/*
* AMD 10Gb Ethernet driver
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include
#include "xgbe.h"
#include "xgbe-common.h"
struct mtx xgbe_phy_comm_lock;
#define XGBE_PHY_PORT_SPEED_100 BIT(0)
#define XGBE_PHY_PORT_SPEED_1000 BIT(1)
#define XGBE_PHY_PORT_SPEED_2500 BIT(2)
#define XGBE_PHY_PORT_SPEED_10000 BIT(3)
#define XGBE_MUTEX_RELEASE 0x80000000
#define XGBE_SFP_DIRECT 7
#define GPIO_MASK_WIDTH 4
/* I2C target addresses */
#define XGBE_SFP_SERIAL_ID_ADDRESS 0x50
#define XGBE_SFP_DIAG_INFO_ADDRESS 0x51
#define XGBE_SFP_PHY_ADDRESS 0x56
#define XGBE_GPIO_ADDRESS_PCA9555 0x20
/* SFP sideband signal indicators */
#define XGBE_GPIO_NO_TX_FAULT BIT(0)
#define XGBE_GPIO_NO_RATE_SELECT BIT(1)
#define XGBE_GPIO_NO_MOD_ABSENT BIT(2)
#define XGBE_GPIO_NO_RX_LOS BIT(3)
/* Rate-change complete wait/retry count */
#define XGBE_RATECHANGE_COUNT 500
/* CDR delay values for KR support (in usec) */
#define XGBE_CDR_DELAY_INIT 10000
#define XGBE_CDR_DELAY_INC 10000
#define XGBE_CDR_DELAY_MAX 100000
/* RRC frequency during link status check */
#define XGBE_RRC_FREQUENCY 10
/* SFP port max PHY probe retries */
#define XGBE_SFP_PHY_RETRY_MAX 5
enum xgbe_port_mode {
XGBE_PORT_MODE_RSVD = 0,
XGBE_PORT_MODE_BACKPLANE,
XGBE_PORT_MODE_BACKPLANE_2500,
XGBE_PORT_MODE_1000BASE_T,
XGBE_PORT_MODE_1000BASE_X,
XGBE_PORT_MODE_NBASE_T,
XGBE_PORT_MODE_10GBASE_T,
XGBE_PORT_MODE_10GBASE_R,
XGBE_PORT_MODE_SFP,
XGBE_PORT_MODE_MAX,
};
enum xgbe_conn_type {
XGBE_CONN_TYPE_NONE = 0,
XGBE_CONN_TYPE_SFP,
XGBE_CONN_TYPE_MDIO,
XGBE_CONN_TYPE_RSVD1,
XGBE_CONN_TYPE_BACKPLANE,
XGBE_CONN_TYPE_MAX,
};
/* SFP/SFP+ related definitions */
enum xgbe_sfp_comm {
XGBE_SFP_COMM_DIRECT = 0,
XGBE_SFP_COMM_PCA9545,
};
enum xgbe_sfp_cable {
XGBE_SFP_CABLE_UNKNOWN = 0,
XGBE_SFP_CABLE_ACTIVE,
XGBE_SFP_CABLE_PASSIVE,
};
enum xgbe_sfp_base {
XGBE_SFP_BASE_UNKNOWN = 0,
XGBE_SFP_BASE_PX,
XGBE_SFP_BASE_BX10,
XGBE_SFP_BASE_100_FX,
XGBE_SFP_BASE_100_LX10,
XGBE_SFP_BASE_100_BX,
XGBE_SFP_BASE_1000_T,
XGBE_SFP_BASE_1000_SX,
XGBE_SFP_BASE_1000_LX,
XGBE_SFP_BASE_1000_CX,
XGBE_SFP_BASE_1000_BX,
XGBE_SFP_BASE_10000_SR,
XGBE_SFP_BASE_10000_LR,
XGBE_SFP_BASE_10000_LRM,
XGBE_SFP_BASE_10000_ER,
XGBE_SFP_BASE_10000_CR,
};
enum xgbe_sfp_speed {
XGBE_SFP_SPEED_UNKNOWN = 0,
XGBE_SFP_SPEED_100,
XGBE_SFP_SPEED_100_1000,
XGBE_SFP_SPEED_1000,
XGBE_SFP_SPEED_10000,
XGBE_SFP_SPEED_25000,
};
/* SFP Serial ID Base ID values relative to an offset of 0 */
#define XGBE_SFP_BASE_ID 0
#define XGBE_SFP_ID_SFP 0x03
#define XGBE_SFP_BASE_EXT_ID 1
#define XGBE_SFP_EXT_ID_SFP 0x04
#define XGBE_SFP_BASE_CV 2
#define XGBE_SFP_BASE_CV_CP 0x21
#define XGBE_SFP_BASE_10GBE_CC 3
#define XGBE_SFP_BASE_10GBE_CC_SR BIT(4)
#define XGBE_SFP_BASE_10GBE_CC_LR BIT(5)
#define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6)
#define XGBE_SFP_BASE_10GBE_CC_ER BIT(7)
#define XGBE_SFP_BASE_1GBE_CC 6
#define XGBE_SFP_BASE_1GBE_CC_SX BIT(0)
#define XGBE_SFP_BASE_1GBE_CC_LX BIT(1)
#define XGBE_SFP_BASE_1GBE_CC_CX BIT(2)
#define XGBE_SFP_BASE_1GBE_CC_T BIT(3)
#define XGBE_SFP_BASE_100M_CC_LX10 BIT(4)
#define XGBE_SFP_BASE_100M_CC_FX BIT(5)
#define XGBE_SFP_BASE_CC_BX10 BIT(6)
#define XGBE_SFP_BASE_CC_PX BIT(7)
#define XGBE_SFP_BASE_CABLE 8
#define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2)
#define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3)
#define XGBE_SFP_BASE_BR 12
#define XGBE_SFP_BASE_BR_100M_MIN 0x1
#define XGBE_SFP_BASE_BR_100M_MAX 0x2
#define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a
#define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d
#define XGBE_SFP_BASE_BR_10GBE_MIN 0x64
#define XGBE_SFP_BASE_BR_10GBE_MAX 0x68
#define XGBE_SFP_BASE_BR_25GBE 0xFF
/* Single mode, length of fiber in units of km */
#define XGBE_SFP_BASE_SM_LEN_KM 14
#define XGBE_SFP_BASE_SM_LEