt is asserted. */ if (bce_tx_ticks_int <= 100) { sc->bce_tx_ticks_int = bce_tx_ticks_int; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.tx_ticks_int! Setting default of %d.\n", __FILE__, __LINE__, bce_tx_ticks_int, DEFAULT_TX_TICKS_INT); sc->bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; } if (bce_tx_ticks <= 100) { sc->bce_tx_ticks = bce_tx_ticks; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.tx_ticks! Setting default of %d.\n", __FILE__, __LINE__, bce_tx_ticks, DEFAULT_TX_TICKS); sc->bce_tx_ticks = DEFAULT_TX_TICKS; } /* * Validate the RX trip point (i.e. the number of * RX frames received before a status block update is * generated and an interrupt is asserted. */ if (bce_rx_quick_cons_trip_int <= 100) { sc->bce_rx_quick_cons_trip_int = bce_rx_quick_cons_trip_int; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", __FILE__, __LINE__, bce_rx_quick_cons_trip_int, DEFAULT_RX_QUICK_CONS_TRIP_INT); sc->bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; } if (bce_rx_quick_cons_trip <= 100) { sc->bce_rx_quick_cons_trip = bce_rx_quick_cons_trip; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", __FILE__, __LINE__, bce_rx_quick_cons_trip, DEFAULT_RX_QUICK_CONS_TRIP); sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; } /* * Validate the RX ticks count (i.e. the maximum amount * of time to wait after the last RX frame has been * received before a status block update is generated * and an interrupt is asserted. */ if (bce_rx_ticks_int <= 100) { sc->bce_rx_ticks_int = bce_rx_ticks_int; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.rx_ticks_int! Setting default of %d.\n", __FILE__, __LINE__, bce_rx_ticks_int, DEFAULT_RX_TICKS_INT); sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; } if (bce_rx_ticks <= 100) { sc->bce_rx_ticks = bce_rx_ticks; } else { BCE_PRINTF("%s(%d): Illegal value (%d) specified for " "hw.bce.rx_ticks! Setting default of %d.\n", __FILE__, __LINE__, bce_rx_ticks, DEFAULT_RX_TICKS); sc->bce_rx_ticks = DEFAULT_RX_TICKS; } /* Disabling both RX ticks and RX trips will prevent interrupts. */ if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", __FILE__, __LINE__); sc->bce_rx_ticks = DEFAULT_RX_TICKS; sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; } /* Disabling both TX ticks and TX trips will prevent interrupts. */ if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", __FILE__, __LINE__); sc->bce_tx_ticks = DEFAULT_TX_TICKS; sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; } } /****************************************************************************/ /* Device attach function. */ /* */ /* Allocates device resources, performs secondary chip identification, */ /* resets and initializes the hardware, and initializes driver instance */ /* variables. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_attach(device_t dev) { struct bce_softc *sc; struct ifnet *ifp; u32 val; int count, error, rc = 0, rid; sc = device_get_softc(dev); sc->bce_dev = dev; DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); sc->bce_unit = device_get_unit(dev); /* Set initial device and PHY flags */ sc->bce_flags = 0; sc->bce_phy_flags = 0; bce_set_tunables(sc); pci_enable_busmaster(dev); /* Allocate PCI memory resources. */ rid = PCIR_BAR(0); sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bce_res_mem == NULL) { BCE_PRINTF("%s(%d): PCI memory allocation failed\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Get various resource handles. */ sc->bce_btag = rman_get_bustag(sc->bce_res_mem); sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); bce_probe_pci_caps(dev, sc); rid = 1; count = 0; #if 0 /* Try allocating MSI-X interrupts. */ if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && (bce_msi_enable >= 2) && ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE)) != NULL)) { msi_needed = count = 1; if (((error = pci_alloc_msix(dev, &count)) != 0) || (count != msi_needed)) { BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," "Received = %d, error = %d\n", __FILE__, __LINE__, msi_needed, count, error); count = 0; pci_release_msi(dev); bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->bce_res_irq); sc->bce_res_irq = NULL; } else { DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", __FUNCTION__); sc->bce_flags |= BCE_USING_MSIX_FLAG; } } #endif /* Try allocating a MSI interrupt. */ if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && (bce_msi_enable >= 1) && (count == 0)) { count = 1; if ((error = pci_alloc_msi(dev, &count)) != 0) { BCE_PRINTF("%s(%d): MSI allocation failed! " "error = %d\n", __FILE__, __LINE__, error); count = 0; pci_release_msi(dev); } else { DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " "interrupt.\n", __FUNCTION__); sc->bce_flags |= BCE_USING_MSI_FLAG; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; rid = 1; } } /* Try allocating a legacy interrupt. */ if (count == 0) { DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", __FUNCTION__); rid = 0; } sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); /* Report any IRQ allocation errors. */ if (sc->bce_res_irq == NULL) { BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Initialize mutex for the current device instance. */ BCE_LOCK_INIT(sc, device_get_nameunit(dev)); /* * Configure byte swap and enable indirect register access. * Rely on CPU to do target byte swapping on big endian systems. * Access to registers outside of PCI configurtion space are not * valid until this is done. */ pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); /* Save ASIC revsion info. */ sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); /* Weed out any non-production controller revisions. */ switch(BCE_CHIP_ID(sc)) { case BCE_CHIP_ID_5706_A0: case BCE_CHIP_ID_5706_A1: case BCE_CHIP_ID_5708_A0: case BCE_CHIP_ID_5708_B0: case BCE_CHIP_ID_5709_A0: case BCE_CHIP_ID_5709_B0: case BCE_CHIP_ID_5709_B1: case BCE_CHIP_ID_5709_B2: BCE_PRINTF("%s(%d): Unsupported controller " "revision (%c%d)!\n", __FILE__, __LINE__, (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); rc = ENODEV; goto bce_attach_fail; } /* * The embedded PCIe to PCI-X bridge (EPB) * in the 5708 cannot address memory above * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; else sc->max_bus_addr = BUS_SPACE_MAXADDR; /* * Find the base address for shared memory access. * Newer versions of bootcode use a signature and offset * while older versions use a fixed address. */ val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) /* Multi-port devices use different offsets in shared memory. */ sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2)); else sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", __FUNCTION__, sc->bce_shmem_base); /* Fetch the bootcode revision. */ val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); for (int i = 0, j = 0; i < 3; i++) { u8 num; num = (u8) (val >> (24 - (i * 8))); for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { if (num >= k || !skip0 || k == 1) { sc->bce_bc_ver[j++] = (num / k) + '0'; skip0 = 0; } } if (i != 2) sc->bce_bc_ver[j++] = '.'; } /* Check if any management firwmare is enabled. */ val = bce_shmem_rd(sc, BCE_PORT_FEATURE); if (val & BCE_PORT_FEATURE_ASF_ENABLED) { sc->bce_flags |= BCE_MFW_ENABLE_FLAG; /* Allow time for firmware to enter the running state. */ for (int i = 0; i < 30; i++) { val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); if (val & BCE_CONDITION_MFW_RUN_MASK) break; DELAY(10000); } /* Check if management firmware is running. */ val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); val &= BCE_CONDITION_MFW_RUN_MASK; if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && (val != BCE_CONDITION_MFW_RUN_NONE)) { u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); int i = 0; /* Read the management firmware version string. */ for (int j = 0; j < 3; j++) { val = bce_reg_rd_ind(sc, addr + j * 4); val = bswap32(val); memcpy(&sc->bce_mfw_ver[i], &val, 4); i += 4; } } else { /* May cause firmware synchronization timeouts. */ BCE_PRINTF("%s(%d): Management firmware enabled " "but not running!\n", __FILE__, __LINE__); strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); /* ToDo: Any action the driver should take? */ } } /* Get PCI bus information (speed and type). */ val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { u32 clkreg; sc->bce_flags |= BCE_PCIX_FLAG; clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; switch (clkreg) { case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: sc->bus_speed_mhz = 133; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: sc->bus_speed_mhz = 100; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: sc->bus_speed_mhz = 66; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: sc->bus_speed_mhz = 50; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: sc->bus_speed_mhz = 33; break; } } else { if (val & BCE_PCICFG_MISC_STATUS_M66EN) sc->bus_speed_mhz = 66; else sc->bus_speed_mhz = 33; } if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) sc->bce_flags |= BCE_PCI_32BIT_FLAG; /* Find the media type for the adapter. */ bce_get_media(sc); /* Reset controller and announce to bootcode that driver is present. */ if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { BCE_PRINTF("%s(%d): Controller reset failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Initialize the controller. */ if (bce_chipinit(sc)) { BCE_PRINTF("%s(%d): Controller initialization failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Perform NVRAM test. */ if (bce_nvram_test(sc)) { BCE_PRINTF("%s(%d): NVRAM test failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Fetch the permanent Ethernet MAC address. */ bce_get_mac_addr(sc); /* Update statistics once every second. */ sc->bce_stats_ticks = 1000000 & 0xffff00; /* Store data needed by PHY driver for backplane applications */ sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); /* Allocate DMA memory resources. */ if (bce_dma_alloc(dev)) { BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Allocate an ifnet structure. */ ifp = sc->bce_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { BCE_PRINTF("%s(%d): Interface allocation failed!\n", __FILE__, __LINE__); rc = ENXIO; goto bce_attach_fail; } /* Initialize the ifnet interface. */ ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bce_ioctl; ifp->if_start = bce_start; ifp->if_get_counter = bce_get_counter; ifp->if_init = bce_init; ifp->if_mtu = ETHERMTU; if (bce_tso_enable) { ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | IFCAP_VLAN_HWTSO; } else { ifp->if_hwassist = BCE_IF_HWASSIST; ifp->if_capabilities = BCE_IF_CAPABILITIES; } if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) ifp->if_capabilities |= IFCAP_LINKSTATE; ifp->if_capenable = ifp->if_capabilities; /* * Assume standard mbuf sizes for buffer allocation. * This may change later if the MTU size is set to * something other than 1500. */ bce_get_rx_buffer_sizes(sc, (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); /* Recalculate our buffer allocation sizes. */ ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) ifp->if_baudrate = IF_Mbps(2500ULL); else ifp->if_baudrate = IF_Mbps(1000); /* Handle any special PHY initialization for SerDes PHYs. */ bce_init_media(sc); if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, bce_ifmedia_sts); /* * We can't manually override remote PHY's link and assume * PHY port configuration(Fiber or TP) is not changed after * device attach. This may not be correct though. */ if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_2500_SX, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); } ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); } else { ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL); ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); } ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; } else { /* MII child bus by attaching the PHY. */ rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE); if (rc != 0) { BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, __LINE__); goto bce_attach_fail; } } /* Attach to the Ethernet interface list. */ ether_ifattach(ifp, sc->eaddr); callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); /* Hookup IRQ last. */ rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, bce_intr, sc, &sc->bce_intrhand); if (rc) { BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", __FILE__, __LINE__); bce_detach(dev); goto bce_attach_exit; } /* * At this point we've acquired all the resources * we need to run so there's no turning back, we're * cleared for launch. */ /* Print some important debugging info. */ DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); /* Add the supported sysctls to the kernel. */ bce_add_sysctls(sc); BCE_LOCK(sc); /* * The chip reset earlier notified the bootcode that * a driver is present. We now need to start our pulse * routine so that the bootcode is reminded that we're * still running. */ bce_pulse(sc); bce_mgmt_init_locked(sc); BCE_UNLOCK(sc); /* Finally, print some useful adapter info */ bce_print_adapter_info(sc); DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", __FUNCTION__, sc); goto bce_attach_exit; bce_attach_fail: bce_release_resources(sc); bce_attach_exit: DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); return(rc); } /****************************************************************************/ /* Device detach function. */ /* */ /* Stops the controller, resets the controller, and releases resources. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_detach(device_t dev) { struct bce_softc *sc = device_get_softc(dev); struct ifnet *ifp; u32 msg; DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); ifp = sc->bce_ifp; /* Stop and reset the controller. */ BCE_LOCK(sc); /* Stop the pulse so the bootcode can go to driver absent state. */ callout_stop(&sc->bce_pulse_callout); bce_stop(sc); if (sc->bce_flags & BCE_NO_WOL_FLAG) msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; else msg = BCE_DRV_MSG_CODE_UNLOAD; bce_reset(sc, msg); BCE_UNLOCK(sc); ether_ifdetach(ifp); /* If we have a child device on the MII bus remove it too. */ if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) ifmedia_removeall(&sc->bce_ifmedia); else { bus_generic_detach(dev); device_delete_child(dev, sc->bce_miibus); } /* Release all remaining resources. */ bce_release_resources(sc); DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); return(0); } /****************************************************************************/ /* Device shutdown function. */ /* */ /* Stops and resets the controller. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_shutdown(device_t dev) { struct bce_softc *sc = device_get_softc(dev); u32 msg; DBENTER(BCE_VERBOSE); BCE_LOCK(sc); bce_stop(sc); if (sc->bce_flags & BCE_NO_WOL_FLAG) msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; else msg = BCE_DRV_MSG_CODE_UNLOAD; bce_reset(sc, msg); BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE); return (0); } #ifdef BCE_DEBUG /****************************************************************************/ /* Register read. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static u32 bce_reg_rd(struct bce_softc *sc, u32 offset) { u32 val = REG_RD(sc, offset); DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", __FUNCTION__, offset, val); return val; } /****************************************************************************/ /* Register write (16 bit). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) { DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", __FUNCTION__, offset, val); REG_WR16(sc, offset, val); } /****************************************************************************/ /* Register write. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) { DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", __FUNCTION__, offset, val); REG_WR(sc, offset, val); } #endif /****************************************************************************/ /* Indirect register read. */ /* */ /* Reads NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* reads but is much slower than memory-mapped I/O. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static u32 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) { device_t dev; dev = sc->bce_dev; pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); #ifdef BCE_DEBUG { u32 val; val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", __FUNCTION__, offset, val); return val; } #else return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); #endif } /****************************************************************************/ /* Indirect register write. */ /* */ /* Writes NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* writes but is muchh slower than memory-mapped I/O. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) { device_t dev; dev = sc->bce_dev; DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", __FUNCTION__, offset, val); pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); } /****************************************************************************/ /* Shared memory write. */ /* */ /* Writes NetXtreme II shared memory region. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) { DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " "0x%08X\n", __FUNCTION__, val, offset); bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); } /****************************************************************************/ /* Shared memory read. */ /* */ /* Reads NetXtreme II shared memory region. */ /* */ /* Returns: */ /* The 32 bit value read. */ /****************************************************************************/ static u32 bce_shmem_rd(struct bce_softc *sc, u32 offset) { u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " "0x%08X\n", __FUNCTION__, val, offset); return val; } #ifdef BCE_DEBUG /****************************************************************************/ /* Context memory read. */ /* */ /* The NetXtreme II controller uses context memory to track connection */ /* information for L2 and higher network protocols. */ /* */ /* Returns: */ /* The requested 32 bit value of context memory. */ /****************************************************************************/ static u32 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) { u32 idx, offset, retry_cnt = 5, val; DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " "address: 0x%08X.\n", __FUNCTION__, cid_addr)); offset = ctx_offset + cid_addr; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); for (idx = 0; idx < retry_cnt; idx++) { val = REG_RD(sc, BCE_CTX_CTX_CTRL); if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) break; DELAY(5); } if (val & BCE_CTX_CTX_CTRL_READ_REQ) BCE_PRINTF("%s(%d); Unable to read CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n", __FILE__, __LINE__, cid_addr, ctx_offset); val = REG_RD(sc, BCE_CTX_CTX_DATA); } else { REG_WR(sc, BCE_CTX_DATA_ADR, offset); val = REG_RD(sc, BCE_CTX_DATA); } DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); return(val); } #endif /****************************************************************************/ /* Context memory write. */ /* */ /* The NetXtreme II controller uses context memory to track connection */ /* information for L2 and higher network protocols. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) { u32 idx, offset = ctx_offset + cid_addr; u32 val, retry_cnt = 5; DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", __FUNCTION__, cid_addr)); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); for (idx = 0; idx < retry_cnt; idx++) { val = REG_RD(sc, BCE_CTX_CTX_CTRL); if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) break; DELAY(5); } if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) BCE_PRINTF("%s(%d); Unable to write CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n", __FILE__, __LINE__, cid_addr, ctx_offset); } else { REG_WR(sc, BCE_CTX_DATA_ADR, offset); REG_WR(sc, BCE_CTX_DATA, ctx_val); } } /****************************************************************************/ /* PHY register read. */ /* */ /* Implements register reads on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static int bce_miibus_read_reg(device_t dev, int phy, int reg) { struct bce_softc *sc; u32 val; int i; sc = device_get_softc(dev); /* * The 5709S PHY is an IEEE Clause 45 PHY * with special mappings to work with IEEE * Clause 22 register accesses. */ if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { if (reg >= MII_BMCR && reg <= MII_ANLPRNP) reg += 0x10; } if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BCE_EMAC_MDIO_MODE); val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } val = BCE_MIPHY(phy) | BCE_MIREG(reg) | BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | BCE_EMAC_MDIO_COMM_START_BUSY; REG_WR(sc, BCE_EMAC_MDIO_COMM, val); for (i = 0; i < BCE_PHY_TIMEOUT; i++) { DELAY(10); val = REG_RD(sc, BCE_EMAC_MDIO_COMM); if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); val = REG_RD(sc, BCE_EMAC_MDIO_COMM); val &= BCE_EMAC_MDIO_COMM_DATA; break; } } if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); val = 0x0; } else { val = REG_RD(sc, BCE_EMAC_MDIO_COMM); } if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BCE_EMAC_MDIO_MODE); val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } DB_PRINT_PHY_REG(reg, val); return (val & 0xffff); } /****************************************************************************/ /* PHY register write. */ /* */ /* Implements register writes on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static int bce_miibus_write_reg(device_t dev, int phy, int reg, int val) { struct bce_softc *sc; u32 val1; int i; sc = device_get_softc(dev); DB_PRINT_PHY_REG(reg, val); /* * The 5709S PHY is an IEEE Clause 45 PHY * with special mappings to work with IEEE * Clause 22 register accesses. */ if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { if (reg >= MII_BMCR && reg <= MII_ANLPRNP) reg += 0x10; } if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | BCE_EMAC_MDIO_COMM_COMMAND_WRITE | BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); for (i = 0; i < BCE_PHY_TIMEOUT; i++) { DELAY(10); val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) BCE_PRINTF("%s(%d): PHY write timeout!\n", __FILE__, __LINE__); if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } return 0; } /****************************************************************************/ /* MII bus status change. */ /* */ /* Called by the MII bus driver when the PHY establishes link to set the */ /* MAC interface registers. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_miibus_statchg(device_t dev) { struct bce_softc *sc; struct mii_data *mii; struct ifmediareq ifmr; int media_active, media_status, val; sc = device_get_softc(dev); DBENTER(BCE_VERBOSE_PHY); if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { bzero(&ifmr, sizeof(ifmr)); bce_ifmedia_sts_rphy(sc, &ifmr); media_active = ifmr.ifm_active; media_status = ifmr.ifm_status; } else { mii = device_get_softc(sc->bce_miibus); media_active = mii->mii_media_active; media_status = mii->mii_media_status; } /* Ignore invalid media status. */ if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != (IFM_ACTIVE | IFM_AVALID)) goto bce_miibus_statchg_exit; val = REG_RD(sc, BCE_EMAC_MODE); val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | BCE_EMAC_MODE_25G); /* Set MII or GMII interface based on the PHY speed. */ switch (IFM_SUBTYPE(media_active)) { case IFM_10_T: if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { DBPRINT(sc, BCE_INFO_PHY, "Enabling 10Mb interface.\n"); val |= BCE_EMAC_MODE_PORT_MII_10; break; } /* fall-through */ case IFM_100_TX: DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); val |= BCE_EMAC_MODE_PORT_MII; break; case IFM_2500_SX: DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); val |= BCE_EMAC_MODE_25G; /* fall-through */ case IFM_1000_T: case IFM_1000_SX: DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); val |= BCE_EMAC_MODE_PORT_GMII; break; default: DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " "default GMII interface.\n"); val |= BCE_EMAC_MODE_PORT_GMII; } /* Set half or full duplex based on PHY settings. */ if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { DBPRINT(sc, BCE_INFO_PHY, "Setting Half-Duplex interface.\n"); val |= BCE_EMAC_MODE_HALF_DUPLEX; } else DBPRINT(sc, BCE_INFO_PHY, "Setting Full-Duplex interface.\n"); REG_WR(sc, BCE_EMAC_MODE, val); if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { DBPRINT(sc, BCE_INFO_PHY, "%s(): Enabling RX flow control.\n", __FUNCTION__); BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL; } else { DBPRINT(sc, BCE_INFO_PHY, "%s(): Disabling RX flow control.\n", __FUNCTION__); BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL; } if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { DBPRINT(sc, BCE_INFO_PHY, "%s(): Enabling TX flow control.\n", __FUNCTION__); BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; } else { DBPRINT(sc, BCE_INFO_PHY, "%s(): Disabling TX flow control.\n", __FUNCTION__); BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; } /* ToDo: Update watermarks in bce_init_rx_context(). */ bce_miibus_statchg_exit: DBEXIT(BCE_VERBOSE_PHY); } /****************************************************************************/ /* Acquire NVRAM lock. */ /* */ /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_acquire_nvram_lock(struct bce_softc *sc) { u32 val; int j, rc = 0; DBENTER(BCE_VERBOSE_NVRAM); /* Request access to the flash interface. */ REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BCE_NVM_SW_ARB); if (val & BCE_NVM_SW_ARB_ARB_ARB2) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); rc = EBUSY; } DBEXIT(BCE_VERBOSE_NVRAM); return (rc); } /****************************************************************************/ /* Release NVRAM lock. */ /* */ /* When the caller is finished accessing NVRAM the lock must be released. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_release_nvram_lock(struct bce_softc *sc) { u32 val; int j, rc = 0; DBENTER(BCE_VERBOSE_NVRAM); /* * Relinquish nvram interface. */ REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BCE_NVM_SW_ARB); if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); rc = EBUSY; } DBEXIT(BCE_VERBOSE_NVRAM); return (rc); } #ifdef BCE_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Enable NVRAM write access. */ /* */ /* Before writing to NVRAM the caller must enable NVRAM writes. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_enable_nvram_write(struct bce_softc *sc) { u32 val; int rc = 0; DBENTER(BCE_VERBOSE_NVRAM); val = REG_RD(sc, BCE_MISC_CFG); REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { int j; REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { DELAY(5); val = REG_RD(sc, BCE_NVM_COMMAND); if (val & BCE_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); rc = EBUSY; } } DBENTER(BCE_VERBOSE_NVRAM); return (rc); } /****************************************************************************/ /* Disable NVRAM write access. */ /* */ /* When the caller is finished writing to NVRAM write access must be */ /* disabled. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_disable_nvram_write(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_NVRAM); val = REG_RD(sc, BCE_MISC_CFG); REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); DBEXIT(BCE_VERBOSE_NVRAM); } #endif /****************************************************************************/ /* Enable NVRAM access. */ /* */ /* Before accessing NVRAM for read or write operations the caller must */ /* enabled NVRAM access. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_enable_nvram_access(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_NVRAM); val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); /* Enable both bits, even on read. */ REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); DBEXIT(BCE_VERBOSE_NVRAM); } /****************************************************************************/ /* Disable NVRAM access. */ /* */ /* When the caller is finished accessing NVRAM access must be disabled. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_disable_nvram_access(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_NVRAM); val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); /* Disable both bits, even after read. */ REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); DBEXIT(BCE_VERBOSE_NVRAM); } #ifdef BCE_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Erase NVRAM page before writing. */ /* */ /* Non-buffered flash parts require that a page be erased before it is */ /* written. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_nvram_erase_page(struct bce_softc *sc, u32 offset) { u32 cmd; int j, rc = 0; DBENTER(BCE_VERBOSE_NVRAM); /* Buffered flash doesn't require an erase. */ if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) goto bce_nvram_erase_page_exit; /* Build an erase command. */ cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | BCE_NVM_COMMAND_DOIT; /* * Clear the DONE bit separately, set the NVRAM address to erase, * and issue the erase command. */ REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BCE_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { u32 val; DELAY(5); val = REG_RD(sc, BCE_NVM_COMMAND); if (val & BCE_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); rc = EBUSY; } bce_nvram_erase_page_exit: DBEXIT(BCE_VERBOSE_NVRAM); return (rc); } #endif /* BCE_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Read a dword (32 bits) from NVRAM. */ /* */ /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ /* */ /* Returns: */ /* 0 on success and the 32 bit value read, positive value on failure. */ /****************************************************************************/ static int bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, u32 cmd_flags) { u32 cmd; int i, rc = 0; DBENTER(BCE_EXTREME_NVRAM); /* Build the command word. */ cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; /* Calculate the offset for buffered flash if translation is used. */ if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { offset = ((offset / sc->bce_flash_info->page_size) << sc->bce_flash_info->page_bits) + (offset % sc->bce_flash_info->page_size); } /* * Clear the DONE bit separately, set the address to read, * and issue the read. */ REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BCE_NVM_COMMAND, cmd); /* Wait for completion. */ for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { u32 val; DELAY(5); val = REG_RD(sc, BCE_NVM_COMMAND); if (val & BCE_NVM_COMMAND_DONE) { val = REG_RD(sc, BCE_NVM_READ); val = bce_be32toh(val); memcpy(ret_val, &val, 4); break; } } /* Check for errors. */ if (i >= NVRAM_TIMEOUT_COUNT) { BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " "offset 0x%08X!\n", __FILE__, __LINE__, offset); rc = EBUSY; } DBEXIT(BCE_EXTREME_NVRAM); return(rc); } #ifdef BCE_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Write a dword (32 bits) to NVRAM. */ /* */ /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ /* enabled NVRAM write access. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, u32 cmd_flags) { u32 cmd, val32; int j, rc = 0; DBENTER(BCE_VERBOSE_NVRAM); /* Build the command word. */ cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; /* Calculate the offset for buffered flash if translation is used. */ if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { offset = ((offset / sc->bce_flash_info->page_size) << sc->bce_flash_info->page_bits) + (offset % sc->bce_flash_info->page_size); } /* * Clear the DONE bit separately, convert NVRAM data to big-endian, * set the NVRAM address to write, and issue the write command */ REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); memcpy(&val32, val, 4); val32 = htobe32(val32); REG_WR(sc, BCE_NVM_WRITE, val32); REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BCE_NVM_COMMAND, cmd); /* Wait for completion. */ for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { DELAY(5); if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) break; } if (j >= NVRAM_TIMEOUT_COUNT) { BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " "offset 0x%08X\n", __FILE__, __LINE__, offset); rc = EBUSY; } DBEXIT(BCE_VERBOSE_NVRAM); return (rc); } #endif /* BCE_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Initialize NVRAM access. */ /* */ /* Identify the NVRAM device in use and prepare the NVRAM interface to */ /* access that device. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_init_nvram(struct bce_softc *sc) { u32 val; int j, entry_count, rc = 0; const struct flash_spec *flash; DBENTER(BCE_VERBOSE_NVRAM); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { sc->bce_flash_info = &flash_5709; goto bce_init_nvram_get_flash_size; } /* Determine the selected interface. */ val = REG_RD(sc, BCE_NVM_CFG1); entry_count = sizeof(flash_table) / sizeof(struct flash_spec); /* * Flash reconfiguration is required to support additional * NVRAM devices not directly supported in hardware. * Check if the flash interface was reconfigured * by the bootcode. */ if (val & 0x40000000) { /* Flash interface reconfigured by bootcode. */ DBPRINT(sc,BCE_INFO_LOAD, "bce_init_nvram(): Flash WAS reconfigured.\n"); for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { if ((val & FLASH_BACKUP_STRAP_MASK) == (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { sc->bce_flash_info = flash; break; } } } else { /* Flash interface not yet reconfigured. */ u32 mask; DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", __FUNCTION__); if (val & (1 << 23)) mask = FLASH_BACKUP_STRAP_MASK; else mask = FLASH_STRAP_MASK; /* Look for the matching NVRAM device configuration data. */ for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { /* Check if the device matches any of the known devices. */ if ((val & mask) == (flash->strapping & mask)) { /* Found a device match. */ sc->bce_flash_info = flash; /* Request access to the flash interface. */ if ((rc = bce_acquire_nvram_lock(sc)) != 0) return rc; /* Reconfigure the flash interface. */ bce_enable_nvram_access(sc); REG_WR(sc, BCE_NVM_CFG1, flash->config1); REG_WR(sc, BCE_NVM_CFG2, flash->config2); REG_WR(sc, BCE_NVM_CFG3, flash->config3); REG_WR(sc, BCE_NVM_WRITE1, flash->write1); bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); break; } } } /* Check if a matching device was found. */ if (j == entry_count) { sc->bce_flash_info = NULL; BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", __FILE__, __LINE__); DBEXIT(BCE_VERBOSE_NVRAM); return (ENODEV); } bce_init_nvram_get_flash_size: /* Write the flash config data to the shared memory interface. */ val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; if (val) sc->bce_flash_size = val; else sc->bce_flash_size = sc->bce_flash_info->total_size; DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", __FUNCTION__, sc->bce_flash_info->name, sc->bce_flash_info->total_size); DBEXIT(BCE_VERBOSE_NVRAM); return rc; } /****************************************************************************/ /* Read an arbitrary range of data from NVRAM. */ /* */ /* Prepares the NVRAM interface for access and reads the requested data */ /* into the supplied buffer. */ /* */ /* Returns: */ /* 0 on success and the data read, positive value on failure. */ /****************************************************************************/ static int bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, int buf_size) { int rc = 0; u32 cmd_flags, offset32, len32, extra; DBENTER(BCE_VERBOSE_NVRAM); if (buf_size == 0) goto bce_nvram_read_exit; /* Request access to the flash interface. */ if ((rc = bce_acquire_nvram_lock(sc)) != 0) goto bce_nvram_read_exit; /* Enable access to flash interface */ bce_enable_nvram_access(sc); len32 = buf_size; offset32 = offset; extra = 0; cmd_flags = 0; if (offset32 & 3) { u8 buf[4]; u32 pre_len; offset32 &= ~3; pre_len = 4 - (offset & 3); if (pre_len >= len32) { pre_len = len32; cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; } else { cmd_flags = BCE_NVM_COMMAND_FIRST; } rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); if (rc) return rc; memcpy(ret_buf, buf + (offset & 3), pre_len); offset32 += 4; ret_buf += pre_len; len32 -= pre_len; } if (len32 & 3) { extra = 4 - (len32 & 3); len32 = (len32 + 4) & ~3; } if (len32 == 4) { u8 buf[4]; if (cmd_flags) cmd_flags = BCE_NVM_COMMAND_LAST; else cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } else if (len32 > 0) { u8 buf[4]; /* Read the first word. */ if (cmd_flags) cmd_flags = 0; else cmd_flags = BCE_NVM_COMMAND_FIRST; rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; while (len32 > 4 && rc == 0) { rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; } if (rc) goto bce_nvram_read_locked_exit; cmd_flags = BCE_NVM_COMMAND_LAST; rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } bce_nvram_read_locked_exit: /* Disable access to flash interface and release the lock. */ bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); bce_nvram_read_exit: DBEXIT(BCE_VERBOSE_NVRAM); return rc; } #ifdef BCE_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Write an arbitrary range of data from NVRAM. */ /* */ /* Prepares the NVRAM interface for write access and writes the requested */ /* data from the supplied buffer. The caller is responsible for */ /* calculating any appropriate CRCs. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, int buf_size) { u32 written, offset32, len32; u8 *buf, start[4], end[4]; int rc = 0; int align_start, align_end; DBENTER(BCE_VERBOSE_NVRAM); buf = data_buf; offset32 = offset; len32 = buf_size; align_start = align_end = 0; if ((align_start = (offset32 & 3))) { offset32 &= ~3; len32 += align_start; if ((rc = bce_nvram_read(sc, offset32, start, 4))) goto bce_nvram_write_exit; } if (len32 & 3) { if ((len32 > 4) || !align_start) { align_end = 4 - (len32 & 3); len32 += align_end; if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, end, 4))) { goto bce_nvram_write_exit; } } } if (align_start || align_end) { buf = malloc(len32, M_DEVBUF, M_NOWAIT); if (buf == NULL) { rc = ENOMEM; goto bce_nvram_write_exit; } if (align_start) { memcpy(buf, start, 4); } if (align_end) { memcpy(buf + len32 - 4, end, 4); } memcpy(buf + align_start, data_buf, buf_size); } written = 0; while ((written < len32) && (rc == 0)) { u32 page_start, page_end, data_start, data_end; u32 addr, cmd_flags; int i; u8 flash_buffer[264]; /* Find the page_start addr */ page_start = offset32 + written; page_start -= (page_start % sc->bce_flash_info->page_size); /* Find the page_end addr */ page_end = page_start + sc->bce_flash_info->page_size; /* Find the data_start addr */ data_start = (written == 0) ? offset32 : page_start; /* Find the data_end addr */ data_end = (page_end > offset32 + len32) ? (offset32 + len32) : page_end; /* Request access to the flash interface. */ if ((rc = bce_acquire_nvram_lock(sc)) != 0) goto bce_nvram_write_exit; /* Enable access to flash interface */ bce_enable_nvram_access(sc); cmd_flags = BCE_NVM_COMMAND_FIRST; if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { int j; /* Read the whole page into the buffer * (non-buffer flash only) */ for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { if (j == (sc->bce_flash_info->page_size - 4)) { cmd_flags |= BCE_NVM_COMMAND_LAST; } rc = bce_nvram_read_dword(sc, page_start + j, &flash_buffer[j], cmd_flags); if (rc) goto bce_nvram_write_locked_exit; cmd_flags = 0; } } /* Enable writes to flash interface (unlock write-protect) */ if ((rc = bce_enable_nvram_write(sc)) != 0) goto bce_nvram_write_locked_exit; /* Erase the page */ if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) goto bce_nvram_write_locked_exit; /* Re-enable the write again for the actual write */ bce_enable_nvram_write(sc); /* Loop to write back the buffer data from page_start to * data_start */ i = 0; if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { for (addr = page_start; addr < data_start; addr += 4, i += 4) { rc = bce_nvram_write_dword(sc, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto bce_nvram_write_locked_exit; cmd_flags = 0; } } /* Loop to write the new data from data_start to data_end */ for (addr = data_start; addr < data_end; addr += 4, i++) { if ((addr == page_end - 4) || ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && (addr == data_end - 4))) { cmd_flags |= BCE_NVM_COMMAND_LAST; } rc = bce_nvram_write_dword(sc, addr, buf, cmd_flags); if (rc != 0) goto bce_nvram_write_locked_exit; cmd_flags = 0; buf += 4; } /* Loop to write back the buffer data from data_end * to page_end */ if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { for (addr = data_end; addr < page_end; addr += 4, i += 4) { if (addr == page_end-4) { cmd_flags = BCE_NVM_COMMAND_LAST; } rc = bce_nvram_write_dword(sc, addr, &flash_buffer[i], cmd_flags); if (rc != 0) goto bce_nvram_write_locked_exit; cmd_flags = 0; } } /* Disable writes to flash interface (lock write-protect) */ bce_disable_nvram_write(sc); /* Disable access to flash interface */ bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); /* Increment written */ written += data_end - data_start; } goto bce_nvram_write_exit; bce_nvram_write_locked_exit: bce_disable_nvram_write(sc); bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); bce_nvram_write_exit: if (align_start || align_end) free(buf, M_DEVBUF); DBEXIT(BCE_VERBOSE_NVRAM); return (rc); } #endif /* BCE_NVRAM_WRITE_SUPPORT */ /****************************************************************************/ /* Verifies that NVRAM is accessible and contains valid data. */ /* */ /* Reads the configuration data from NVRAM and verifies that the CRC is */ /* correct. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_nvram_test(struct bce_softc *sc) { u32 buf[BCE_NVRAM_SIZE / 4]; u8 *data = (u8 *) buf; int rc = 0; u32 magic, csum; DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); /* * Check that the device NVRAM is valid by reading * the magic value at offset 0. */ if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); goto bce_nvram_test_exit; } /* * Verify that offset 0 of the NVRAM contains * a valid magic number. */ magic = bce_be32toh(buf[0]); if (magic != BCE_NVRAM_MAGIC) { rc = ENODEV; BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " "Expected: 0x%08X, Found: 0x%08X\n", __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); goto bce_nvram_test_exit; } /* * Verify that the device NVRAM includes valid * configuration data. */ if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { BCE_PRINTF("%s(%d): Unable to read manufacturing " "Information from NVRAM!\n", __FILE__, __LINE__); goto bce_nvram_test_exit; } csum = ether_crc32_le(data, 0x100); if (csum != BCE_CRC32_RESIDUAL) { rc = ENODEV; BCE_PRINTF("%s(%d): Invalid manufacturing information " "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); goto bce_nvram_test_exit; } csum = ether_crc32_le(data + 0x100, 0x100); if (csum != BCE_CRC32_RESIDUAL) { rc = ENODEV; BCE_PRINTF("%s(%d): Invalid feature configuration " "information NVRAM CRC! Expected: 0x%08X, " "Found: 08%08X\n", __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); } bce_nvram_test_exit: DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); return rc; } /****************************************************************************/ /* Calculates the size of the buffers to allocate based on the MTU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) { DBENTER(BCE_VERBOSE_LOAD); /* Use a single allocation type when header splitting enabled. */ if (bce_hdr_split == TRUE) { sc->rx_bd_mbuf_alloc_size = MHLEN; /* Make sure offset is 16 byte aligned for hardware. */ sc->rx_bd_mbuf_align_pad = roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN); sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - sc->rx_bd_mbuf_align_pad; } else { if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) { /* Setup for jumbo RX buffer allocations. */ sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES; sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - sc->rx_bd_mbuf_align_pad; } else { /* Setup for standard RX buffer allocations. */ sc->rx_bd_mbuf_alloc_size = MCLBYTES; sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - sc->rx_bd_mbuf_align_pad; } } // DBPRINT(sc, BCE_INFO_LOAD, DBPRINT(sc, BCE_WARN, "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, sc->rx_bd_mbuf_align_pad); DBEXIT(BCE_VERBOSE_LOAD); } /****************************************************************************/ /* Identifies the current media type of the controller and sets the PHY */ /* address. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_get_media(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_PHY); /* Assume PHY address for copper controllers. */ sc->bce_phy_addr = 1; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; u32 strap; /* * The BCM5709S is software configurable * for Copper or SerDes operation. */ if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " "for copper.\n"); goto bce_get_media_exit; } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " "for dual media.\n"); sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; goto bce_get_media_exit; } if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; else strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; if (pci_get_function(sc->bce_dev) == 0) { switch (strap) { case 0x4: case 0x5: case 0x6: DBPRINT(sc, BCE_INFO_LOAD, "BCM5709 s/w configured for SerDes.\n"); sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; break; default: DBPRINT(sc, BCE_INFO_LOAD, "BCM5709 s/w configured for Copper.\n"); break; } } else { switch (strap) { case 0x1: case 0x2: case 0x4: DBPRINT(sc, BCE_INFO_LOAD, "BCM5709 s/w configured for SerDes.\n"); sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; break; default: DBPRINT(sc, BCE_INFO_LOAD, "BCM5709 s/w configured for Copper.\n"); break; } } } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { sc->bce_flags |= BCE_NO_WOL_FLAG; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { /* 5708S/09S/16S use a separate PHY for SerDes. */ sc->bce_phy_addr = 2; val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " "capable adapter\n"); } } } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; bce_get_media_exit: DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), "Using PHY address %d.\n", sc->bce_phy_addr); DBEXIT(BCE_VERBOSE_PHY); } /****************************************************************************/ /* Performs PHY initialization required before MII drivers access the */ /* device. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_media(struct bce_softc *sc) { if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { /* * Configure 5709S/5716S PHYs to use traditional IEEE * Clause 22 method. Otherwise we have no way to attach * the PHY in mii(4) layer. PHY specific configuration * is done in mii layer. */ /* Select auto-negotiation MMD of the PHY. */ bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); } } /****************************************************************************/ /* Free any DMA memory owned by the driver. */ /* */ /* Scans through each data structure that requires DMA memory and frees */ /* the memory if allocated. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_dma_free(struct bce_softc *sc) { int i; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); /* Free, unmap, and destroy the status block. */ if (sc->status_block_paddr != 0) { bus_dmamap_unload( sc->status_tag, sc->status_map); sc->status_block_paddr = 0; } if (sc->status_block != NULL) { bus_dmamem_free( sc->status_tag, sc->status_block, sc->status_map); sc->status_block = NULL; } if (sc->status_tag != NULL) { bus_dma_tag_destroy(sc->status_tag); sc->status_tag = NULL; } /* Free, unmap, and destroy the statistics block. */ if (sc->stats_block_paddr != 0) { bus_dmamap_unload( sc->stats_tag, sc->stats_map); sc->stats_block_paddr = 0; } if (sc->stats_block != NULL) { bus_dmamem_free( sc->stats_tag, sc->stats_block, sc->stats_map); sc->stats_block = NULL; } if (sc->stats_tag != NULL) { bus_dma_tag_destroy(sc->stats_tag); sc->stats_tag = NULL; } /* Free, unmap and destroy all context memory pages. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { for (i = 0; i < sc->ctx_pages; i++ ) { if (sc->ctx_paddr[i] != 0) { bus_dmamap_unload( sc->ctx_tag, sc->ctx_map[i]); sc->ctx_paddr[i] = 0; } if (sc->ctx_block[i] != NULL) { bus_dmamem_free( sc->ctx_tag, sc->ctx_block[i], sc->ctx_map[i]); sc->ctx_block[i] = NULL; } } /* Destroy the context memory tag. */ if (sc->ctx_tag != NULL) { bus_dma_tag_destroy(sc->ctx_tag); sc->ctx_tag = NULL; } } /* Free, unmap and destroy all TX buffer descriptor chain pages. */ for (i = 0; i < sc->tx_pages; i++ ) { if (sc->tx_bd_chain_paddr[i] != 0) { bus_dmamap_unload( sc->tx_bd_chain_tag, sc->tx_bd_chain_map[i]); sc->tx_bd_chain_paddr[i] = 0; } if (sc->tx_bd_chain[i] != NULL) { bus_dmamem_free( sc->tx_bd_chain_tag, sc->tx_bd_chain[i], sc->tx_bd_chain_map[i]); sc->tx_bd_chain[i] = NULL; } } /* Destroy the TX buffer descriptor tag. */ if (sc->tx_bd_chain_tag != NULL) { bus_dma_tag_destroy(sc->tx_bd_chain_tag); sc->tx_bd_chain_tag = NULL; } /* Free, unmap and destroy all RX buffer descriptor chain pages. */ for (i = 0; i < sc->rx_pages; i++ ) { if (sc->rx_bd_chain_paddr[i] != 0) { bus_dmamap_unload( sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i]); sc->rx_bd_chain_paddr[i] = 0; } if (sc->rx_bd_chain[i] != NULL) { bus_dmamem_free( sc->rx_bd_chain_tag, sc->rx_bd_chain[i], sc->rx_bd_chain_map[i]); sc->rx_bd_chain[i] = NULL; } } /* Destroy the RX buffer descriptor tag. */ if (sc->rx_bd_chain_tag != NULL) { bus_dma_tag_destroy(sc->rx_bd_chain_tag); sc->rx_bd_chain_tag = NULL; } /* Free, unmap and destroy all page buffer descriptor chain pages. */ if (bce_hdr_split == TRUE) { for (i = 0; i < sc->pg_pages; i++ ) { if (sc->pg_bd_chain_paddr[i] != 0) { bus_dmamap_unload( sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i]); sc->pg_bd_chain_paddr[i] = 0; } if (sc->pg_bd_chain[i] != NULL) { bus_dmamem_free( sc->pg_bd_chain_tag, sc->pg_bd_chain[i], sc->pg_bd_chain_map[i]); sc->pg_bd_chain[i] = NULL; } } /* Destroy the page buffer descriptor tag. */ if (sc->pg_bd_chain_tag != NULL) { bus_dma_tag_destroy(sc->pg_bd_chain_tag); sc->pg_bd_chain_tag = NULL; } } /* Unload and destroy the TX mbuf maps. */ for (i = 0; i < MAX_TX_BD_AVAIL; i++) { if (sc->tx_mbuf_map[i] != NULL) { bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]); bus_dmamap_destroy(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]); sc->tx_mbuf_map[i] = NULL; } } /* Destroy the TX mbuf tag. */ if (sc->tx_mbuf_tag != NULL) { bus_dma_tag_destroy(sc->tx_mbuf_tag); sc->tx_mbuf_tag = NULL; } /* Unload and destroy the RX mbuf maps. */ for (i = 0; i < MAX_RX_BD_AVAIL; i++) { if (sc->rx_mbuf_map[i] != NULL) { bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]); bus_dmamap_destroy(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]); sc->rx_mbuf_map[i] = NULL; } } /* Destroy the RX mbuf tag. */ if (sc->rx_mbuf_tag != NULL) { bus_dma_tag_destroy(sc->rx_mbuf_tag); sc->rx_mbuf_tag = NULL; } /* Unload and destroy the page mbuf maps. */ if (bce_hdr_split == TRUE) { for (i = 0; i < MAX_PG_BD_AVAIL; i++) { if (sc->pg_mbuf_map[i] != NULL) { bus_dmamap_unload(sc->pg_mbuf_tag, sc->pg_mbuf_map[i]); bus_dmamap_destroy(sc->pg_mbuf_tag, sc->pg_mbuf_map[i]); sc->pg_mbuf_map[i] = NULL; } } /* Destroy the page mbuf tag. */ if (sc->pg_mbuf_tag != NULL) { bus_dma_tag_destroy(sc->pg_mbuf_tag); sc->pg_mbuf_tag = NULL; } } /* Destroy the parent tag */ if (sc->parent_tag != NULL) { bus_dma_tag_destroy(sc->parent_tag); sc->parent_tag = NULL; } DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Get DMA memory from the OS. */ /* */ /* Validates that the OS has provided DMA buffers in response to a */ /* bus_dmamap_load() call and saves the physical address of those buffers. */ /* When the callback is used the OS will return 0 for the mapping function */ /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ /* failures back to the caller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *busaddr = arg; KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", __FUNCTION__, nseg)); /* Simulate a mapping failure. */ DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), error = ENOMEM); /* ToDo: How to increment debug sim_count variable here? */ /* Check for an error and signal the caller that an error occurred. */ if (error) { *busaddr = 0; } else { *busaddr = segs->ds_addr; } } /****************************************************************************/ /* Allocate any DMA memory needed by the driver. */ /* */ /* Allocates DMA memory needed for the various global structures needed by */ /* hardware. */ /* */ /* Memory alignment requirements: */ /* +-----------------+----------+----------+----------+----------+ */ /* | | 5706 | 5708 | 5709 | 5716 | */ /* +-----------------+----------+----------+----------+----------+ */ /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ /* |PG Buffers | none | none | none | none | */ /* |TX Buffers | none | none | none | none | */ /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ /* |Context Memory | | | | | */ /* +-----------------+----------+----------+----------+----------+ */ /* */ /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_dma_alloc(device_t dev) { struct bce_softc *sc; int i, error, rc = 0; bus_size_t max_size, max_seg_size; int max_segments; sc = device_get_softc(dev); DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); /* * Allocate the parent bus DMA tag appropriate for PCI. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_tag)) { BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } /* * Create a DMA tag for the status block, allocate and clear the * memory, map the memory into DMA space, and fetch the physical * address of the block. */ if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 0, NULL, NULL, &sc->status_tag)) { BCE_PRINTF("%s(%d): Could not allocate status block " "DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->status_map)) { BCE_PRINTF("%s(%d): Could not allocate status block " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->status_tag, sc->status_map, sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, &sc->status_block_paddr, BUS_DMA_NOWAIT); if (error || sc->status_block_paddr == 0) { BCE_PRINTF("%s(%d): Could not map status block " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", __FUNCTION__, (uintmax_t) sc->status_block_paddr); /* * Create a DMA tag for the statistics block, allocate and clear the * memory, map the memory into DMA space, and fetch the physical * address of the block. */ if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 0, NULL, NULL, &sc->stats_tag)) { BCE_PRINTF("%s(%d): Could not allocate statistics block " "DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { BCE_PRINTF("%s(%d): Could not allocate statistics block " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->stats_tag, sc->stats_map, sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, &sc->stats_block_paddr, BUS_DMA_NOWAIT); if (error || sc->stats_block_paddr == 0) { BCE_PRINTF("%s(%d): Could not map statistics block " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", __FUNCTION__, (uintmax_t) sc->stats_block_paddr); /* BCM5709 uses host memory as cache for context memory. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; if (sc->ctx_pages == 0) sc->ctx_pages = 1; DBRUNIF((sc->ctx_pages > 512), BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", __FILE__, __LINE__, sc->ctx_pages)); /* * Create a DMA tag for the context pages, * allocate and clear the memory, map the * memory into DMA space, and fetch the * physical address of the block. */ if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 0, NULL, NULL, &sc->ctx_tag)) { BCE_PRINTF("%s(%d): Could not allocate CTX " "DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } for (i = 0; i < sc->ctx_pages; i++) { if(bus_dmamem_alloc(sc->ctx_tag, (void **)&sc->ctx_block[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ctx_map[i])) { BCE_PRINTF("%s(%d): Could not allocate CTX " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, &sc->ctx_paddr[i], BUS_DMA_NOWAIT); if (error || sc->ctx_paddr[i] == 0) { BCE_PRINTF("%s(%d): Could not map CTX " "DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " "= 0x%jX\n", __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); } } /* * Create a DMA tag for the TX buffer descriptor chain, * allocate and clear the memory, and fetch the * physical address of the block. */ if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, NULL, NULL, &sc->tx_bd_chain_tag)) { BCE_PRINTF("%s(%d): Could not allocate TX descriptor " "chain DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } for (i = 0; i < sc->tx_pages; i++) { if(bus_dmamem_alloc(sc->tx_bd_chain_tag, (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->tx_bd_chain_map[i])) { BCE_PRINTF("%s(%d): Could not allocate TX descriptor " "chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->tx_bd_chain_tag, sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); if (error || sc->tx_bd_chain_paddr[i] == 0) { BCE_PRINTF("%s(%d): Could not map TX descriptor " "chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " "0x%jX\n", __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); } /* Check the required size before mapping to conserve resources. */ if (bce_tso_enable) { max_size = BCE_TSO_MAX_SIZE; max_segments = BCE_MAX_SEGMENTS; max_seg_size = BCE_TSO_MAX_SEG_SIZE; } else { max_size = MCLBYTES * BCE_MAX_SEGMENTS; max_segments = BCE_MAX_SEGMENTS; max_seg_size = MCLBYTES; } /* Create a DMA tag for TX mbufs. */ if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } /* Create DMA maps for the TX mbufs clusters. */ for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, &sc->tx_mbuf_map[i])) { BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " "map!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } } /* * Create a DMA tag for the RX buffer descriptor chain, * allocate and clear the memory, and fetch the physical * address of the blocks. */ if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, NULL, NULL, BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 0, NULL, NULL, &sc->rx_bd_chain_tag)) { BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " "DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } for (i = 0; i < sc->rx_pages; i++) { if (bus_dmamem_alloc(sc->rx_bd_chain_tag, (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->rx_bd_chain_map[i])) { BCE_PRINTF("%s(%d): Could not allocate RX descriptor " "chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); if (error || sc->rx_bd_chain_paddr[i] == 0) { BCE_PRINTF("%s(%d): Could not map RX descriptor " "chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " "0x%jX\n", __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); } /* * Create a DMA tag for RX mbufs. */ if (bce_hdr_split == TRUE) max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? MCLBYTES : sc->rx_bd_mbuf_alloc_size); else max_size = MJUM9BYTES; DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size); if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } /* Create DMA maps for the RX mbuf clusters. */ for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, &sc->rx_mbuf_map[i])) { BCE_PRINTF("%s(%d): Unable to create RX mbuf " "DMA map!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } } if (bce_hdr_split == TRUE) { /* * Create a DMA tag for the page buffer descriptor chain, * allocate and clear the memory, and fetch the physical * address of the blocks. */ if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 0, NULL, NULL, &sc->pg_bd_chain_tag)) { BCE_PRINTF("%s(%d): Could not allocate page descriptor " "chain DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } for (i = 0; i < sc->pg_pages; i++) { if (bus_dmamem_alloc(sc->pg_bd_chain_tag, (void **)&sc->pg_bd_chain[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->pg_bd_chain_map[i])) { BCE_PRINTF("%s(%d): Could not allocate page " "descriptor chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } error = bus_dmamap_load(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); if (error || sc->pg_bd_chain_paddr[i] == 0) { BCE_PRINTF("%s(%d): Could not map page descriptor " "chain DMA memory!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " "0x%jX\n", __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); } /* * Create a DMA tag for page mbufs. */ if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) { BCE_PRINTF("%s(%d): Could not allocate page mbuf " "DMA tag!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } /* Create DMA maps for the page mbuf clusters. */ for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, &sc->pg_mbuf_map[i])) { BCE_PRINTF("%s(%d): Unable to create page mbuf " "DMA map!\n", __FILE__, __LINE__); rc = ENOMEM; goto bce_dma_alloc_exit; } } } bce_dma_alloc_exit: DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); return(rc); } /****************************************************************************/ /* Release all resources used by the driver. */ /* */ /* Releases all resources acquired by the driver including interrupts, */ /* interrupt handler, interfaces, mutexes, and DMA memory. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_release_resources(struct bce_softc *sc) { device_t dev; DBENTER(BCE_VERBOSE_RESET); dev = sc->bce_dev; bce_dma_free(sc); if (sc->bce_intrhand != NULL) { DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); } if (sc->bce_res_irq != NULL) { DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); } if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); pci_release_msi(dev); } if (sc->bce_res_mem != NULL) { DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); } if (sc->bce_ifp != NULL) { DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); if_free(sc->bce_ifp); } if (mtx_initialized(&sc->bce_mtx)) BCE_LOCK_DESTROY(sc); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Firmware synchronization. */ /* */ /* Before performing certain events such as a chip reset, synchronize with */ /* the firmware first. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_fw_sync(struct bce_softc *sc, u32 msg_data) { int i, rc = 0; u32 val; DBENTER(BCE_VERBOSE_RESET); /* Don't waste any time if we've timed out before. */ if (sc->bce_fw_timed_out == TRUE) { rc = EBUSY; goto bce_fw_sync_exit; } /* Increment the message sequence number. */ sc->bce_fw_wr_seq++; msg_data |= sc->bce_fw_wr_seq; DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " "0x%08X\n", msg_data); /* Send the message to the bootcode driver mailbox. */ bce_shmem_wr(sc, BCE_DRV_MB, msg_data); /* Wait for the bootcode to acknowledge the message. */ for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { /* Check for a response in the bootcode firmware mailbox. */ val = bce_shmem_rd(sc, BCE_FW_MB); if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) break; DELAY(1000); } /* If we've timed out, tell bootcode that we've stopped waiting. */ if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { BCE_PRINTF("%s(%d): Firmware synchronization timeout! " "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); msg_data &= ~BCE_DRV_MSG_CODE; msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; bce_shmem_wr(sc, BCE_DRV_MB, msg_data); sc->bce_fw_timed_out = TRUE; rc = EBUSY; } bce_fw_sync_exit: DBEXIT(BCE_VERBOSE_RESET); return (rc); } /****************************************************************************/ /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code, u32 rv2p_code_len, u32 rv2p_proc) { int i; u32 val; DBENTER(BCE_VERBOSE_RESET); /* Set the page size used by RV2P. */ if (rv2p_proc == RV2P_PROC2) { BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); } for (i = 0; i < rv2p_code_len; i += 8) { REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); rv2p_code++; REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); rv2p_code++; if (rv2p_proc == RV2P_PROC1) { val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); } else { val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); } } /* Reset the processor, un-stall is done later. */ if (rv2p_proc == RV2P_PROC1) { REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); } else { REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); } DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Load RISC processor firmware. */ /* */ /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ /* associated with a particular processor. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, struct fw_info *fw) { u32 offset; DBENTER(BCE_VERBOSE_RESET); bce_halt_cpu(sc, cpu_reg); /* Load the Text area. */ offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); if (fw->text) { int j; for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { REG_WR_IND(sc, offset, fw->text[j]); } } /* Load the Data area. */ offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); if (fw->data) { int j; for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { REG_WR_IND(sc, offset, fw->data[j]); } } /* Load the SBSS area. */ offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); if (fw->sbss) { int j; for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { REG_WR_IND(sc, offset, fw->sbss[j]); } } /* Load the BSS area. */ offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); if (fw->bss) { int j; for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { REG_WR_IND(sc, offset, fw->bss[j]); } } /* Load the Read-Only area. */ offset = cpu_reg->spad_base + (fw->rodata_addr - cpu_reg->mips_view_base); if (fw->rodata) { int j; for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { REG_WR_IND(sc, offset, fw->rodata[j]); } } /* Clear the pre-fetch instruction and set the FW start address. */ REG_WR_IND(sc, cpu_reg->inst, 0); REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Starts the RISC processor. */ /* */ /* Assumes the CPU starting address has already been set. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) { u32 val; DBENTER(BCE_VERBOSE_RESET); /* Start the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val &= ~cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); REG_WR_IND(sc, cpu_reg->mode, val); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Halts the RISC processor. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) { u32 val; DBENTER(BCE_VERBOSE_RESET); /* Halt the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val |= cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->mode, val); REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the RX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start_rxp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_RXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); bce_start_cpu(sc, &cpu_reg); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the RX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_rxp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_RXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { fw.ver_major = bce_RXP_b09FwReleaseMajor; fw.ver_minor = bce_RXP_b09FwReleaseMinor; fw.ver_fix = bce_RXP_b09FwReleaseFix; fw.start_addr = bce_RXP_b09FwStartAddr; fw.text_addr = bce_RXP_b09FwTextAddr; fw.text_len = bce_RXP_b09FwTextLen; fw.text_index = 0; fw.text = bce_RXP_b09FwText; fw.data_addr = bce_RXP_b09FwDataAddr; fw.data_len = bce_RXP_b09FwDataLen; fw.data_index = 0; fw.data = bce_RXP_b09FwData; fw.sbss_addr = bce_RXP_b09FwSbssAddr; fw.sbss_len = bce_RXP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_RXP_b09FwSbss; fw.bss_addr = bce_RXP_b09FwBssAddr; fw.bss_len = bce_RXP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_RXP_b09FwBss; fw.rodata_addr = bce_RXP_b09FwRodataAddr; fw.rodata_len = bce_RXP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_RXP_b09FwRodata; } else { fw.ver_major = bce_RXP_b06FwReleaseMajor; fw.ver_minor = bce_RXP_b06FwReleaseMinor; fw.ver_fix = bce_RXP_b06FwReleaseFix; fw.start_addr = bce_RXP_b06FwStartAddr; fw.text_addr = bce_RXP_b06FwTextAddr; fw.text_len = bce_RXP_b06FwTextLen; fw.text_index = 0; fw.text = bce_RXP_b06FwText; fw.data_addr = bce_RXP_b06FwDataAddr; fw.data_len = bce_RXP_b06FwDataLen; fw.data_index = 0; fw.data = bce_RXP_b06FwData; fw.sbss_addr = bce_RXP_b06FwSbssAddr; fw.sbss_len = bce_RXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_RXP_b06FwSbss; fw.bss_addr = bce_RXP_b06FwBssAddr; fw.bss_len = bce_RXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_RXP_b06FwBss; fw.rodata_addr = bce_RXP_b06FwRodataAddr; fw.rodata_len = bce_RXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_RXP_b06FwRodata; } DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); bce_load_cpu_fw(sc, &cpu_reg, &fw); /* Delay RXP start until initialization is complete. */ DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the TX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_txp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_TXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_TXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_TXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { fw.ver_major = bce_TXP_b09FwReleaseMajor; fw.ver_minor = bce_TXP_b09FwReleaseMinor; fw.ver_fix = bce_TXP_b09FwReleaseFix; fw.start_addr = bce_TXP_b09FwStartAddr; fw.text_addr = bce_TXP_b09FwTextAddr; fw.text_len = bce_TXP_b09FwTextLen; fw.text_index = 0; fw.text = bce_TXP_b09FwText; fw.data_addr = bce_TXP_b09FwDataAddr; fw.data_len = bce_TXP_b09FwDataLen; fw.data_index = 0; fw.data = bce_TXP_b09FwData; fw.sbss_addr = bce_TXP_b09FwSbssAddr; fw.sbss_len = bce_TXP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TXP_b09FwSbss; fw.bss_addr = bce_TXP_b09FwBssAddr; fw.bss_len = bce_TXP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_TXP_b09FwBss; fw.rodata_addr = bce_TXP_b09FwRodataAddr; fw.rodata_len = bce_TXP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TXP_b09FwRodata; } else { fw.ver_major = bce_TXP_b06FwReleaseMajor; fw.ver_minor = bce_TXP_b06FwReleaseMinor; fw.ver_fix = bce_TXP_b06FwReleaseFix; fw.start_addr = bce_TXP_b06FwStartAddr; fw.text_addr = bce_TXP_b06FwTextAddr; fw.text_len = bce_TXP_b06FwTextLen; fw.text_index = 0; fw.text = bce_TXP_b06FwText; fw.data_addr = bce_TXP_b06FwDataAddr; fw.data_len = bce_TXP_b06FwDataLen; fw.data_index = 0; fw.data = bce_TXP_b06FwData; fw.sbss_addr = bce_TXP_b06FwSbssAddr; fw.sbss_len = bce_TXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TXP_b06FwSbss; fw.bss_addr = bce_TXP_b06FwBssAddr; fw.bss_len = bce_TXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_TXP_b06FwBss; fw.rodata_addr = bce_TXP_b06FwRodataAddr; fw.rodata_len = bce_TXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TXP_b06FwRodata; } DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the TPAT CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_tpat_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_TPAT_CPU_MODE; cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_TPAT_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_TPAT_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { fw.ver_major = bce_TPAT_b09FwReleaseMajor; fw.ver_minor = bce_TPAT_b09FwReleaseMinor; fw.ver_fix = bce_TPAT_b09FwReleaseFix; fw.start_addr = bce_TPAT_b09FwStartAddr; fw.text_addr = bce_TPAT_b09FwTextAddr; fw.text_len = bce_TPAT_b09FwTextLen; fw.text_index = 0; fw.text = bce_TPAT_b09FwText; fw.data_addr = bce_TPAT_b09FwDataAddr; fw.data_len = bce_TPAT_b09FwDataLen; fw.data_index = 0; fw.data = bce_TPAT_b09FwData; fw.sbss_addr = bce_TPAT_b09FwSbssAddr; fw.sbss_len = bce_TPAT_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TPAT_b09FwSbss; fw.bss_addr = bce_TPAT_b09FwBssAddr; fw.bss_len = bce_TPAT_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_TPAT_b09FwBss; fw.rodata_addr = bce_TPAT_b09FwRodataAddr; fw.rodata_len = bce_TPAT_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TPAT_b09FwRodata; } else { fw.ver_major = bce_TPAT_b06FwReleaseMajor; fw.ver_minor = bce_TPAT_b06FwReleaseMinor; fw.ver_fix = bce_TPAT_b06FwReleaseFix; fw.start_addr = bce_TPAT_b06FwStartAddr; fw.text_addr = bce_TPAT_b06FwTextAddr; fw.text_len = bce_TPAT_b06FwTextLen; fw.text_index = 0; fw.text = bce_TPAT_b06FwText; fw.data_addr = bce_TPAT_b06FwDataAddr; fw.data_len = bce_TPAT_b06FwDataLen; fw.data_index = 0; fw.data = bce_TPAT_b06FwData; fw.sbss_addr = bce_TPAT_b06FwSbssAddr; fw.sbss_len = bce_TPAT_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TPAT_b06FwSbss; fw.bss_addr = bce_TPAT_b06FwBssAddr; fw.bss_len = bce_TPAT_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_TPAT_b06FwBss; fw.rodata_addr = bce_TPAT_b06FwRodataAddr; fw.rodata_len = bce_TPAT_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TPAT_b06FwRodata; } DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the CP CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_cp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_CP_CPU_MODE; cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_CP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_CP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { fw.ver_major = bce_CP_b09FwReleaseMajor; fw.ver_minor = bce_CP_b09FwReleaseMinor; fw.ver_fix = bce_CP_b09FwReleaseFix; fw.start_addr = bce_CP_b09FwStartAddr; fw.text_addr = bce_CP_b09FwTextAddr; fw.text_len = bce_CP_b09FwTextLen; fw.text_index = 0; fw.text = bce_CP_b09FwText; fw.data_addr = bce_CP_b09FwDataAddr; fw.data_len = bce_CP_b09FwDataLen; fw.data_index = 0; fw.data = bce_CP_b09FwData; fw.sbss_addr = bce_CP_b09FwSbssAddr; fw.sbss_len = bce_CP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_CP_b09FwSbss; fw.bss_addr = bce_CP_b09FwBssAddr; fw.bss_len = bce_CP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_CP_b09FwBss; fw.rodata_addr = bce_CP_b09FwRodataAddr; fw.rodata_len = bce_CP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_CP_b09FwRodata; } else { fw.ver_major = bce_CP_b06FwReleaseMajor; fw.ver_minor = bce_CP_b06FwReleaseMinor; fw.ver_fix = bce_CP_b06FwReleaseFix; fw.start_addr = bce_CP_b06FwStartAddr; fw.text_addr = bce_CP_b06FwTextAddr; fw.text_len = bce_CP_b06FwTextLen; fw.text_index = 0; fw.text = bce_CP_b06FwText; fw.data_addr = bce_CP_b06FwDataAddr; fw.data_len = bce_CP_b06FwDataLen; fw.data_index = 0; fw.data = bce_CP_b06FwData; fw.sbss_addr = bce_CP_b06FwSbssAddr; fw.sbss_len = bce_CP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_CP_b06FwSbss; fw.bss_addr = bce_CP_b06FwBssAddr; fw.bss_len = bce_CP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_CP_b06FwBss; fw.rodata_addr = bce_CP_b06FwRodataAddr; fw.rodata_len = bce_CP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_CP_b06FwRodata; } DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the COM CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_com_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; DBENTER(BCE_VERBOSE_RESET); cpu_reg.mode = BCE_COM_CPU_MODE; cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_COM_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_COM_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { fw.ver_major = bce_COM_b09FwReleaseMajor; fw.ver_minor = bce_COM_b09FwReleaseMinor; fw.ver_fix = bce_COM_b09FwReleaseFix; fw.start_addr = bce_COM_b09FwStartAddr; fw.text_addr = bce_COM_b09FwTextAddr; fw.text_len = bce_COM_b09FwTextLen; fw.text_index = 0; fw.text = bce_COM_b09FwText; fw.data_addr = bce_COM_b09FwDataAddr; fw.data_len = bce_COM_b09FwDataLen; fw.data_index = 0; fw.data = bce_COM_b09FwData; fw.sbss_addr = bce_COM_b09FwSbssAddr; fw.sbss_len = bce_COM_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_COM_b09FwSbss; fw.bss_addr = bce_COM_b09FwBssAddr; fw.bss_len = bce_COM_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_COM_b09FwBss; fw.rodata_addr = bce_COM_b09FwRodataAddr; fw.rodata_len = bce_COM_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_COM_b09FwRodata; } else { fw.ver_major = bce_COM_b06FwReleaseMajor; fw.ver_minor = bce_COM_b06FwReleaseMinor; fw.ver_fix = bce_COM_b06FwReleaseFix; fw.start_addr = bce_COM_b06FwStartAddr; fw.text_addr = bce_COM_b06FwTextAddr; fw.text_len = bce_COM_b06FwTextLen; fw.text_index = 0; fw.text = bce_COM_b06FwText; fw.data_addr = bce_COM_b06FwDataAddr; fw.data_len = bce_COM_b06FwDataLen; fw.data_index = 0; fw.data = bce_COM_b06FwData; fw.sbss_addr = bce_COM_b06FwSbssAddr; fw.sbss_len = bce_COM_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_COM_b06FwSbss; fw.bss_addr = bce_COM_b06FwBssAddr; fw.bss_len = bce_COM_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_COM_b06FwBss; fw.rodata_addr = bce_COM_b06FwRodataAddr; fw.rodata_len = bce_COM_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_COM_b06FwRodata; } DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ /* */ /* Loads the firmware for each CPU and starts the CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_cpus(struct bce_softc *sc) { DBENTER(BCE_VERBOSE_RESET); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); } else { bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); } } else { bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), RV2P_PROC2); } bce_init_rxp_cpu(sc); bce_init_txp_cpu(sc); bce_init_tpat_cpu(sc); bce_init_com_cpu(sc); bce_init_cp_cpu(sc); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize context memory. */ /* */ /* Clears the memory associated with each Context ID (CID). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static int bce_init_ctx(struct bce_softc *sc) { u32 offset, val, vcid_addr; int i, j, rc, retry_cnt; rc = 0; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { retry_cnt = CTX_INIT_RETRY_COUNT; DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); /* * BCM5709 context memory may be cached * in host memory so prepare the host memory * for access. */ val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); val |= (BCM_PAGE_BITS - 8) << 16; REG_WR(sc, BCE_CTX_COMMAND, val); /* Wait for mem init command to complete. */ for (i = 0; i < retry_cnt; i++) { val = REG_RD(sc, BCE_CTX_COMMAND); if (!(val & BCE_CTX_COMMAND_MEM_INIT)) break; DELAY(2); } if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { BCE_PRINTF("%s(): Context memory initialization failed!\n", __FUNCTION__); rc = EBUSY; goto init_ctx_fail; } for (i = 0; i < sc->ctx_pages; i++) { /* Set the physical address of the context memory. */ REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, BCE_ADDR_HI(sc->ctx_paddr[i])); REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); /* Verify the context memory write was successful. */ for (j = 0; j < retry_cnt; j++) { val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) break; DELAY(5); } if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { BCE_PRINTF("%s(): Failed to initialize " "context page %d!\n", __FUNCTION__, i); rc = EBUSY; goto init_ctx_fail; } } } else { DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); /* * For the 5706/5708, context memory is local to * the controller, so initialize the controller * context memory. */ vcid_addr = GET_CID_ADDR(96); while (vcid_addr) { vcid_addr -= PHY_CTX_SIZE; REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { CTX_WR(sc, 0x00, offset, 0); } REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); } } init_ctx_fail: DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); return (rc); } /****************************************************************************/ /* Fetch the permanent MAC address of the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_get_mac_addr(struct bce_softc *sc) { u32 mac_lo = 0, mac_hi = 0; DBENTER(BCE_VERBOSE_RESET); /* * The NetXtreme II bootcode populates various NIC * power-on and runtime configuration items in a * shared memory area. The factory configured MAC * address is available from both NVRAM and the * shared memory area so we'll read the value from * shared memory for speed. */ mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); if ((mac_lo == 0) && (mac_hi == 0)) { BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", __FILE__, __LINE__); } else { sc->eaddr[0] = (u_char)(mac_hi >> 8); sc->eaddr[1] = (u_char)(mac_hi >> 0); sc->eaddr[2] = (u_char)(mac_lo >> 24); sc->eaddr[3] = (u_char)(mac_lo >> 16); sc->eaddr[4] = (u_char)(mac_lo >> 8); sc->eaddr[5] = (u_char)(mac_lo >> 0); } DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " "address = %6D\n", sc->eaddr, ":"); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Program the MAC address. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_set_mac_addr(struct bce_softc *sc) { u32 val; u8 *mac_addr = sc->eaddr; /* ToDo: Add support for setting multiple MAC addresses. */ DBENTER(BCE_VERBOSE_RESET); DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " "%6D\n", sc->eaddr, ":"); val = (mac_addr[0] << 8) | mac_addr[1]; REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Stop the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_stop(struct bce_softc *sc) { struct ifnet *ifp; DBENTER(BCE_VERBOSE_RESET); BCE_LOCK_ASSERT(sc); ifp = sc->bce_ifp; callout_stop(&sc->bce_tick_callout); /* Disable the transmit/receive blocks. */ REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); DELAY(20); bce_disable_intr(sc); /* Free RX buffers. */ if (bce_hdr_split == TRUE) { bce_free_pg_chain(sc); } bce_free_rx_chain(sc); /* Free TX buffers. */ bce_free_tx_chain(sc); sc->watchdog_timer = 0; sc->bce_link_up = FALSE; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); DBEXIT(BCE_VERBOSE_RESET); } static int bce_reset(struct bce_softc *sc, u32 reset_code) { u32 emac_mode_save, val; int i, rc = 0; static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; DBENTER(BCE_VERBOSE_RESET); DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", __FUNCTION__, reset_code); /* * If ASF/IPMI is operational, then the EMAC Mode register already * contains appropriate values for the link settings that have * been auto-negotiated. Resetting the chip will clobber those * values. Save the important bits so we can restore them after * the reset. */ emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; /* Wait for pending PCI transactions to complete. */ REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); DELAY(5); /* Disable DMA */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); } /* Assume bootcode is running. */ sc->bce_fw_timed_out = FALSE; sc->bce_drv_cardiac_arrest = FALSE; /* Give the firmware a chance to prepare for the reset. */ rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); if (rc) goto bce_reset_exit; /* Set a firmware reminder that this is a soft reset. */ bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); /* Dummy read to force the chip to complete all current transactions. */ val = REG_RD(sc, BCE_MISC_ID); /* Chip reset. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); REG_RD(sc, BCE_MISC_COMMAND); DELAY(5); val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); } else { val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); /* Allow up to 30us for reset to complete. */ for (i = 0; i < 10; i++) { val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { break; } DELAY(10); } /* Check that reset completed successfully. */ if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { BCE_PRINTF("%s(%d): Reset failed!\n", __FILE__, __LINE__); rc = EBUSY; goto bce_reset_exit; } } /* Make sure byte swapping is properly configured. */ val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); if (val != 0x01020304) { BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", __FILE__, __LINE__); rc = ENODEV; goto bce_reset_exit; } /* Just completed a reset, assume that firmware is running again. */ sc->bce_fw_timed_out = FALSE; sc->bce_drv_cardiac_arrest = FALSE; /* Wait for the firmware to finish its initialization. */ rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); if (rc) BCE_PRINTF("%s(%d): Firmware did not complete " "initialization!\n", __FILE__, __LINE__); /* Get firmware capabilities. */ bce_fw_cap_init(sc); bce_reset_exit: /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ if (reset_code == BCE_DRV_MSG_CODE_RESET) { val = REG_RD(sc, BCE_EMAC_MODE); val = (val & ~emac_mode_mask) | emac_mode_save; REG_WR(sc, BCE_EMAC_MODE, val); } DBEXIT(BCE_VERBOSE_RESET); return (rc); } static int bce_chipinit(struct bce_softc *sc) { u32 val; int rc = 0; DBENTER(BCE_VERBOSE_RESET); bce_disable_intr(sc); /* * Initialize DMA byte/word swapping, configure the number of DMA * channels and PCI clock compensation delay. */ val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | BCE_DMA_CONFIG_DATA_WORD_SWAP | #if BYTE_ORDER == BIG_ENDIAN BCE_DMA_CONFIG_CNTL_BYTE_SWAP | #endif BCE_DMA_CONFIG_CNTL_WORD_SWAP | DMA_READ_CHANS << 12 | DMA_WRITE_CHANS << 16; val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; /* * This setting resolves a problem observed on certain Intel PCI * chipsets that cannot handle multiple outstanding DMA operations. * See errata E9_5706A1_65. */ if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && !(sc->bce_flags & BCE_PCIX_FLAG)) val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; REG_WR(sc, BCE_DMA_CONFIG, val); /* Enable the RX_V2P and Context state machines before access. */ REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); /* Initialize context mapping and zero out the quick contexts. */ if ((rc = bce_init_ctx(sc)) != 0) goto bce_chipinit_exit; /* Initialize the on-boards CPUs */ bce_init_cpus(sc); /* Enable management frames (NC-SI) to flow to the MCP. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); } /* Prepare NVRAM for access. */ if ((rc = bce_init_nvram(sc)) != 0) goto bce_chipinit_exit; /* Set the kernel bypass block size */ val = REG_RD(sc, BCE_MQ_CONFIG); val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; /* Enable bins used on the 5709. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { val |= BCE_MQ_CONFIG_BIN_MQ_MODE; if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) val |= BCE_MQ_CONFIG_HALT_DIS; } REG_WR(sc, BCE_MQ_CONFIG, val); val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); REG_WR(sc, BCE_MQ_KNL_WIND_END, val); /* Set the page size and clear the RV2P processor stall bits. */ val = (BCM_PAGE_BITS - 8) << 24; REG_WR(sc, BCE_RV2P_CONFIG, val); /* Configure page size. */ val = REG_RD(sc, BCE_TBDR_CONFIG); val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; REG_WR(sc, BCE_TBDR_CONFIG, val); /* Set the perfect match control register to default. */ REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); bce_chipinit_exit: DBEXIT(BCE_VERBOSE_RESET); return(rc); } /****************************************************************************/ /* Initialize the controller in preparation to send/receive traffic. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_blockinit(struct bce_softc *sc) { u32 reg, val; int rc = 0; DBENTER(BCE_VERBOSE_RESET); /* Load the hardware default MAC address. */ bce_set_mac_addr(sc); /* Set the Ethernet backoff seed value */ val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); sc->last_status_idx = 0; sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; /* Set up link change interrupt generation. */ REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); /* Program the physical address of the status block. */ REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr)); REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr)); /* Program the physical address of the statistics block. */ REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, BCE_ADDR_LO(sc->stats_block_paddr)); REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, BCE_ADDR_HI(sc->stats_block_paddr)); /* * Program various host coalescing parameters. * Trip points control how many BDs should be ready before generating * an interrupt while ticks control how long a BD can sit in the chain * before generating an interrupt. */ REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); REG_WR(sc, BCE_HC_TX_TICKS, (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); REG_WR(sc, BCE_HC_RX_TICKS, (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00); REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ /* Not used for L2. */ REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0); REG_WR(sc, BCE_HC_COM_TICKS, 0); REG_WR(sc, BCE_HC_CMD_TICKS, 0); /* Configure the Host Coalescing block. */ val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS; #if 0 /* ToDo: Add MSI-X support. */ if (sc->bce_flags & BCE_USING_MSIX_FLAG) { u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | BCE_HC_SB_CONFIG_1_ONE_SHOT); REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, (sc->tx_quick_cons_trip_int << 16) | sc->tx_quick_cons_trip); REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, (sc->tx_ticks_int << 16) | sc->tx_ticks); val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; } /* * Tell the HC block to automatically set the * INT_MASK bit after an MSI/MSI-X interrupt * is generated so the driver doesn't have to. */ if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) val |= BCE_HC_CONFIG_ONE_SHOT; /* Set the MSI-X status blocks to 128 byte boundaries. */ if (sc->bce_flags & BCE_USING_MSIX_FLAG) val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; #endif REG_WR(sc, BCE_HC_CONFIG, val); /* Clear the internal statistics counters. */ REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); /* Verify that bootcode is running. */ reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", __FILE__, __LINE__); reg = 0); if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != BCE_DEV_INFO_SIGNATURE_MAGIC) { BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", __FILE__, __LINE__, (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), BCE_DEV_INFO_SIGNATURE_MAGIC); rc = ENODEV; goto bce_blockinit_exit; } /* Enable DMA */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); } /* Allow bootcode to apply additional fixes before enabling MAC. */ rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); /* Enable link state change interrupt generation. */ REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); /* Enable the RXP. */ bce_start_rxp_cpu(sc); /* Disable management frames (NC-SI) from flowing to the MCP. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); } /* Enable all remaining blocks in the MAC. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); else REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); DELAY(20); /* Save the current host coalescing block settings. */ sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); bce_blockinit_exit: DBEXIT(BCE_VERBOSE_RESET); return (rc); } /****************************************************************************/ /* Encapsulate an mbuf into the rx_bd chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq) { bus_dma_segment_t segs[1]; struct mbuf *m_new = NULL; struct rx_bd *rxbd; int nsegs, error, rc = 0; #ifdef BCE_DEBUG u16 debug_chain_prod = chain_prod; #endif DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); /* Make sure the inputs are valid. */ DBRUNIF((chain_prod > MAX_RX_BD_ALLOC), BCE_PRINTF("%s(%d): RX producer out of range: " "0x%04X > 0x%04X\n", __FILE__, __LINE__, chain_prod, (u16)MAX_RX_BD_ALLOC)); DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, chain_prod, *prod_bseq); /* Update some debug statistic counters */ DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), sc->rx_low_watermark = sc->free_rx_bd); DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); /* Simulate an mbuf allocation failure. */ DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), sc->mbuf_alloc_failed_count++; sc->mbuf_alloc_failed_sim_count++; rc = ENOBUFS; goto bce_get_rx_buf_exit); /* This is a new mbuf allocation. */ if (bce_hdr_split == TRUE) MGETHDR(m_new, M_NOWAIT, MT_DATA); else m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size); if (m_new == NULL) { sc->mbuf_alloc_failed_count++; rc = ENOBUFS; goto bce_get_rx_buf_exit; } DBRUN(sc->debug_rx_mbuf_alloc++); /* Make sure we have a valid packet header. */ M_ASSERTPKTHDR(m_new); /* Initialize the mbuf size and pad if necessary for alignment. */ m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; m_adj(m_new, sc->rx_bd_mbuf_align_pad); /* ToDo: Consider calling m_fragment() to test error handling. */ /* Map the mbuf cluster into device memory. */ error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT); /* Handle any mapping errors. */ if (error) { BCE_PRINTF("%s(%d): Error mapping mbuf into RX " "chain (%d)!\n", __FILE__, __LINE__, error); sc->dma_map_addr_rx_failed_count++; m_freem(m_new); DBRUN(sc->debug_rx_mbuf_alloc--); rc = ENOBUFS; goto bce_get_rx_buf_exit; } /* All mbufs must map to a single segment. */ KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", __FUNCTION__, nsegs)); /* Setup the rx_bd for the segment. */ rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); rxbd->rx_bd_len = htole32(segs[0].ds_len); rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); *prod_bseq += segs[0].ds_len; /* Save the mbuf and update our counter. */ sc->rx_mbuf_ptr[chain_prod] = m_new; sc->free_rx_bd -= nsegs; DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, chain_prod, *prod_bseq); bce_get_rx_buf_exit: DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); return(rc); } /****************************************************************************/ /* Encapsulate an mbuf cluster into the page chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx) { bus_dma_segment_t segs[1]; struct mbuf *m_new = NULL; struct rx_bd *pgbd; int error, nsegs, rc = 0; #ifdef BCE_DEBUG u16 debug_prod_idx = prod_idx; #endif DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); /* Make sure the inputs are valid. */ DBRUNIF((prod_idx > MAX_PG_BD_ALLOC), BCE_PRINTF("%s(%d): page producer out of range: " "0x%04X > 0x%04X\n", __FILE__, __LINE__, prod_idx, (u16)MAX_PG_BD_ALLOC)); DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx); /* Update counters if we've hit a new low or run out of pages. */ DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), sc->pg_low_watermark = sc->free_pg_bd); DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); /* Simulate an mbuf allocation failure. */ DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), sc->mbuf_alloc_failed_count++; sc->mbuf_alloc_failed_sim_count++; rc = ENOBUFS; goto bce_get_pg_buf_exit); /* This is a new mbuf allocation. */ m_new = m_getcl(M_NOWAIT, MT_DATA, 0); if (m_new == NULL) { sc->mbuf_alloc_failed_count++; rc = ENOBUFS; goto bce_get_pg_buf_exit; } DBRUN(sc->debug_pg_mbuf_alloc++); m_new->m_len = MCLBYTES; /* ToDo: Consider calling m_fragment() to test error handling. */ /* Map the mbuf cluster into device memory. */ error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag, sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT); /* Handle any mapping errors. */ if (error) { BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", __FILE__, __LINE__); m_freem(m_new); DBRUN(sc->debug_pg_mbuf_alloc--); rc = ENOBUFS; goto bce_get_pg_buf_exit; } /* All mbufs must map to a single segment. */ KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", __FUNCTION__, nsegs)); /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ /* * The page chain uses the same rx_bd data structure * as the receive chain but doesn't require a byte sequence (bseq). */ pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)]; pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); pgbd->rx_bd_len = htole32(MCLBYTES); pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); /* Save the mbuf and update our counter. */ sc->pg_mbuf_ptr[prod_idx] = m_new; sc->free_pg_bd--; DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx); bce_get_pg_buf_exit: DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); return(rc); } /****************************************************************************/ /* Initialize the TX context memory. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_init_tx_context(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); /* Initialize the context ID for an L2 TX chain. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { /* Set the CID type to support an L2 connection. */ val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI; CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val); /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); } else { /* Set the CID type to support an L2 connection. */ val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); } DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Allocate memory and initialize the TX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_init_tx_chain(struct bce_softc *sc) { struct tx_bd *txbd; int i, rc = 0; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); /* Set the initial TX producer/consumer indices. */ sc->tx_prod = 0; sc->tx_cons = 0; sc->tx_prod_bseq = 0; sc->used_tx_bd = 0; sc->max_tx_bd = USABLE_TX_BD_ALLOC; DBRUN(sc->tx_hi_watermark = 0); DBRUN(sc->tx_full_count = 0); /* * The NetXtreme II supports a linked-list structure called * a Buffer Descriptor Chain (or BD chain). A BD chain * consists of a series of 1 or more chain pages, each of which * consists of a fixed number of BD entries. * The last BD entry on each page is a pointer to the next page * in the chain, and the last pointer in the BD chain * points back to the beginning of the chain. */ /* Set the TX next pointer chain entries. */ for (i = 0; i < sc->tx_pages; i++) { int j; txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (sc->tx_pages - 1)) j = 0; else j = i + 1; txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); } bce_init_tx_context(sc); DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); return(rc); } /****************************************************************************/ /* Free memory and clear the TX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_free_tx_chain(struct bce_softc *sc) { int i; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ for (i = 0; i < MAX_TX_BD_AVAIL; i++) { if (sc->tx_mbuf_ptr[i] != NULL) { if (sc->tx_mbuf_map[i] != NULL) bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], BUS_DMASYNC_POSTWRITE); m_freem(sc->tx_mbuf_ptr[i]); sc->tx_mbuf_ptr[i] = NULL; DBRUN(sc->debug_tx_mbuf_alloc--); } } /* Clear each TX chain page. */ for (i = 0; i < sc->tx_pages; i++) bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); sc->used_tx_bd = 0; /* Check if we lost any mbufs in the process. */ DBRUNIF((sc->debug_tx_mbuf_alloc), BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " "from tx chain!\n", __FILE__, __LINE__, sc->debug_tx_mbuf_alloc)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); } /****************************************************************************/ /* Initialize the RX context memory. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_init_rx_context(struct bce_softc *sc) { u32 val; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); /* Init the type, size, and BD cache levels for the RX context. */ val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); /* * Set the level for generating pause frames * when the number of available rx_bd's gets * too low (the low watermark) and the level * when pause frames can be stopped (the high * watermark). */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { u32 lo_water, hi_water; if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; } else { lo_water = 0; } if (lo_water >= USABLE_RX_BD_ALLOC) { lo_water = 0; } hi_water = USABLE_RX_BD_ALLOC / 4; if (hi_water <= lo_water) { lo_water = 0; } lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; if (hi_water > 0xf) hi_water = 0xf; else if (hi_water == 0) lo_water = 0; val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); } CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { val = REG_RD(sc, BCE_MQ_MAP_L2_5); REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); } /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Allocate memory and initialize the RX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_init_rx_chain(struct bce_softc *sc) { struct rx_bd *rxbd; int i, rc = 0; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); /* Initialize the RX producer and consumer indices. */ sc->rx_prod = 0; sc->rx_cons = 0; sc->rx_prod_bseq = 0; sc->free_rx_bd = USABLE_RX_BD_ALLOC; sc->max_rx_bd = USABLE_RX_BD_ALLOC; /* Initialize the RX next pointer chain entries. */ for (i = 0; i < sc->rx_pages; i++) { int j; rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (sc->rx_pages - 1)) j = 0; else j = i + 1; /* Setup the chain page pointers. */ rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); } /* Fill up the RX chain. */ bce_fill_rx_chain(sc); DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); DBRUN(sc->rx_empty_count = 0); for (i = 0; i < sc->rx_pages; i++) { bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } bce_init_rx_context(sc); DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); /* ToDo: Are there possible failure modes here? */ return(rc); } /****************************************************************************/ /* Add mbufs to the RX chain until its full or an mbuf allocation error */ /* occurs. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_fill_rx_chain(struct bce_softc *sc) { u16 prod, prod_idx; u32 prod_bseq; DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); /* Get the RX chain producer indices. */ prod = sc->rx_prod; prod_bseq = sc->rx_prod_bseq; /* Keep filling the RX chain until it's full. */ while (sc->free_rx_bd > 0) { prod_idx = RX_CHAIN_IDX(prod); if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) { /* Bail out if we can't add an mbuf to the chain. */ break; } prod = NEXT_RX_BD(prod); } /* Save the RX chain producer indices. */ sc->rx_prod = prod; sc->rx_prod_bseq = prod_bseq; /* We should never end up pointing to a next page pointer. */ DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", __FUNCTION__, rx_prod)); /* Write the mailbox and tell the chip about the waiting rx_bd's. */ REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod); REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq); DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Free memory and clear the RX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_free_rx_chain(struct bce_softc *sc) { int i; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); /* Free any mbufs still in the RX mbuf chain. */ for (i = 0; i < MAX_RX_BD_AVAIL; i++) { if (sc->rx_mbuf_ptr[i] != NULL) { if (sc->rx_mbuf_map[i] != NULL) bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], BUS_DMASYNC_POSTREAD); m_freem(sc->rx_mbuf_ptr[i]); sc->rx_mbuf_ptr[i] = NULL; DBRUN(sc->debug_rx_mbuf_alloc--); } } /* Clear each RX chain page. */ for (i = 0; i < sc->rx_pages; i++) if (sc->rx_bd_chain[i] != NULL) bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); sc->free_rx_bd = sc->max_rx_bd; /* Check if we lost any mbufs in the process. */ DBRUNIF((sc->debug_rx_mbuf_alloc), BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", __FUNCTION__, sc->debug_rx_mbuf_alloc)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); } /****************************************************************************/ /* Allocate memory and initialize the page data structures. */ /* Assumes that bce_init_rx_chain() has not already been called. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_init_pg_chain(struct bce_softc *sc) { struct rx_bd *pgbd; int i, rc = 0; u32 val; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); /* Initialize the page producer and consumer indices. */ sc->pg_prod = 0; sc->pg_cons = 0; sc->free_pg_bd = USABLE_PG_BD_ALLOC; sc->max_pg_bd = USABLE_PG_BD_ALLOC; DBRUN(sc->pg_low_watermark = sc->max_pg_bd); DBRUN(sc->pg_empty_count = 0); /* Initialize the page next pointer chain entries. */ for (i = 0; i < sc->pg_pages; i++) { int j; pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (sc->pg_pages - 1)) j = 0; else j = i + 1; /* Setup the chain page pointers. */ pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); } /* Setup the MQ BIN mapping for host_pg_bidx. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); /* Configure the rx_bd and page chain mbuf cluster size. */ val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES; CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); /* Configure the context reserved for jumbo support. */ CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, BCE_L2CTX_RX_RBDC_JUMBO_KEY); /* Point the hardware to the first page in the page chain. */ val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); /* Fill up the page chain. */ bce_fill_pg_chain(sc); for (i = 0; i < sc->pg_pages; i++) { bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); return(rc); } /****************************************************************************/ /* Add mbufs to the page chain until its full or an mbuf allocation error */ /* occurs. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_fill_pg_chain(struct bce_softc *sc) { u16 prod, prod_idx; DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); /* Get the page chain prodcuer index. */ prod = sc->pg_prod; /* Keep filling the page chain until it's full. */ while (sc->free_pg_bd > 0) { prod_idx = PG_CHAIN_IDX(prod); if (bce_get_pg_buf(sc, prod, prod_idx)) { /* Bail out if we can't add an mbuf to the chain. */ break; } prod = NEXT_PG_BD(prod); } /* Save the page chain producer index. */ sc->pg_prod = prod; DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", __FUNCTION__, pg_prod)); /* * Write the mailbox and tell the chip about * the new rx_bd's in the page chain. */ REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, prod); DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Free memory and clear the RX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_free_pg_chain(struct bce_softc *sc) { int i; DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); /* Free any mbufs still in the mbuf page chain. */ for (i = 0; i < MAX_PG_BD_AVAIL; i++) { if (sc->pg_mbuf_ptr[i] != NULL) { if (sc->pg_mbuf_map[i] != NULL) bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], BUS_DMASYNC_POSTREAD); m_freem(sc->pg_mbuf_ptr[i]); sc->pg_mbuf_ptr[i] = NULL; DBRUN(sc->debug_pg_mbuf_alloc--); } } /* Clear each page chain pages. */ for (i = 0; i < sc->pg_pages; i++) bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); sc->free_pg_bd = sc->max_pg_bd; /* Check if we lost any mbufs in the process. */ DBRUNIF((sc->debug_pg_mbuf_alloc), BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", __FUNCTION__, sc->debug_pg_mbuf_alloc)); DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); } static u32 bce_get_rphy_link(struct bce_softc *sc) { u32 advertise, link; int fdpx; advertise = 0; fdpx = 0; if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); else link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); if (link & BCE_NETLINK_ANEG_ENB) advertise |= BCE_NETLINK_ANEG_ENB; if (link & BCE_NETLINK_SPEED_10HALF) advertise |= BCE_NETLINK_SPEED_10HALF; if (link & BCE_NETLINK_SPEED_10FULL) { advertise |= BCE_NETLINK_SPEED_10FULL; fdpx++; } if (link & BCE_NETLINK_SPEED_100HALF) advertise |= BCE_NETLINK_SPEED_100HALF; if (link & BCE_NETLINK_SPEED_100FULL) { advertise |= BCE_NETLINK_SPEED_100FULL; fdpx++; } if (link & BCE_NETLINK_SPEED_1000HALF) advertise |= BCE_NETLINK_SPEED_1000HALF; if (link & BCE_NETLINK_SPEED_1000FULL) { advertise |= BCE_NETLINK_SPEED_1000FULL; fdpx++; } if (link & BCE_NETLINK_SPEED_2500HALF) advertise |= BCE_NETLINK_SPEED_2500HALF; if (link & BCE_NETLINK_SPEED_2500FULL) { advertise |= BCE_NETLINK_SPEED_2500FULL; fdpx++; } if (fdpx) advertise |= BCE_NETLINK_FC_PAUSE_SYM | BCE_NETLINK_FC_PAUSE_ASYM; if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) advertise |= BCE_NETLINK_PHY_APP_REMOTE | BCE_NETLINK_ETH_AT_WIRESPEED; return (advertise); } /****************************************************************************/ /* Set media options. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_ifmedia_upd(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; int error; DBENTER(BCE_VERBOSE); BCE_LOCK(sc); error = bce_ifmedia_upd_locked(ifp); BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE); return (error); } /****************************************************************************/ /* Set media options. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static int bce_ifmedia_upd_locked(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct mii_data *mii; struct mii_softc *miisc; struct ifmedia *ifm; u32 link; int error, fdx; DBENTER(BCE_VERBOSE_PHY); error = 0; BCE_LOCK_ASSERT(sc); sc->bce_link_up = FALSE; if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { ifm = &sc->bce_ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); link = 0; fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * Check advertised link of remote PHY by reading * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. * Always use the same link type of remote PHY. */ link = bce_get_rphy_link(sc); break; case IFM_2500_SX: if ((sc->bce_phy_flags & (BCE_PHY_REMOTE_PORT_FIBER_FLAG | BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) return (EINVAL); /* * XXX * Have to enable forced 2.5Gbps configuration. */ if (fdx != 0) link |= BCE_NETLINK_SPEED_2500FULL; else link |= BCE_NETLINK_SPEED_2500HALF; break; case IFM_1000_SX: if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) return (EINVAL); /* * XXX * Have to disable 2.5Gbps configuration. */ if (fdx != 0) link = BCE_NETLINK_SPEED_1000FULL; else link = BCE_NETLINK_SPEED_1000HALF; break; case IFM_1000_T: if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) return (EINVAL); if (fdx != 0) link = BCE_NETLINK_SPEED_1000FULL; else link = BCE_NETLINK_SPEED_1000HALF; break; case IFM_100_TX: if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) return (EINVAL); if (fdx != 0) link = BCE_NETLINK_SPEED_100FULL; else link = BCE_NETLINK_SPEED_100HALF; break; case IFM_10_T: if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) return (EINVAL); if (fdx != 0) link = BCE_NETLINK_SPEED_10FULL; else link = BCE_NETLINK_SPEED_10HALF; break; default: return (EINVAL); } if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { /* * XXX * Advertise pause capability for full-duplex media. */ if (fdx != 0) link |= BCE_NETLINK_FC_PAUSE_SYM | BCE_NETLINK_FC_PAUSE_ASYM; if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) link |= BCE_NETLINK_PHY_APP_REMOTE | BCE_NETLINK_ETH_AT_WIRESPEED; } bce_shmem_wr(sc, BCE_MB_ARGS_0, link); error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); } else { mii = device_get_softc(sc->bce_miibus); /* Make sure the MII bus has been enumerated. */ if (mii) { LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); } } DBEXIT(BCE_VERBOSE_PHY); return (error); } static void bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) { struct ifnet *ifp; u32 link; ifp = sc->bce_ifp; BCE_LOCK_ASSERT(sc); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; link = bce_shmem_rd(sc, BCE_LINK_STATUS); /* XXX Handle heart beat status? */ if ((link & BCE_LINK_STATUS_LINK_UP) != 0) ifmr->ifm_status |= IFM_ACTIVE; else { ifmr->ifm_active |= IFM_NONE; ifp->if_baudrate = 0; return; } switch (link & BCE_LINK_STATUS_SPEED_MASK) { case BCE_LINK_STATUS_10HALF: ifmr->ifm_active |= IFM_10_T | IFM_HDX; ifp->if_baudrate = IF_Mbps(10UL); break; case BCE_LINK_STATUS_10FULL: ifmr->ifm_active |= IFM_10_T | IFM_FDX; ifp->if_baudrate = IF_Mbps(10UL); break; case BCE_LINK_STATUS_100HALF: ifmr->ifm_active |= IFM_100_TX | IFM_HDX; ifp->if_baudrate = IF_Mbps(100UL); break; case BCE_LINK_STATUS_100FULL: ifmr->ifm_active |= IFM_100_TX | IFM_FDX; ifp->if_baudrate = IF_Mbps(100UL); break; case BCE_LINK_STATUS_1000HALF: if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) ifmr->ifm_active |= IFM_1000_T | IFM_HDX; else ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; ifp->if_baudrate = IF_Mbps(1000UL); break; case BCE_LINK_STATUS_1000FULL: if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) ifmr->ifm_active |= IFM_1000_T | IFM_FDX; else ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; ifp->if_baudrate = IF_Mbps(1000UL); break; case BCE_LINK_STATUS_2500HALF: if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { ifmr->ifm_active |= IFM_NONE; return; } else ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; ifp->if_baudrate = IF_Mbps(2500UL); break; case BCE_LINK_STATUS_2500FULL: if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { ifmr->ifm_active |= IFM_NONE; return; } else ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; ifp->if_baudrate = IF_Mbps(2500UL); break; default: ifmr->ifm_active |= IFM_NONE; return; } if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) ifmr->ifm_active |= IFM_ETH_RXPAUSE; if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) ifmr->ifm_active |= IFM_ETH_TXPAUSE; } /****************************************************************************/ /* Reports current media status. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bce_softc *sc = ifp->if_softc; struct mii_data *mii; DBENTER(BCE_VERBOSE_PHY); BCE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { BCE_UNLOCK(sc); return; } if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) bce_ifmedia_sts_rphy(sc, ifmr); else { mii = device_get_softc(sc->bce_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE_PHY); } /****************************************************************************/ /* Handles PHY generated interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_phy_intr(struct bce_softc *sc) { u32 new_link_state, old_link_state; DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); DBRUN(sc->phy_interrupts++); new_link_state = sc->status_block->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE; old_link_state = sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE; /* Handle any changes if the link state has changed. */ if (new_link_state != old_link_state) { /* Update the status_attn_bits_ack field. */ if (new_link_state) { REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, STATUS_ATTN_BITS_LINK_STATE); DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", __FUNCTION__); } else { REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, STATUS_ATTN_BITS_LINK_STATE); DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", __FUNCTION__); } if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { if (new_link_state) { if (bootverbose) if_printf(sc->bce_ifp, "link UP\n"); if_link_state_change(sc->bce_ifp, LINK_STATE_UP); } else { if (bootverbose) if_printf(sc->bce_ifp, "link DOWN\n"); if_link_state_change(sc->bce_ifp, LINK_STATE_DOWN); } } /* * Assume link is down and allow * tick routine to update the state * based on the actual media state. */ sc->bce_link_up = FALSE; callout_stop(&sc->bce_tick_callout); bce_tick(sc); } /* Acknowledge the link change interrupt. */ REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); } /****************************************************************************/ /* Reads the receive consumer value from the status block (skipping over */ /* chain page pointer if necessary). */ /* */ /* Returns: */ /* hw_cons */ /****************************************************************************/ static inline u16 bce_get_hw_rx_cons(struct bce_softc *sc) { u16 hw_cons; rmb(); hw_cons = sc->status_block->status_rx_quick_consumer_index0; if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) hw_cons++; return hw_cons; } /****************************************************************************/ /* Handles received frame interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_rx_intr(struct bce_softc *sc) { struct ifnet *ifp = sc->bce_ifp; struct l2_fhdr *l2fhdr; struct ether_vlan_header *vh; unsigned int pkt_len; u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; u32 status; unsigned int rem_len; u16 sw_pg_cons, sw_pg_cons_idx; DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); DBRUN(sc->interrupts_rx++); DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); /* Prepare the RX chain pages to be accessed by the host CPU. */ for (int i = 0; i < sc->rx_pages; i++) bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); /* Prepare the page chain pages to be accessed by the host CPU. */ if (bce_hdr_split == TRUE) { for (int i = 0; i < sc->pg_pages; i++) bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); } /* Get the hardware's view of the RX consumer index. */ hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); /* Get working copies of the driver's view of the consumer indices. */ sw_rx_cons = sc->rx_cons; sw_pg_cons = sc->pg_cons; /* Update some debug statistics counters */ DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), sc->rx_low_watermark = sc->free_rx_bd); DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); /* Scan through the receive chain as long as there is work to do */ /* ToDo: Consider setting a limit on the number of packets processed. */ rmb(); while (sw_rx_cons != hw_rx_cons) { struct mbuf *m0; /* Convert the producer/consumer indices to an actual rx_bd index. */ sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); /* Unmap the mbuf from DMA space. */ bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[sw_rx_cons_idx], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[sw_rx_cons_idx]); /* Remove the mbuf from the RX chain. */ m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; DBRUN(sc->debug_rx_mbuf_alloc--); sc->free_rx_bd++; /* * Frames received on the NetXteme II are prepended * with an l2_fhdr structure which provides status * information about the received frame (including * VLAN tags and checksum info). The frames are * also automatically adjusted to word align the IP * header (i.e. two null bytes are inserted before * the Ethernet header). As a result the data * DMA'd by the controller into the mbuf looks * like this: * * +---------+-----+---------------------+-----+ * | l2_fhdr | pad | packet data | FCS | * +---------+-----+---------------------+-----+ * * The l2_fhdr needs to be checked and skipped and * the FCS needs to be stripped before sending the * packet up the stack. */ l2fhdr = mtod(m0, struct l2_fhdr *); /* Get the packet data + FCS length and the status. */ pkt_len = l2fhdr->l2_fhdr_pkt_len; status = l2fhdr->l2_fhdr_status; /* * Skip over the l2_fhdr and pad, resulting in the * following data in the mbuf: * +---------------------+-----+ * | packet data | FCS | * +---------------------+-----+ */ m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); /* * When split header mode is used, an ethernet frame * may be split across the receive chain and the * page chain. If that occurs an mbuf cluster must be * reassembled from the individual mbuf pieces. */ if (bce_hdr_split == TRUE) { /* * Check whether the received frame fits in a single * mbuf or not (i.e. packet data + FCS <= * sc->rx_bd_mbuf_data_len bytes). */ if (pkt_len > m0->m_len) { /* * The received frame is larger than a single mbuf. * If the frame was a TCP frame then only the TCP * header is placed in the mbuf, the remaining * payload (including FCS) is placed in the page * chain, the SPLIT flag is set, and the header * length is placed in the IP checksum field. * If the frame is not a TCP frame then the mbuf * is filled and the remaining bytes are placed * in the page chain. */ DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " "packet.\n", __FUNCTION__); DBRUN(sc->split_header_frames_rcvd++); /* * When the page chain is enabled and the TCP * header has been split from the TCP payload, * the ip_xsum structure will reflect the length * of the TCP header, not the IP checksum. Set * the packet length of the mbuf accordingly. */ if (status & L2_FHDR_STATUS_SPLIT) { m0->m_len = l2fhdr->l2_fhdr_ip_xsum; DBRUN(sc->split_header_tcp_frames_rcvd++); } rem_len = pkt_len - m0->m_len; /* Pull mbufs off the page chain for any remaining data. */ while (rem_len > 0) { struct mbuf *m_pg; sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); /* Remove the mbuf from the page chain. */ m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; DBRUN(sc->debug_pg_mbuf_alloc--); sc->free_pg_bd++; /* Unmap the page chain mbuf from DMA space. */ bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[sw_pg_cons_idx], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->pg_mbuf_tag, sc->pg_mbuf_map[sw_pg_cons_idx]); /* Adjust the mbuf length. */ if (rem_len < m_pg->m_len) { /* The mbuf chain is complete. */ m_pg->m_len = rem_len; rem_len = 0; } else { /* More packet data is waiting. */ rem_len -= m_pg->m_len; } /* Concatenate the mbuf cluster to the mbuf. */ m_cat(m0, m_pg); sw_pg_cons = NEXT_PG_BD(sw_pg_cons); } /* Set the total packet length. */ m0->m_pkthdr.len = pkt_len; } else { /* * The received packet is small and fits in a * single mbuf (i.e. the l2_fhdr + pad + packet + * FCS <= MHLEN). In other words, the packet is * 154 bytes or less in size. */ DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " "packet.\n", __FUNCTION__); /* Set the total packet length. */ m0->m_pkthdr.len = m0->m_len = pkt_len; } } else /* Set the total packet length. */ m0->m_pkthdr.len = m0->m_len = pkt_len; /* Remove the trailing Ethernet FCS. */ m_adj(m0, -ETHER_CRC_LEN); /* Check that the resulting mbuf chain is valid. */ DBRUN(m_sanity(m0, FALSE)); DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), BCE_PRINTF("Invalid Ethernet frame size!\n"); m_print(m0, 128)); DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), sc->l2fhdr_error_sim_count++; status = status | L2_FHDR_ERRORS_PHY_DECODE); /* Check the received frame for errors. */ if (status & (L2_FHDR_ERRORS_BAD_CRC | L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { /* Log the error and release the mbuf. */ sc->l2fhdr_error_count++; m_freem(m0); m0 = NULL; goto bce_rx_intr_next_rx; } /* Send the packet to the appropriate interface. */ m0->m_pkthdr.rcvif = ifp; /* Assume no hardware checksum. */ m0->m_pkthdr.csum_flags = 0; /* Validate the checksum if offload enabled. */ if (ifp->if_capenable & IFCAP_RXCSUM) { /* Check for an IP datagram. */ if (!(status & L2_FHDR_STATUS_SPLIT) && (status & L2_FHDR_STATUS_IP_DATAGRAM)) { m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; DBRUN(sc->csum_offload_ip++); /* Check if the IP checksum is valid. */ if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) m0->m_pkthdr.csum_flags |= CSUM_IP_VALID; } /* Check for a valid TCP/UDP frame. */ if (status & (L2_FHDR_STATUS_TCP_SEGMENT | L2_FHDR_STATUS_UDP_DATAGRAM)) { /* Check for a good TCP/UDP checksum. */ if ((status & (L2_FHDR_ERRORS_TCP_XSUM | L2_FHDR_ERRORS_UDP_XSUM)) == 0) { DBRUN(sc->csum_offload_tcp_udp++); m0->m_pkthdr.csum_data = l2fhdr->l2_fhdr_tcp_udp_xsum; m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); } } } /* Attach the VLAN tag. */ if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) { DBRUN(sc->vlan_tagged_frames_rcvd++); if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { DBRUN(sc->vlan_tagged_frames_stripped++); m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; m0->m_flags |= M_VLANTAG; } else { /* * bce(4) controllers can't disable VLAN * tag stripping if management firmware * (ASF/IPMI/UMP) is running. So we always * strip VLAN tag and manually reconstruct * the VLAN frame by appending stripped * VLAN tag in driver if VLAN tag stripping * was disabled. * * TODO: LLC SNAP handling. */ bcopy(mtod(m0, uint8_t *), mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN * 2); m0->m_data -= ETHER_VLAN_ENCAP_LEN; vh = mtod(m0, struct ether_vlan_header *); vh->evl_encap_proto = htons(ETHERTYPE_VLAN); vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; m0->m_len += ETHER_VLAN_ENCAP_LEN; } } /* Increment received packet statistics. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); bce_rx_intr_next_rx: sw_rx_cons = NEXT_RX_BD(sw_rx_cons); /* If we have a packet, pass it up the stack */ if (m0) { /* Make sure we don't lose our place when we release the lock. */ sc->rx_cons = sw_rx_cons; sc->pg_cons = sw_pg_cons; BCE_UNLOCK(sc); (*ifp->if_input)(ifp, m0); BCE_LOCK(sc); /* Recover our place. */ sw_rx_cons = sc->rx_cons; sw_pg_cons = sc->pg_cons; } /* Refresh hw_cons to see if there's new work */ if (sw_rx_cons == hw_rx_cons) hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); } /* No new packets. Refill the page chain. */ if (bce_hdr_split == TRUE) { sc->pg_cons = sw_pg_cons; bce_fill_pg_chain(sc); } /* No new packets. Refill the RX chain. */ sc->rx_cons = sw_rx_cons; bce_fill_rx_chain(sc); /* Prepare the page chain pages to be accessed by the NIC. */ for (int i = 0; i < sc->rx_pages; i++) bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); if (bce_hdr_split == TRUE) { for (int i = 0; i < sc->pg_pages; i++) bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); } DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); } /****************************************************************************/ /* Reads the transmit consumer value from the status block (skipping over */ /* chain page pointer if necessary). */ /* */ /* Returns: */ /* hw_cons */ /****************************************************************************/ static inline u16 bce_get_hw_tx_cons(struct bce_softc *sc) { u16 hw_cons; mb(); hw_cons = sc->status_block->status_tx_quick_consumer_index0; if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) hw_cons++; return hw_cons; } /****************************************************************************/ /* Handles transmit completion interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_tx_intr(struct bce_softc *sc) { struct ifnet *ifp = sc->bce_ifp; u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); DBRUN(sc->interrupts_tx++); DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); BCE_LOCK_ASSERT(sc); /* Get the hardware's view of the TX consumer index. */ hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); sw_tx_cons = sc->tx_cons; /* Prevent speculative reads of the status block. */ bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); /* Cycle through any completed TX chain page entries. */ while (sw_tx_cons != hw_tx_cons) { #ifdef BCE_DEBUG struct tx_bd *txbd = NULL; #endif sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); DBPRINT(sc, BCE_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " "sw_tx_chain_cons = 0x%04X\n", __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), BCE_PRINTF("%s(%d): TX chain consumer out of range! " " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, (int) MAX_TX_BD_ALLOC); bce_breakpoint(sc)); DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] [TX_IDX(sw_tx_chain_cons)]); DBRUNIF((txbd == NULL), BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", __FILE__, __LINE__, sw_tx_chain_cons); bce_breakpoint(sc)); DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); /* * Free the associated mbuf. Remember * that only the last tx_bd of a packet * has an mbuf pointer and DMA map. */ if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { /* Validate that this is the last tx_bd. */ DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), BCE_PRINTF("%s(%d): tx_bd END flag not set but " "txmbuf == NULL!\n", __FILE__, __LINE__); bce_breakpoint(sc)); DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): Unloading map/freeing mbuf " "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); /* Unmap the mbuf. */ bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[sw_tx_chain_cons]); /* Free the mbuf. */ m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; DBRUN(sc->debug_tx_mbuf_alloc--); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } sc->used_tx_bd--; sw_tx_cons = NEXT_TX_BD(sw_tx_cons); /* Refresh hw_cons to see if there's new work. */ hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); /* Prevent speculative reads of the status block. */ bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); } /* Clear the TX timeout timer. */ sc->watchdog_timer = 0; /* Clear the tx hardware queue full flag. */ if (sc->used_tx_bd < sc->max_tx_bd) { DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), DBPRINT(sc, BCE_INFO_SEND, "%s(): Open TX chain! %d/%d (used/total)\n", __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } sc->tx_cons = sw_tx_cons; DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); } /****************************************************************************/ /* Disables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_disable_intr(struct bce_softc *sc) { DBENTER(BCE_VERBOSE_INTR); REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); DBEXIT(BCE_VERBOSE_INTR); } /****************************************************************************/ /* Enables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_enable_intr(struct bce_softc *sc, int coal_now) { DBENTER(BCE_VERBOSE_INTR); REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); /* Force an immediate interrupt (whether there is new data or not). */ if (coal_now) REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); DBEXIT(BCE_VERBOSE_INTR); } /****************************************************************************/ /* Handles controller initialization. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_locked(struct bce_softc *sc) { struct ifnet *ifp; u32 ether_mtu = 0; DBENTER(BCE_VERBOSE_RESET); BCE_LOCK_ASSERT(sc); ifp = sc->bce_ifp; /* Check if the driver is still running and bail out if it is. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) goto bce_init_locked_exit; bce_stop(sc); if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { BCE_PRINTF("%s(%d): Controller reset failed!\n", __FILE__, __LINE__); goto bce_init_locked_exit; } if (bce_chipinit(sc)) { BCE_PRINTF("%s(%d): Controller initialization failed!\n", __FILE__, __LINE__); goto bce_init_locked_exit; } if (bce_blockinit(sc)) { BCE_PRINTF("%s(%d): Block initialization failed!\n", __FILE__, __LINE__); goto bce_init_locked_exit; } /* Load our MAC address. */ bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); bce_set_mac_addr(sc); if (bce_hdr_split == FALSE) bce_get_rx_buffer_sizes(sc, ifp->if_mtu); /* * Calculate and program the hardware Ethernet MTU * size. Be generous on the receive if we have room * and allowed by the user. */ if (bce_strict_rx_mtu == TRUE) ether_mtu = ifp->if_mtu; else { if (bce_hdr_split == TRUE) { if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES) ether_mtu = sc->rx_bd_mbuf_data_len + MCLBYTES; else ether_mtu = ifp->if_mtu; } else { if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) ether_mtu = sc->rx_bd_mbuf_data_len; else ether_mtu = ifp->if_mtu; } } ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__, ether_mtu); /* Program the mtu, enabling jumbo frame support if necessary. */ if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); else REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); /* Program appropriate promiscuous/multicast filtering. */ bce_set_rx_mode(sc); if (bce_hdr_split == TRUE) { /* Init page buffer descriptor chain. */ bce_init_pg_chain(sc); } /* Init RX buffer descriptor chain. */ bce_init_rx_chain(sc); /* Init TX buffer descriptor chain. */ bce_init_tx_chain(sc); /* Enable host interrupts. */ bce_enable_intr(sc, 1); bce_ifmedia_upd_locked(ifp); /* Let the OS know the driver is up and running. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); bce_init_locked_exit: DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Initialize the controller just enough so that any management firmware */ /* running on the device will continue to operate correctly. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_mgmt_init_locked(struct bce_softc *sc) { struct ifnet *ifp; DBENTER(BCE_VERBOSE_RESET); BCE_LOCK_ASSERT(sc); /* Bail out if management firmware is not running. */ if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { DBPRINT(sc, BCE_VERBOSE_SPECIAL, "No management firmware running...\n"); goto bce_mgmt_init_locked_exit; } ifp = sc->bce_ifp; /* Enable all critical blocks in the MAC. */ REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); DELAY(20); bce_ifmedia_upd_locked(ifp); bce_mgmt_init_locked_exit: DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Handles controller initialization when called from an unlocked routine. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init(void *xsc) { struct bce_softc *sc = xsc; DBENTER(BCE_VERBOSE_RESET); BCE_LOCK(sc); bce_init_locked(sc); BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE_RESET); } /****************************************************************************/ /* Modifies an mbuf for TSO on the hardware. */ /* */ /* Returns: */ /* Pointer to a modified mbuf. */ /****************************************************************************/ static struct mbuf * bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) { struct mbuf *m; struct ether_header *eh; struct ip *ip; struct tcphdr *th; u16 etype; int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; DBRUN(sc->tso_frames_requested++); /* Controller may modify mbuf chains. */ if (M_WRITABLE(*m_head) == 0) { m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { sc->mbuf_alloc_failed_count++; *m_head = NULL; return (NULL); } *m_head = m; } /* * For TSO the controller needs two pieces of info, * the MSS and the IP+TCP options length. */ m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (NULL); } eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); /* Check for supported TSO Ethernet types (only IPv4 for now) */ switch (etype) { case ETHERTYPE_IP: ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); /* TSO only supported for TCP protocol. */ if (ip->ip_p != IPPROTO_TCP) { BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", __FILE__, __LINE__); m_freem(*m_head); *m_head = NULL; return (NULL); } /* Get IP header length in bytes (min 20) */ ip_hlen = ip->ip_hl << 2; m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (NULL); } /* Get the TCP header length in bytes (min 20) */ ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); th = (struct tcphdr *)((caddr_t)ip + ip_hlen); tcp_hlen = (th->th_off << 2); /* Make sure all IP/TCP options live in the same buffer. */ m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + tcp_hlen); if (m == NULL) { *m_head = NULL; return (NULL); } /* Clear IP header length and checksum, will be calc'd by h/w. */ ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); ip_len = ip->ip_len; ip->ip_len = 0; ip->ip_sum = 0; break; case ETHERTYPE_IPV6: BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", __FILE__, __LINE__); m_freem(*m_head); *m_head = NULL; return (NULL); /* NOT REACHED */ default: BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", __FILE__, __LINE__); m_freem(*m_head); *m_head = NULL; return (NULL); } hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, tcp_hlen, ip_len); /* Set the LSO flag in the TX BD */ *flags |= TX_BD_FLAGS_SW_LSO; /* Set the length of IP + TCP options (in 32 bit words) */ *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8); DBRUN(sc->tso_frames_completed++); return (*m_head); } /****************************************************************************/ /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ /* memory visible to the controller. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /* Modified: */ /* m_head: May be set to NULL if MBUF is excessively fragmented. */ /****************************************************************************/ static int bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) { bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; bus_dmamap_t map; struct tx_bd *txbd = NULL; struct mbuf *m0; u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; u32 prod_bseq; #ifdef BCE_DEBUG u16 debug_prod; #endif int i, error, nsegs, rc = 0; DBENTER(BCE_VERBOSE_SEND); /* Make sure we have room in the TX chain. */ if (sc->used_tx_bd >= sc->max_tx_bd) goto bce_tx_encap_exit; /* Transfer any checksum offload flags to the bd. */ m0 = *m_head; if (m0->m_pkthdr.csum_flags) { if (m0->m_pkthdr.csum_flags & CSUM_TSO) { m0 = bce_tso_setup(sc, m_head, &flags); if (m0 == NULL) { DBRUN(sc->tso_frames_failed++); goto bce_tx_encap_exit; } mss = htole16(m0->m_pkthdr.tso_segsz); } else { if (m0->m_pkthdr.csum_flags & CSUM_IP) flags |= TX_BD_FLAGS_IP_CKSUM; if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; } } /* Transfer any VLAN tags to the bd. */ if (m0->m_flags & M_VLANTAG) { flags |= TX_BD_FLAGS_VLAN_TAG; vlan_tag = m0->m_pkthdr.ether_vtag; } /* Map the mbuf into DMAable memory. */ prod = sc->tx_prod; chain_prod = TX_CHAIN_IDX(prod); map = sc->tx_mbuf_map[chain_prod]; /* Map the mbuf into our DMA address space. */ error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, segs, &nsegs, BUS_DMA_NOWAIT); /* Check if the DMA mapping was successful */ if (error == EFBIG) { sc->mbuf_frag_count++; /* Try to defrag the mbuf. */ m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); if (m0 == NULL) { /* Defrag was unsuccessful */ m_freem(*m_head); *m_head = NULL; sc->mbuf_alloc_failed_count++; rc = ENOBUFS; goto bce_tx_encap_exit; } /* Defrag was successful, try mapping again */ *m_head = m0; error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, segs, &nsegs, BUS_DMA_NOWAIT); /* Still getting an error after a defrag. */ if (error == ENOMEM) { /* Insufficient DMA buffers available. */ sc->dma_map_addr_tx_failed_count++; rc = error; goto bce_tx_encap_exit; } else if (error != 0) { /* Release it and return an error. */ BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " "TX chain!\n", __FILE__, __LINE__); m_freem(m0); *m_head = NULL; sc->dma_map_addr_tx_failed_count++; rc = ENOBUFS; goto bce_tx_encap_exit; } } else if (error == ENOMEM) { /* Insufficient DMA buffers available. */ sc->dma_map_addr_tx_failed_count++; rc = error; goto bce_tx_encap_exit; } else if (error != 0) { m_freem(m0); *m_head = NULL; sc->dma_map_addr_tx_failed_count++; rc = error; goto bce_tx_encap_exit; } /* Make sure there's room in the chain */ if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { bus_dmamap_unload(sc->tx_mbuf_tag, map); rc = ENOBUFS; goto bce_tx_encap_exit; } /* prod points to an empty tx_bd at this point. */ prod_bseq = sc->tx_prod_bseq; #ifdef BCE_DEBUG debug_prod = chain_prod; #endif DBPRINT(sc, BCE_INFO_SEND, "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " "prod_bseq = 0x%08X\n", __FUNCTION__, prod, chain_prod, prod_bseq); /* * Cycle through each mbuf segment that makes up * the outgoing frame, gathering the mapping info * for that segment and creating a tx_bd for * the mbuf. */ for (i = 0; i < nsegs ; i++) { chain_prod = TX_CHAIN_IDX(prod); txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] [TX_IDX(chain_prod)]; txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); txbd->tx_bd_vlan_tag = htole16(vlan_tag); txbd->tx_bd_flags = htole16(flags); prod_bseq += segs[i].ds_len; if (i == 0) txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); prod = NEXT_TX_BD(prod); } /* Set the END flag on the last TX buffer descriptor. */ txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); /* * Ensure that the mbuf pointer for this transmission * is placed at the array index of the last * descriptor in this chain. This is done * because a single map is used for all * segments of the mbuf and we don't want to * unload the map before all of the segments * have been freed. */ sc->tx_mbuf_ptr[chain_prod] = m0; sc->used_tx_bd += nsegs; /* Update some debug statistic counters */ DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), sc->tx_hi_watermark = sc->used_tx_bd); DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); DBRUNIF(sc->debug_tx_mbuf_alloc++); DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); /* prod points to the next free tx_bd at this point. */ sc->tx_prod = prod; sc->tx_prod_bseq = prod_bseq; /* Tell the chip about the waiting TX frames. */ REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); bce_tx_encap_exit: DBEXIT(BCE_VERBOSE_SEND); return(rc); } /****************************************************************************/ /* Main transmit routine when called from another routine with a lock. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start_locked(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; int count = 0; u16 tx_prod, tx_chain_prod; DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); BCE_LOCK_ASSERT(sc); /* prod points to the next free tx_bd. */ tx_prod = sc->tx_prod; tx_chain_prod = TX_CHAIN_IDX(tx_prod); DBPRINT(sc, BCE_INFO_SEND, "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " "tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); /* If there's no link or the transmit queue is empty then just exit. */ if (sc->bce_link_up == FALSE) { DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", __FUNCTION__); goto bce_start_locked_exit; } if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", __FUNCTION__); goto bce_start_locked_exit; } /* * Keep adding entries while there is space in the ring. */ while (sc->used_tx_bd < sc->max_tx_bd) { /* Check for any frames to send. */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); /* Stop when the transmit queue is empty. */ if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, place the mbuf back at the * head of the queue and set the OACTIVE flag * to wait for the NIC to drain the chain. */ if (bce_tx_encap(sc, &m_head)) { if (m_head != NULL) IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; DBPRINT(sc, BCE_INFO_SEND, "TX chain is closed for business! Total " "tx_bd used = %d\n", sc->used_tx_bd); break; } count++; /* Send a copy of the frame to any BPF listeners. */ ETHER_BPF_MTAP(ifp, m_head); } /* Exit if no packets were dequeued. */ if (count == 0) { DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " "dequeued\n", __FUNCTION__); goto bce_start_locked_exit; } DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " "send queue.\n", __FUNCTION__, count); /* Set the tx timeout. */ sc->watchdog_timer = BCE_TX_TIMEOUT; DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); bce_start_locked_exit: DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); } /****************************************************************************/ /* Main transmit routine when called from another routine without a lock. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; DBENTER(BCE_VERBOSE_SEND); BCE_LOCK(sc); bce_start_locked(ifp); BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE_SEND); } /****************************************************************************/ /* Handles any IOCTL calls from the operating system. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bce_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int mask, error = 0; DBENTER(BCE_VERBOSE_MISC); switch(command) { /* Set the interface MTU. */ case SIOCSIFMTU: /* Check that the MTU setting is supported. */ if ((ifr->ifr_mtu < BCE_MIN_MTU) || (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { error = EINVAL; break; } DBPRINT(sc, BCE_INFO_MISC, "SIOCSIFMTU: Changing MTU from %d to %d\n", (int) ifp->if_mtu, (int) ifr->ifr_mtu); BCE_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bce_init_locked(sc); } BCE_UNLOCK(sc); break; /* Set interface flags. */ case SIOCSIFFLAGS: DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); BCE_LOCK(sc); /* Check if the interface is up. */ if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* Change promiscuous/multicast flags as necessary. */ bce_set_rx_mode(sc); } else { /* Start the HW */ bce_init_locked(sc); } } else { /* The interface is down, check if driver is running. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { bce_stop(sc); /* If MFW is running, restart the controller a bit. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { bce_reset(sc, BCE_DRV_MSG_CODE_RESET); bce_chipinit(sc); bce_mgmt_init_locked(sc); } } } BCE_UNLOCK(sc); break; /* Add/Delete multicast address */ case SIOCADDMULTI: case SIOCDELMULTI: DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); BCE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) bce_set_rx_mode(sc); BCE_UNLOCK(sc); break; /* Set/Get Interface media */ case SIOCSIFMEDIA: case SIOCGIFMEDIA: DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, command); else { mii = device_get_softc(sc->bce_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; /* Set interface capability */ case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); /* Toggle the TX checksum capabilities enable flag. */ if (mask & IFCAP_TXCSUM && ifp->if_capabilities & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (IFCAP_TXCSUM & ifp->if_capenable) ifp->if_hwassist |= BCE_IF_HWASSIST; else ifp->if_hwassist &= ~BCE_IF_HWASSIST; } /* Toggle the RX checksum capabilities enable flag. */ if (mask & IFCAP_RXCSUM && ifp->if_capabilities & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; /* Toggle the TSO capabilities enable flag. */ if (bce_tso_enable && (mask & IFCAP_TSO4) && ifp->if_capabilities & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (IFCAP_TSO4 & ifp->if_capenable) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if (mask & IFCAP_VLAN_HWCSUM && ifp->if_capabilities & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTSO) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; /* * Don't actually disable VLAN tag stripping as * management firmware (ASF/IPMI/UMP) requires the * feature. If VLAN tag stripping is disabled driver * will manually reconstruct the VLAN frame by * appending stripped VLAN tag. */ if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; } VLAN_CAPABILITIES(ifp); break; default: /* We don't know how to handle the IOCTL, pass it on. */ error = ether_ioctl(ifp, command, data); break; } DBEXIT(BCE_VERBOSE_MISC); return(error); } /****************************************************************************/ /* Transmit timeout handler. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_watchdog(struct bce_softc *sc) { uint32_t status; DBENTER(BCE_EXTREME_SEND); BCE_LOCK_ASSERT(sc); status = 0; /* If the watchdog timer hasn't expired then just exit. */ if (sc->watchdog_timer == 0 || --sc->watchdog_timer) goto bce_watchdog_exit; status = REG_RD(sc, BCE_EMAC_RX_STATUS); /* If pause frames are active then don't reset the hardware. */ if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) { if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) { /* * If link partner has us in XOFF state then wait for * the condition to clear. */ sc->watchdog_timer = BCE_TX_TIMEOUT; goto bce_watchdog_exit; } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 && (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) { /* * If we're not currently XOFF'ed but have recently * been XOFF'd/XON'd then assume that's delaying TX * this time around. */ sc->watchdog_timer = BCE_TX_TIMEOUT; goto bce_watchdog_exit; } /* * Any other condition is unexpected and the controller * should be reset. */ } BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", __FILE__, __LINE__); DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc); bce_dump_status_block(sc); bce_dump_stats_block(sc); bce_dump_ftqs(sc); bce_dump_txp_state(sc, 0); bce_dump_rxp_state(sc, 0); bce_dump_tpat_state(sc, 0); bce_dump_cp_state(sc, 0); bce_dump_com_state(sc, 0)); DBRUN(bce_breakpoint(sc)); sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bce_init_locked(sc); sc->watchdog_timeouts++; bce_watchdog_exit: REG_WR(sc, BCE_EMAC_RX_STATUS, status); DBEXIT(BCE_EXTREME_SEND); } /* * Interrupt handler. */ /****************************************************************************/ /* Main interrupt entry point. Verifies that the controller generated the */ /* interrupt and then calls a separate routine for handle the various */ /* interrupt causes (PHY, TX, RX). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_intr(void *xsc) { struct bce_softc *sc; struct ifnet *ifp; u32 status_attn_bits; u16 hw_rx_cons, hw_tx_cons; sc = xsc; ifp = sc->bce_ifp; DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); BCE_LOCK(sc); DBRUN(sc->interrupts_generated++); /* Synchnorize before we read from interface's status block */ bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); /* * If the hardware status block index matches the last value read * by the driver and we haven't asserted our interrupt then there's * nothing to do. This may only happen in case of INTx due to the * interrupt arriving at the CPU before the status block is updated. */ if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 && sc->status_block->status_idx == sc->last_status_idx && (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", __FUNCTION__); goto bce_intr_exit; } /* Ack the interrupt and stop others from occurring. */ REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BCE_PCICFG_INT_ACK_CMD_MASK_INT); /* Check if the hardware has finished any work. */ hw_rx_cons = bce_get_hw_rx_cons(sc); hw_tx_cons = bce_get_hw_tx_cons(sc); /* Keep processing data as long as there is work to do. */ for (;;) { status_attn_bits = sc->status_block->status_attn_bits; DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), BCE_PRINTF("Simulating unexpected status attention " "bit set."); sc->unexpected_attention_sim_count++; status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); /* Was it a link change interrupt? */ if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { bce_phy_intr(sc); /* Clear transient updates during link state change. */ REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(sc, BCE_HC_COMMAND); } /* If any other attention is asserted, the chip is toast. */ if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != (sc->status_block->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE))) { sc->unexpected_attention_count++; BCE_PRINTF("%s(%d): Fatal attention detected: " "0x%08X\n", __FILE__, __LINE__, sc->status_block->status_attn_bits); DBRUNMSG(BCE_FATAL, if (unexpected_attention_sim_control == 0) bce_breakpoint(sc)); bce_init_locked(sc); goto bce_intr_exit; } /* Check for any completed RX frames. */ if (hw_rx_cons != sc->hw_rx_cons) bce_rx_intr(sc); /* Check for any completed TX frames. */ if (hw_tx_cons != sc->hw_tx_cons) bce_tx_intr(sc); /* Save status block index value for the next interrupt. */ sc->last_status_idx = sc->status_block->status_idx; /* * Prevent speculative reads from getting * ahead of the status block. */ bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, BUS_SPACE_BARRIER_READ); /* * If there's no work left then exit the * interrupt service routine. */ hw_rx_cons = bce_get_hw_rx_cons(sc); hw_tx_cons = bce_get_hw_tx_cons(sc); if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons)) break; } bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD); /* Re-enable interrupts. */ bce_enable_intr(sc, 0); /* Handle any frames that arrived while handling the interrupt. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bce_start_locked(ifp); bce_intr_exit: BCE_UNLOCK(sc); DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); } /****************************************************************************/ /* Programs the various packet receive modes (broadcast and multicast). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static u_int bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { u32 *hashes = arg; int h; h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF; hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); return (1); } static void bce_set_rx_mode(struct bce_softc *sc) { struct ifnet *ifp; u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; u32 rx_mode, sort_mode; int i; DBENTER(BCE_VERBOSE_MISC); BCE_LOCK_ASSERT(sc); ifp = sc->bce_ifp; /* Initialize receive mode default settings. */ rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; /* * ASF/IPMI/UMP firmware requires that VLAN tag stripping * be enbled. */ if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; /* * Check for promiscuous, all multicast, or selected * multicast address filtering. */ if (ifp->if_flags & IFF_PROMISC) { DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); /* Enable promiscuous mode. */ rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; } else if (ifp->if_flags & IFF_ALLMULTI) { DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); /* Enable all multicast addresses. */ for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); } sort_mode |= BCE_RPM_SORT_USER0_MC_EN; } else { /* Accept one or more multicast(s). */ DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); if_foreach_llmaddr(ifp, bce_hash_maddr, hashes); for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; } /* Only make changes if the recive mode has actually changed. */ if (rx_mode != sc->rx_mode) { DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " "0x%08X\n", rx_mode); sc->rx_mode = rx_mode; REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); } /* Disable and clear the exisitng sort before enabling a new sort. */ REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); DBEXIT(BCE_VERBOSE_MISC); } /****************************************************************************/ /* Called periodically to updates statistics from the controllers */ /* statistics block. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_stats_update(struct bce_softc *sc) { struct statistics_block *stats; DBENTER(BCE_EXTREME_MISC); bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); stats = (struct statistics_block *) sc->stats_block; /* * Update the sysctl statistics from the * hardware statistics. */ sc->stat_IfHCInOctets = ((u64) stats->stat_IfHCInOctets_hi << 32) + (u64) stats->stat_IfHCInOctets_lo; sc->stat_IfHCInBadOctets = ((u64) stats->stat_IfHCInBadOctets_hi << 32) + (u64) stats->stat_IfHCInBadOctets_lo; sc->stat_IfHCOutOctets = ((u64) stats->stat_IfHCOutOctets_hi << 32) + (u64) stats->stat_IfHCOutOctets_lo; sc->stat_IfHCOutBadOctets = ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + (u64) stats->stat_IfHCOutBadOctets_lo; sc->stat_IfHCInUcastPkts = ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + (u64) stats->stat_IfHCInUcastPkts_lo; sc->stat_IfHCInMulticastPkts = ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + (u64) stats->stat_IfHCInMulticastPkts_lo; sc->stat_IfHCInBroadcastPkts = ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + (u64) stats->stat_IfHCInBroadcastPkts_lo; sc->stat_IfHCOutUcastPkts = ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + (u64) stats->stat_IfHCOutUcastPkts_lo; sc->stat_IfHCOutMulticastPkts = ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + (u64) stats->stat_IfHCOutMulticastPkts_lo; sc->stat_IfHCOutBroadcastPkts = ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + (u64) stats->stat_IfHCOutBroadcastPkts_lo; /* ToDo: Preserve counters beyond 32 bits? */ /* ToDo: Read the statistics from auto-clear regs? */ sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; sc->stat_Dot3StatsCarrierSenseErrors = stats->stat_Dot3StatsCarrierSenseErrors; sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; sc->stat_Dot3StatsAlignmentErrors = stats->stat_Dot3StatsAlignmentErrors; sc->stat_Dot3StatsSingleCollisionFrames = stats->stat_Dot3StatsSingleCollisionFrames; sc->stat_Dot3StatsMultipleCollisionFrames = stats->stat_Dot3StatsMultipleCollisionFrames; sc->stat_Dot3StatsDeferredTransmissions = stats->stat_Dot3StatsDeferredTransmissions; sc->stat_Dot3StatsExcessiveCollisions = stats->stat_Dot3StatsExcessiveCollisions; sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; sc->stat_EtherStatsOversizePkts = stats->stat_EtherStatsOversizePkts; sc->stat_EtherStatsPktsRx64Octets = stats->stat_EtherStatsPktsRx64Octets; sc->stat_EtherStatsPktsRx65Octetsto127Octets = stats->stat_EtherStatsPktsRx65Octetsto127Octets; sc->stat_EtherStatsPktsRx128Octetsto255Octets = stats->stat_EtherStatsPktsRx128Octetsto255Octets; sc->stat_EtherStatsPktsRx256Octetsto511Octets = stats->stat_EtherStatsPktsRx256Octetsto511Octets; sc->stat_EtherStatsPktsRx512Octetsto1023Octets = stats->stat_EtherStatsPktsRx512Octetsto1023Octets; sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; sc->stat_EtherStatsPktsTx64Octets = stats->stat_EtherStatsPktsTx64Octets; sc->stat_EtherStatsPktsTx65Octetsto127Octets = stats->stat_EtherStatsPktsTx65Octetsto127Octets; sc->stat_EtherStatsPktsTx128Octetsto255Octets = stats->stat_EtherStatsPktsTx128Octetsto255Octets; sc->stat_EtherStatsPktsTx256Octetsto511Octets = stats->stat_EtherStatsPktsTx256Octetsto511Octets; sc->stat_EtherStatsPktsTx512Octetsto1023Octets = stats->stat_EtherStatsPktsTx512Octetsto1023Octets; sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; sc->stat_OutXonSent = stats->stat_OutXonSent; sc->stat_OutXoffSent = stats->stat_OutXoffSent; sc->stat_FlowControlDone = stats->stat_FlowControlDone; sc->stat_MacControlFramesReceived = stats->stat_MacControlFramesReceived; sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; sc->stat_IfInFramesL2FilterDiscards = stats->stat_IfInFramesL2FilterDiscards; sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; sc->stat_CatchupInRuleCheckerDiscards = stats->stat_CatchupInRuleCheckerDiscards; sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; sc->stat_CatchupInRuleCheckerP4Hit = stats->stat_CatchupInRuleCheckerP4Hit; sc->com_no_buffers = REG_RD_IND(sc, 0x120084); /* ToDo: Add additional statistics? */ DBEXIT(BCE_EXTREME_MISC); } static uint64_t bce_get_counter(struct ifnet *ifp, ift_counter cnt) { struct bce_softc *sc; uint64_t rv; sc = if_getsoftc(ifp); switch (cnt) { case IFCOUNTER_COLLISIONS: return (sc->stat_EtherStatsCollisions); case IFCOUNTER_IERRORS: return (sc->stat_EtherStatsUndersizePkts + sc->stat_EtherStatsOversizePkts + sc->stat_IfInMBUFDiscards + sc->stat_Dot3StatsAlignmentErrors + sc->stat_Dot3StatsFCSErrors + sc->stat_IfInRuleCheckerDiscards + sc->stat_IfInFTQDiscards + sc->l2fhdr_error_count + sc->com_no_buffers); case IFCOUNTER_OERRORS: rv = sc->stat_Dot3StatsExcessiveCollisions + sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + sc->stat_Dot3StatsLateCollisions + sc->watchdog_timeouts; /* * Certain controllers don't report * carrier sense errors correctly. * See errata E11_5708CA0_1165. */ if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) rv += sc->stat_Dot3StatsCarrierSenseErrors; return (rv); default: return (if_get_counter_default(ifp, cnt)); } } /****************************************************************************/ /* Periodic function to notify the bootcode that the driver is still */ /* present. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_pulse(void *xsc) { struct bce_softc *sc = xsc; u32 msg; DBENTER(BCE_EXTREME_MISC); BCE_LOCK_ASSERT(sc); /* Tell the firmware that the driver is still running. */ msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); /* Update the bootcode condition. */ sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); /* Report whether the bootcode still knows the driver is running. */ if (bce_verbose || bootverbose) { if (sc->bce_drv_cardiac_arrest == FALSE) { if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { sc->bce_drv_cardiac_arrest = TRUE; BCE_PRINTF("%s(): Warning: bootcode " "thinks driver is absent! " "(bc_state = 0x%08X)\n", __FUNCTION__, sc->bc_state); } } else { /* * Not supported by all bootcode versions. * (v5.0.11+ and v5.2.1+) Older bootcode * will require the driver to reset the * controller to clear this condition. */ if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { sc->bce_drv_cardiac_arrest = FALSE; BCE_PRINTF("%s(): Bootcode found the " "driver pulse! (bc_state = 0x%08X)\n", __FUNCTION__, sc->bc_state); } } } /* Schedule the next pulse. */ callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); DBEXIT(BCE_EXTREME_MISC); } /****************************************************************************/ /* Periodic function to perform maintenance tasks. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_tick(void *xsc) { struct bce_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp; struct ifmediareq ifmr; ifp = sc->bce_ifp; DBENTER(BCE_EXTREME_MISC); BCE_LOCK_ASSERT(sc); /* Schedule the next tick. */ callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); /* Update the statistics from the hardware statistics block. */ bce_stats_update(sc); /* Ensure page and RX chains get refilled in low-memory situations. */ if (bce_hdr_split == TRUE) bce_fill_pg_chain(sc); bce_fill_rx_chain(sc); /* Check that chip hasn't hung. */ bce_watchdog(sc); /* If link is up already up then we're done. */ if (sc->bce_link_up == TRUE) goto bce_tick_exit; /* Link is down. Check what the PHY's doing. */ if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { bzero(&ifmr, sizeof(ifmr)); bce_ifmedia_sts_rphy(sc, &ifmr); if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { sc->bce_link_up = TRUE; bce_miibus_statchg(sc->bce_dev); } } else { mii = device_get_softc(sc->bce_miibus); mii_tick(mii); /* Check if the link has come up. */ if ((mii->mii_media_status & IFM_ACTIVE) && (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__); sc->bce_link_up = TRUE; if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && (bce_verbose || bootverbose)) BCE_PRINTF("Gigabit link up!\n"); } } if (sc->bce_link_up == TRUE) { /* Now that link is up, handle any outstanding TX traffic. */ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " "pending TX traffic.\n", __FUNCTION__); bce_start_locked(ifp); } } bce_tick_exit: DBEXIT(BCE_EXTREME_MISC); } static void bce_fw_cap_init(struct bce_softc *sc) { u32 ack, cap, link; ack = 0; cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != BCE_FW_CAP_SIGNATURE_MAGIC) return; if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; link = bce_shmem_rd(sc, BCE_LINK_STATUS); if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | BCE_FW_CAP_REMOTE_PHY_CAP; } if (ack != 0) bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); } #ifdef BCE_DEBUG /****************************************************************************/ /* Allows the driver state to be dumped through the sysctl interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_driver_state(sc); } return error; } /****************************************************************************/ /* Allows the hardware state to be dumped through the sysctl interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_hw_state(sc); } return error; } /****************************************************************************/ /* Allows the status block to be dumped through the sysctl interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_status_block(sc); } return error; } /****************************************************************************/ /* Allows the stats block to be dumped through the sysctl interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_stats_block(sc); } return error; } /****************************************************************************/ /* Allows the stat counters to be cleared without unloading/reloading the */ /* driver. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; struct statistics_block *stats; stats = (struct statistics_block *) sc->stats_block; bzero(stats, sizeof(struct statistics_block)); bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Clear the internal H/W statistics counters. */ REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); /* Reset the driver maintained statistics. */ sc->interrupts_rx = sc->interrupts_tx = 0; sc->tso_frames_requested = sc->tso_frames_completed = sc->tso_frames_failed = 0; sc->rx_empty_count = sc->tx_full_count = 0; sc->rx_low_watermark = USABLE_RX_BD_ALLOC; sc->tx_hi_watermark = 0; sc->l2fhdr_error_count = sc->l2fhdr_error_sim_count = 0; sc->mbuf_alloc_failed_count = sc->mbuf_alloc_failed_sim_count = 0; sc->dma_map_addr_rx_failed_count = sc->dma_map_addr_tx_failed_count = 0; sc->mbuf_frag_count = 0; sc->csum_offload_tcp_udp = sc->csum_offload_ip = 0; sc->vlan_tagged_frames_rcvd = sc->vlan_tagged_frames_stripped = 0; sc->split_header_frames_rcvd = sc->split_header_tcp_frames_rcvd = 0; /* Clear firmware maintained statistics. */ REG_WR_IND(sc, 0x120084, 0); } return error; } /****************************************************************************/ /* Allows the shared memory contents to be dumped through the sysctl . */ /* interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_shmem_state(sc); } return error; } /****************************************************************************/ /* Allows the bootcode state to be dumped through the sysctl interface. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_bc_state(sc); } return error; } /****************************************************************************/ /* Provides a sysctl interface to allow dumping the RX BD chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); } return error; } /****************************************************************************/ /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); } return error; } /****************************************************************************/ /* Provides a sysctl interface to allow dumping the TX chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); } return error; } /****************************************************************************/ /* Provides a sysctl interface to allow dumping the page chain. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); } return error; } /****************************************************************************/ /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = (struct bce_softc *)arg1; int error; u32 result; u32 val[1]; u8 *data = (u8 *) val; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); error = bce_nvram_read(sc, result, data, 4); BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); return (error); } /****************************************************************************/ /* Provides a sysctl interface to allow reading arbitrary registers in the */ /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = (struct bce_softc *)arg1; int error; u32 val, result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); /* Make sure the register is accessible. */ if (result < 0x8000) { val = REG_RD(sc, result); BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); } else if (result < 0x0280000) { val = REG_RD_IND(sc, result); BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); } return (error); } /****************************************************************************/ /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc; device_t dev; int error, result; u16 val; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); /* Make sure the register is accessible. */ if (result < 0x20) { sc = (struct bce_softc *)arg1; dev = sc->bce_dev; val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); } return (error); } /****************************************************************************/ /* Provides a sysctl interface for dumping the nvram contents. */ /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive errno for failure. */ /****************************************************************************/ static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = (struct bce_softc *)arg1; int error, i; if (sc->nvram_buf == NULL) sc->nvram_buf = malloc(sc->bce_flash_size, M_TEMP, M_ZERO | M_WAITOK); error = 0; if (req->oldlen == sc->bce_flash_size) { for (i = 0; i < sc->bce_flash_size && error == 0; i++) error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); } if (error == 0) error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); return error; } #ifdef BCE_NVRAM_WRITE_SUPPORT /****************************************************************************/ /* Provides a sysctl interface for writing to nvram. */ /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive errno for failure. */ /****************************************************************************/ static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = (struct bce_softc *)arg1; int error; if (sc->nvram_buf == NULL) sc->nvram_buf = malloc(sc->bce_flash_size, M_TEMP, M_ZERO | M_WAITOK); else bzero(sc->nvram_buf, sc->bce_flash_size); error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); if (error == 0) return (error); if (req->newlen == sc->bce_flash_size) error = bce_nvram_write(sc, 0, sc->nvram_buf, sc->bce_flash_size); return error; } #endif /****************************************************************************/ /* Provides a sysctl interface to allow reading a CID. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc; int error, result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || (req->newptr == NULL)) return (error); /* Make sure the register is accessible. */ if (result <= TX_CID) { sc = (struct bce_softc *)arg1; bce_dump_ctx(sc, result); } return (error); } /****************************************************************************/ /* Provides a sysctl interface to forcing the driver to dump state and */ /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) { int error; int result; struct bce_softc *sc; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct bce_softc *)arg1; bce_breakpoint(sc); } return error; } #endif /****************************************************************************/ /* Adds any sysctl parameters for tuning or debugging purposes. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static void bce_add_sysctls(struct bce_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; DBENTER(BCE_VERBOSE_MISC); ctx = device_get_sysctl_ctx(sc->bce_dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); #ifdef BCE_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "l2fhdr_error_sim_control", CTLFLAG_RW, &l2fhdr_error_sim_control, 0, "Debug control to force l2fhdr errors"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "l2fhdr_error_sim_count", CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 0, "Number of simulated l2_fhdr errors"); #endif SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "l2fhdr_error_count", CTLFLAG_RD, &sc->l2fhdr_error_count, 0, "Number of l2_fhdr errors"); #ifdef BCE_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mbuf_alloc_failed_sim_control", CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 0, "Debug control to force mbuf allocation failures"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mbuf_alloc_failed_sim_count", CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 0, "Number of simulated mbuf cluster allocation failures"); #endif SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mbuf_alloc_failed_count", CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 0, "Number of mbuf allocation failures"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mbuf_frag_count", CTLFLAG_RD, &sc->mbuf_frag_count, 0, "Number of fragmented mbufs"); #ifdef BCE_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dma_map_addr_failed_sim_control", CTLFLAG_RW, &dma_map_addr_failed_sim_control, 0, "Debug control to force DMA mapping failures"); /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "dma_map_addr_failed_sim_count", CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 0, "Number of simulated DMA mapping failures"); #endif SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "dma_map_addr_rx_failed_count", CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 0, "Number of RX DMA mapping failures"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "dma_map_addr_tx_failed_count", CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 0, "Number of TX DMA mapping failures"); #ifdef BCE_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "unexpected_attention_sim_control", CTLFLAG_RW, &unexpected_attention_sim_control, 0, "Debug control to simulate unexpected attentions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unexpected_attention_sim_count", CTLFLAG_RW, &sc->unexpected_attention_sim_count, 0, "Number of simulated unexpected attentions"); #endif SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unexpected_attention_count", CTLFLAG_RW, &sc->unexpected_attention_count, 0, "Number of unexpected attentions"); #ifdef BCE_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "debug_bootcode_running_failure", CTLFLAG_RW, &bootcode_running_failure_sim_control, 0, "Debug control to force bootcode running failures"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_low_watermark", CTLFLAG_RD, &sc->rx_low_watermark, 0, "Lowest level of free rx_bd's"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "rx_empty_count", CTLFLAG_RD, &sc->rx_empty_count, "Number of times the RX chain was empty"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_hi_watermark", CTLFLAG_RD, &sc->tx_hi_watermark, 0, "Highest level of used tx_bd's"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tx_full_count", CTLFLAG_RD, &sc->tx_full_count, "Number of times the TX chain was full"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tso_frames_requested", CTLFLAG_RD, &sc->tso_frames_requested, "Number of TSO frames requested"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tso_frames_completed", CTLFLAG_RD, &sc->tso_frames_completed, "Number of TSO frames completed"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tso_frames_failed", CTLFLAG_RD, &sc->tso_frames_failed, "Number of TSO frames failed"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "csum_offload_ip", CTLFLAG_RD, &sc->csum_offload_ip, "Number of IP checksum offload frames"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "csum_offload_tcp_udp", CTLFLAG_RD, &sc->csum_offload_tcp_udp, "Number of TCP/UDP checksum offload frames"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "vlan_tagged_frames_rcvd", CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, "Number of VLAN tagged frames received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "vlan_tagged_frames_stripped", CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, "Number of VLAN tagged frames stripped"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "interrupts_rx", CTLFLAG_RD, &sc->interrupts_rx, "Number of RX interrupts"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "interrupts_tx", CTLFLAG_RD, &sc->interrupts_tx, "Number of TX interrupts"); if (bce_hdr_split == TRUE) { SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "split_header_frames_rcvd", CTLFLAG_RD, &sc->split_header_frames_rcvd, "Number of split header frames received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "split_header_tcp_frames_rcvd", CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, "Number of split header TCP frames received"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_nvram_dump, "S", ""); #ifdef BCE_NVRAM_WRITE_SUPPORT SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_nvram_write, "S", ""); #endif #endif /* BCE_DEBUG */ SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHcInOctets", CTLFLAG_RD, &sc->stat_IfHCInOctets, "Bytes received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCInBadOctets", CTLFLAG_RD, &sc->stat_IfHCInBadOctets, "Bad bytes received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCOutOctets", CTLFLAG_RD, &sc->stat_IfHCOutOctets, "Bytes sent"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCOutBadOctets", CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, "Bad bytes sent"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCInUcastPkts", CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, "Unicast packets received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCInMulticastPkts", CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, "Multicast packets received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCInBroadcastPkts", CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, "Broadcast packets received"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCOutUcastPkts", CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, "Unicast packets sent"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCOutMulticastPkts", CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, "Multicast packets sent"); SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "stat_IfHCOutBroadcastPkts", CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, "Broadcast packets sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 0, "Internal MAC transmit errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsCarrierSenseErrors", CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 0, "Carrier sense errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsFCSErrors", CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 0, "Frame check sequence errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsAlignmentErrors", CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 0, "Alignment errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsSingleCollisionFrames", CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 0, "Single Collision Frames"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsMultipleCollisionFrames", CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 0, "Multiple Collision Frames"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsDeferredTransmissions", CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 0, "Deferred Transmissions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsExcessiveCollisions", CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 0, "Excessive Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsLateCollisions", CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 0, "Late Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsCollisions", CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 0, "Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsFragments", CTLFLAG_RD, &sc->stat_EtherStatsFragments, 0, "Fragments"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsJabbers", CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 0, "Jabbers"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsUndersizePkts", CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 0, "Undersize packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsOversizePkts", CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 0, "stat_EtherStatsOversizePkts"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx64Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 0, "Bytes received in 64 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx65Octetsto127Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 0, "Bytes received in 65 to 127 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx128Octetsto255Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 0, "Bytes received in 128 to 255 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx256Octetsto511Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 0, "Bytes received in 256 to 511 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx512Octetsto1023Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 0, "Bytes received in 512 to 1023 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx1024Octetsto1522Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 0, "Bytes received in 1024 t0 1522 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx1523Octetsto9022Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 0, "Bytes received in 1523 to 9022 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx64Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 0, "Bytes sent in 64 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx65Octetsto127Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 0, "Bytes sent in 65 to 127 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx128Octetsto255Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 0, "Bytes sent in 128 to 255 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx256Octetsto511Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 0, "Bytes sent in 256 to 511 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx512Octetsto1023Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 0, "Bytes sent in 512 to 1023 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx1024Octetsto1522Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 0, "Bytes sent in 1024 to 1522 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx1523Octetsto9022Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 0, "Bytes sent in 1523 to 9022 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XonPauseFramesReceived", CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 0, "XON pause frames receved"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XoffPauseFramesReceived", CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 0, "XOFF pause frames received"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_OutXonSent", CTLFLAG_RD, &sc->stat_OutXonSent, 0, "XON pause frames sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_OutXoffSent", CTLFLAG_RD, &sc->stat_OutXoffSent, 0, "XOFF pause frames sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_FlowControlDone", CTLFLAG_RD, &sc->stat_FlowControlDone, 0, "Flow control done"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_MacControlFramesReceived", CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 0, "MAC control frames received"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XoffStateEntered", CTLFLAG_RD, &sc->stat_XoffStateEntered, 0, "XOFF state entered"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInFramesL2FilterDiscards", CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 0, "Received L2 packets discarded"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInRuleCheckerDiscards", CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 0, "Received packets discarded by rule"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInFTQDiscards", CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 0, "Received packet FTQ discards"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInMBUFDiscards", CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 0, "Received packets discarded due to lack " "of controller buffer memory"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInRuleCheckerP4Hit", CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 0, "Received packets rule checker hits"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInRuleCheckerDiscards", CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 0, "Received packets discarded in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInFTQDiscards", CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 0, "Received packets discarded in FTQ in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInMBUFDiscards", CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 0, "Received packets discarded in controller " "buffer memory in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInRuleCheckerP4Hit", CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 0, "Received packets rule checker hits in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "com_no_buffers", CTLFLAG_RD, &sc->com_no_buffers, 0, "Valid packets received but no RX buffers available"); #ifdef BCE_DEBUG SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_driver_state, "I", "Drive state information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_hw_state, "I", "Hardware state information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_status_block, "I", "Dump status block"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_stats_block, "I", "Dump statistics block"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_stats_clear, "I", "Clear statistics block"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_shmem_state, "I", "Shared memory state information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_bc_state, "I", "Bootcode state information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); if (bce_hdr_split == TRUE) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_dump_pg_chain, "I", "Dump page chain"); } SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_dump_ctx, "I", "Dump context memory"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_breakpoint, "I", "Driver breakpoint"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_reg_read, "I", "Register read"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_nvram_read, "I", "NVRAM read"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)sc, 0, bce_sysctl_phy_read, "I", "PHY register read"); #endif DBEXIT(BCE_VERBOSE_MISC); } /****************************************************************************/ /* BCE Debug Routines */ /****************************************************************************/ #ifdef BCE_DEBUG /****************************************************************************/ /* Freezes the controller to allow for a cohesive state dump. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_freeze_controller(struct bce_softc *sc) { u32 val; val = REG_RD(sc, BCE_MISC_COMMAND); val |= BCE_MISC_COMMAND_DISABLE_ALL; REG_WR(sc, BCE_MISC_COMMAND, val); } /****************************************************************************/ /* Unfreezes the controller after a freeze operation. This may not always */ /* work and the controller will require a reset! */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_unfreeze_controller(struct bce_softc *sc) { u32 val; val = REG_RD(sc, BCE_MISC_COMMAND); val |= BCE_MISC_COMMAND_ENABLE_ALL; REG_WR(sc, BCE_MISC_COMMAND, val); } /****************************************************************************/ /* Prints out Ethernet frame information from an mbuf. */ /* */ /* Partially decode an Ethernet frame to look at some important headers. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_enet(struct bce_softc *sc, struct mbuf *m) { struct ether_vlan_header *eh; u16 etype; int ehlen; struct ip *ip; struct tcphdr *th; struct udphdr *uh; struct arphdr *ah; BCE_PRINTF( "-----------------------------" " Frame Decode " "-----------------------------\n"); eh = mtod(m, struct ether_vlan_header *); /* Handle VLAN encapsulation if present. */ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = ntohs(eh->evl_encap_proto); ehlen = ETHER_HDR_LEN; } /* ToDo: Add VLAN output. */ BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); switch (etype) { case ETHERTYPE_IP: ip = (struct ip *)(m->m_data + ehlen); BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); switch (ip->ip_p) { case IPPROTO_TCP: th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " "%d bytes, flags = 0x%b, csum = 0x%04X\n", ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2), th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" "\02SYN\01FIN", ntohs(th->th_sum)); break; case IPPROTO_UDP: uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport), ntohs(uh->uh_ulen), ntohs(uh->uh_sum)); break; case IPPROTO_ICMP: BCE_PRINTF("icmp:\n"); break; default: BCE_PRINTF("----: Other IP protocol.\n"); } break; case ETHERTYPE_IPV6: BCE_PRINTF("ipv6: No decode supported.\n"); break; case ETHERTYPE_ARP: BCE_PRINTF("-arp: "); ah = (struct arphdr *) (m->m_data + ehlen); switch (ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: printf("reverse ARP request\n"); break; case ARPOP_REVREPLY: printf("reverse ARP reply\n"); break; case ARPOP_REQUEST: printf("ARP request\n"); break; case ARPOP_REPLY: printf("ARP reply\n"); break; default: printf("other ARP operation\n"); } break; default: BCE_PRINTF("----: Other protocol.\n"); } BCE_PRINTF( "-----------------------------" "--------------" "-----------------------------\n"); } /****************************************************************************/ /* Prints out information about an mbuf. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) { struct mbuf *mp = m; if (m == NULL) { BCE_PRINTF("mbuf: null pointer\n"); return; } while (mp) { BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " "m_data = %p\n", mp, mp->m_len, mp->m_flags, "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); if (mp->m_flags & M_PKTHDR) { BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " "csum_flags = %b\n", mp->m_pkthdr.len, mp->m_flags, M_FLAG_PRINTF, mp->m_pkthdr.csum_flags, CSUM_BITS); } if (mp->m_flags & M_EXT) { BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", mp->m_ext.ext_buf, mp->m_ext.ext_size); switch (mp->m_ext.ext_type) { case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; case EXT_SFBUF: printf("EXT_SFBUF\n"); break; case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; case EXT_PACKET: printf("EXT_PACKET\n"); break; case EXT_MBUF: printf("EXT_MBUF\n"); break; case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; case EXT_EXTREF: printf("EXT_EXTREF\n"); break; default: printf("UNKNOWN\n"); } } mp = mp->m_next; } } /****************************************************************************/ /* Prints out the mbufs in the TX mbuf chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) { struct mbuf *m; BCE_PRINTF( "----------------------------" " tx mbuf data " "----------------------------\n"); for (int i = 0; i < count; i++) { m = sc->tx_mbuf_ptr[chain_prod]; BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); bce_dump_mbuf(sc, m); chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the mbufs in the RX mbuf chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) { struct mbuf *m; BCE_PRINTF( "----------------------------" " rx mbuf data " "----------------------------\n"); for (int i = 0; i < count; i++) { m = sc->rx_mbuf_ptr[chain_prod]; BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); bce_dump_mbuf(sc, m); chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the mbufs in the mbuf page chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) { struct mbuf *m; BCE_PRINTF( "----------------------------" " pg mbuf data " "----------------------------\n"); for (int i = 0; i < count; i++) { m = sc->pg_mbuf_ptr[chain_prod]; BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); bce_dump_mbuf(sc, m); chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out a tx_bd structure. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) { int i = 0; if (idx > MAX_TX_BD_ALLOC) /* Index out of range. */ BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) /* TX Chain page pointer. */ BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); else { /* Normal tx_bd entry. */ BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " "0x%04X (", idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { if (i>0) printf("|"); printf("CONN_FAULT"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { if (i>0) printf("|"); printf("TCP_UDP_CKSUM"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { if (i>0) printf("|"); printf("IP_CKSUM"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { if (i>0) printf("|"); printf("VLAN"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { if (i>0) printf("|"); printf("COAL_NOW"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { if (i>0) printf("|"); printf("DONT_GEN_CRC"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { if (i>0) printf("|"); printf("START"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { if (i>0) printf("|"); printf("END"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { if (i>0) printf("|"); printf("LSO"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { if (i>0) printf("|"); printf("SW_OPTION=%d", ((txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { if (i>0) printf("|"); printf("SW_FLAGS"); i++; } if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { if (i>0) printf("|"); printf("SNAP)"); } else { printf(")\n"); } } } /****************************************************************************/ /* Prints out a rx_bd structure. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) { if (idx > MAX_RX_BD_ALLOC) /* Index out of range. */ BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) /* RX Chain page pointer. */ BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); else /* Normal rx_bd entry. */ BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, rxbd->rx_bd_flags); } /****************************************************************************/ /* Prints out a rx_bd structure in the page chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) { if (idx > MAX_PG_BD_ALLOC) /* Index out of range. */ BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) /* Page Chain page pointer. */ BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); else /* Normal rx_bd entry. */ BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " "flags = 0x%08X\n", idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, pgbd->rx_bd_len, pgbd->rx_bd_flags); } /****************************************************************************/ /* Prints out a l2_fhdr structure. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) { BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", idx, l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); } /****************************************************************************/ /* Prints out context memory info. (Only useful for CID 0 to 16.) */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_ctx(struct bce_softc *sc, u16 cid) { if (cid > TX_CID) { BCE_PRINTF(" Unknown CID\n"); return; } BCE_PRINTF( "----------------------------" " CTX Data " "----------------------------\n"); BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); if (cid == RX_CID) { BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " "index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX)); } else if (cid == TX_CID) { if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI)); BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " "h/w buffer descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " "h/w buffer descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " "host producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_HOST_BIDX_XI)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " "host byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_HOST_BSEQ_XI)); } else { BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " "h/w buffer descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " "h/w buffer descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_HOST_BIDX)); BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_HOST_BSEQ)); } } BCE_PRINTF( "----------------------------" " Raw CTX " "----------------------------\n"); for (int i = 0x0; i < 0x300; i += 0x10) { BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, CTX_RD(sc, GET_CID_ADDR(cid), i), CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the FTQ data. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_ftqs(struct bce_softc *sc) { u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; BCE_PRINTF( "----------------------------" " FTQ Data " "----------------------------\n"); BCE_PRINTF(" FTQ Command Control Depth_Now " "Max_Depth Valid_Cnt \n"); BCE_PRINTF(" ------- ---------- ---------- ---------- " "---------- ----------\n"); /* Setup the generic statistic counters for the FTQ valid count. */ val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); /* Input queue to the Receive Lookup state machine */ cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Receive Processor */ cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Recevie Processor */ cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Receive Virtual to Physical state machine */ cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Recevie Virtual to Physical state machine */ cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Receive Virtual to Physical state machine */ cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Receive DMA state machine */ cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit Scheduler state machine */ cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit Buffer Descriptor state machine */ cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit Processor */ cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit DMA state machine */ cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit Patch-Up Processor */ cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Transmit Assembler state machine */ cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Completion Processor */ cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Completion Processor */ cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Completion Processor */ cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Setup the generic statistic counters for the FTQ valid count. */ val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24); REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); /* Input queue to the Management Control Processor */ cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Command Processor */ cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); /* Input queue to the Completion Scheduler state machine */ cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { /* Input queue to the RV2P Command Scheduler */ cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); cur_depth = (ctl & 0xFFC00000) >> 22; max_depth = (ctl & 0x003FF000) >> 12; valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", cmd, ctl, cur_depth, max_depth, valid_cnt); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the TX chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) { struct tx_bd *txbd; /* First some info about the tx_bd chain structure. */ BCE_PRINTF( "----------------------------" " tx_bd chain " "----------------------------\n"); BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); BCE_PRINTF( "----------------------------" " tx_bd data " "----------------------------\n"); /* Now print out a decoded list of TX buffer descriptors. */ for (int i = 0; i < count; i++) { txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; bce_dump_txbd(sc, tx_prod, txbd); tx_prod++; } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the RX chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) { struct rx_bd *rxbd; /* First some info about the rx_bd chain structure. */ BCE_PRINTF( "----------------------------" " rx_bd chain " "----------------------------\n"); BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); BCE_PRINTF( "----------------------------" " rx_bd data " "----------------------------\n"); /* Now print out the rx_bd's themselves. */ for (int i = 0; i < count; i++) { rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; bce_dump_rxbd(sc, rx_prod, rxbd); rx_prod = RX_CHAIN_IDX(rx_prod + 1); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the page chain. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) { struct rx_bd *pgbd; /* First some info about the page chain structure. */ BCE_PRINTF( "----------------------------" " page chain " "----------------------------\n"); BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); BCE_PRINTF( "----------------------------" " page data " "----------------------------\n"); /* Now print out the rx_bd's themselves. */ for (int i = 0; i < count; i++) { pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; bce_dump_pgbd(sc, pg_prod, pgbd); pg_prod = PG_CHAIN_IDX(pg_prod + 1); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } #define BCE_PRINT_RX_CONS(arg) \ if (sblk->status_rx_quick_consumer_index##arg) \ BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ sblk->status_rx_quick_consumer_index##arg, (u16) \ RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ arg); #define BCE_PRINT_TX_CONS(arg) \ if (sblk->status_tx_quick_consumer_index##arg) \ BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ sblk->status_tx_quick_consumer_index##arg, (u16) \ TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ arg); /****************************************************************************/ /* Prints out the status block from host memory. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_status_block(struct bce_softc *sc) { struct status_block *sblk; bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); sblk = sc->status_block; BCE_PRINTF( "----------------------------" " Status Block " "----------------------------\n"); /* Theses indices are used for normal L2 drivers. */ BCE_PRINTF(" 0x%08X - attn_bits\n", sblk->status_attn_bits); BCE_PRINTF(" 0x%08X - attn_bits_ack\n", sblk->status_attn_bits_ack); BCE_PRINT_RX_CONS(0); BCE_PRINT_TX_CONS(0) BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); /* Theses indices are not used for normal L2 drivers. */ BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); if (sblk->status_completion_producer_index || sblk->status_cmd_consumer_index) BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", sblk->status_completion_producer_index, sblk->status_cmd_consumer_index); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } #define BCE_PRINT_64BIT_STAT(arg) \ if (sblk->arg##_lo || sblk->arg##_hi) \ BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ sblk->arg##_lo, #arg); #define BCE_PRINT_32BIT_STAT(arg) \ if (sblk->arg) \ BCE_PRINTF(" 0x%08X : %s\n", \ sblk->arg, #arg); /****************************************************************************/ /* Prints out the statistics block from host memory. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_stats_block(struct bce_softc *sc) { struct statistics_block *sblk; bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); sblk = sc->stats_block; BCE_PRINTF( "---------------" " Stats Block (All Stats Not Shown Are 0) " "---------------\n"); BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); BCE_PRINT_32BIT_STAT( stat_emac_tx_stat_dot3statsinternalmactransmiterrors); BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); BCE_PRINT_32BIT_STAT(stat_OutXonSent); BCE_PRINT_32BIT_STAT(stat_OutXoffSent); BCE_PRINT_32BIT_STAT(stat_FlowControlDone); BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out a summary of the driver state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_driver_state(struct bce_softc *sc) { u32 val_hi, val_lo; BCE_PRINTF( "-----------------------------" " Driver State " "-----------------------------\n"); val_hi = BCE_ADDR_HI(sc); val_lo = BCE_ADDR_LO(sc); BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " "address\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->bce_vhandle); val_lo = BCE_ADDR_LO(sc->bce_vhandle); BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " "address\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->status_block); val_lo = BCE_ADDR_LO(sc->status_block); BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " "virtual address\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->stats_block); val_lo = BCE_ADDR_LO(sc->stats_block); BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " "virtual address\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->tx_bd_chain); val_lo = BCE_ADDR_LO(sc->tx_bd_chain); BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " "virtual adddress\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->rx_bd_chain); val_lo = BCE_ADDR_LO(sc->rx_bd_chain); BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " "virtual address\n", val_hi, val_lo); if (bce_hdr_split == TRUE) { val_hi = BCE_ADDR_HI(sc->pg_bd_chain); val_lo = BCE_ADDR_LO(sc->pg_bd_chain); BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " "virtual address\n", val_hi, val_lo); } val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " "virtual address\n", val_hi, val_lo); val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " "virtual address\n", val_hi, val_lo); if (bce_hdr_split == TRUE) { val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " "virtual address\n", val_hi, val_lo); } BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " "h/w intrs\n", (long long unsigned int) sc->interrupts_generated); BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " "rx interrupts handled\n", (long long unsigned int) sc->interrupts_rx); BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " "tx interrupts handled\n", (long long unsigned int) sc->interrupts_tx); BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " "phy interrupts handled\n", (long long unsigned int) sc->phy_interrupts); BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " "status block index\n", sc->last_status_idx); BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " "byte seq index\n", sc->tx_prod_bseq); BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " "mbufs allocated\n", sc->debug_tx_mbuf_alloc); BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " "tx_bd's\n", sc->used_tx_bd); BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " "byte seq index\n", sc->rx_prod_bseq); BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " "mbufs allocated\n", sc->debug_rx_mbuf_alloc); BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " "rx_bd's\n", sc->free_rx_bd); if (bce_hdr_split == TRUE) { BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " "mbufs allocated\n", sc->debug_pg_mbuf_alloc); } BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " "rx_bd's\n", sc->free_pg_bd); BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); BCE_PRINTF(" 0x%08X - (sc->bce_flags) " "bce mac flags\n", sc->bce_flags); BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " "bce phy flags\n", sc->bce_phy_flags); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the hardware state through a summary of important register, */ /* followed by a complete register dump. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_hw_state(struct bce_softc *sc) { u32 val; BCE_PRINTF( "----------------------------" " Hardware State " "----------------------------\n"); BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", val, BCE_MISC_ENABLE_STATUS_BITS); val = REG_RD(sc, BCE_DMA_STATUS); BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS); val = REG_RD(sc, BCE_CTX_STATUS); BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS); val = REG_RD(sc, BCE_EMAC_STATUS); BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS); val = REG_RD(sc, BCE_RPM_STATUS); BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS); /* ToDo: Create a #define for this constant. */ val = REG_RD(sc, 0x2004); BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004); val = REG_RD(sc, BCE_RV2P_STATUS); BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS); /* ToDo: Create a #define for this constant. */ val = REG_RD(sc, 0x2c04); BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04); val = REG_RD(sc, BCE_TBDR_STATUS); BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS); val = REG_RD(sc, BCE_TDMA_STATUS); BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS); val = REG_RD(sc, BCE_HC_STATUS); BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS); val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); val = REG_RD_IND(sc, BCE_COM_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE); val = REG_RD_IND(sc, BCE_CP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = 0x400; i < 0x8000; i += 0x10) { BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, REG_RD(sc, i), REG_RD(sc, i + 0x4), REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the contentst of shared memory which is used for host driver */ /* to bootcode firmware communication. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_shmem_state(struct bce_softc *sc) { BCE_PRINTF( "----------------------------" " Hardware State " "----------------------------\n"); BCE_PRINTF("0x%08X - Shared memory base address\n", sc->bce_shmem_base); BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); BCE_PRINTF( "----------------------------" " Shared Mem " "----------------------------\n"); for (int i = 0x0; i < 0x200; i += 0x10) { BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the mailbox queue registers. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_mq_regs(struct bce_softc *sc) { BCE_PRINTF( "----------------------------" " MQ Regs " "----------------------------\n"); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); for (int i = 0x3c00; i < 0x4000; i += 0x10) { BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, REG_RD(sc, i), REG_RD(sc, i + 0x4), REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the bootcode state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_bc_state(struct bce_softc *sc) { u32 val; BCE_PRINTF( "----------------------------" " Bootcode State " "----------------------------\n"); BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", val, BCE_BC_RESET_TYPE); val = bce_shmem_rd(sc, BCE_BC_STATE); BCE_PRINTF("0x%08X - (0x%06X) state\n", val, BCE_BC_STATE); val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); BCE_PRINTF("0x%08X - (0x%06X) condition\n", val, BCE_BC_STATE_CONDITION); val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", val, BCE_BC_STATE_DEBUG_CMD); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the TXP processor state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_txp_state(struct bce_softc *sc, int regs) { u32 val; u32 fw_version[3]; BCE_PRINTF( "----------------------------" " TXP State " "----------------------------\n"); for (int i = 0; i < 3; i++) fw_version[i] = htonl(REG_RD_IND(sc, (BCE_TXP_SCRATCH + 0x10 + i * 4))); BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE); val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val, BCE_TXP_CPU_EVENT_MASK); if (regs) { BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { /* Skip the big blank spaces */ if (i < 0x454000 && i > 0x5ffff) BCE_PRINTF("0x%04X: 0x%08X 0x%08X " "0x%08X 0x%08X\n", i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); } } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the RXP processor state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_rxp_state(struct bce_softc *sc, int regs) { u32 val; u32 fw_version[3]; BCE_PRINTF( "----------------------------" " RXP State " "----------------------------\n"); for (int i = 0; i < 3; i++) fw_version[i] = htonl(REG_RD_IND(sc, (BCE_RXP_SCRATCH + 0x10 + i * 4))); BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE); val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val, BCE_RXP_CPU_EVENT_MASK); if (regs) { BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { /* Skip the big blank sapces */ if (i < 0xc5400 && i > 0xdffff) BCE_PRINTF("0x%04X: 0x%08X 0x%08X " "0x%08X 0x%08X\n", i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); } } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the TPAT processor state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_tpat_state(struct bce_softc *sc, int regs) { u32 val; u32 fw_version[3]; BCE_PRINTF( "----------------------------" " TPAT State " "----------------------------\n"); for (int i = 0; i < 3; i++) fw_version[i] = htonl(REG_RD_IND(sc, (BCE_TPAT_SCRATCH + 0x410 + i * 4))); BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE); val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val, BCE_TPAT_CPU_EVENT_MASK); if (regs) { BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { /* Skip the big blank spaces */ if (i < 0x854000 && i > 0x9ffff) BCE_PRINTF("0x%04X: 0x%08X 0x%08X " "0x%08X 0x%08X\n", i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); } } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the Command Procesor (CP) state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_cp_state(struct bce_softc *sc, int regs) { u32 val; u32 fw_version[3]; BCE_PRINTF( "----------------------------" " CP State " "----------------------------\n"); for (int i = 0; i < 3; i++) fw_version[i] = htonl(REG_RD_IND(sc, (BCE_CP_SCRATCH + 0x10 + i * 4))); BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); val = REG_RD_IND(sc, BCE_CP_CPU_MODE); BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE); val = REG_RD_IND(sc, BCE_CP_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, BCE_CP_CPU_EVENT_MASK); if (regs) { BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { /* Skip the big blank spaces */ if (i < 0x185400 && i > 0x19ffff) BCE_PRINTF("0x%04X: 0x%08X 0x%08X " "0x%08X 0x%08X\n", i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); } } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the Completion Procesor (COM) state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_com_state(struct bce_softc *sc, int regs) { u32 val; u32 fw_version[4]; BCE_PRINTF( "----------------------------" " COM State " "----------------------------\n"); for (int i = 0; i < 3; i++) fw_version[i] = htonl(REG_RD_IND(sc, (BCE_COM_SCRATCH + 0x10 + i * 4))); BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); val = REG_RD_IND(sc, BCE_COM_CPU_MODE); BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE); val = REG_RD_IND(sc, BCE_COM_CPU_STATE); BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, BCE_COM_CPU_EVENT_MASK); if (regs) { BCE_PRINTF( "----------------------------" " Register Dump " "----------------------------\n"); for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { BCE_PRINTF("0x%04X: 0x%08X 0x%08X " "0x%08X 0x%08X\n", i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); } } BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_dump_rv2p_state(struct bce_softc *sc) { u32 val, pc1, pc2, fw_ver_high, fw_ver_low; BCE_PRINTF( "----------------------------" " RV2P State " "----------------------------\n"); /* Stall the RV2P processors. */ val = REG_RD_IND(sc, BCE_RV2P_CONFIG); val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; REG_WR_IND(sc, BCE_RV2P_CONFIG, val); /* Read the firmware version. */ val = 0x00000001; REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & BCE_RV2P_INSTR_HIGH_HIGH; BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", fw_ver_high, fw_ver_low); val = 0x00000001; REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & BCE_RV2P_INSTR_HIGH_HIGH; BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", fw_ver_high, fw_ver_low); /* Resume the RV2P processors. */ val = REG_RD_IND(sc, BCE_RV2P_CONFIG); val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); REG_WR_IND(sc, BCE_RV2P_CONFIG, val); /* Fetch the program counter value. */ val = 0x68007800; REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); /* Fetch the program counter value again to see if it is advancing. */ val = 0x68007800; REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); BCE_PRINTF( "----------------------------" "----------------" "----------------------------\n"); } /****************************************************************************/ /* Prints out the driver state and then enters the debugger. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static __attribute__ ((noinline)) void bce_breakpoint(struct bce_softc *sc) { /* * Unreachable code to silence compiler warnings * about unused functions. */ if (0) { bce_freeze_controller(sc); bce_unfreeze_controller(sc); bce_dump_enet(sc, NULL); bce_dump_txbd(sc, 0, NULL); bce_dump_rxbd(sc, 0, NULL); bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); bce_dump_l2fhdr(sc, 0, NULL); bce_dump_ctx(sc, RX_CID); bce_dump_ftqs(sc); bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); bce_dump_status_block(sc); bce_dump_stats_block(sc); bce_dump_driver_state(sc); bce_dump_hw_state(sc); bce_dump_bc_state(sc); bce_dump_txp_state(sc, 0); bce_dump_rxp_state(sc, 0); bce_dump_tpat_state(sc, 0); bce_dump_cp_state(sc, 0); bce_dump_com_state(sc, 0); bce_dump_rv2p_state(sc); bce_dump_pgbd(sc, 0, NULL); } bce_dump_status_block(sc); bce_dump_driver_state(sc); /* Call the debugger. */ breakpoint(); } #endif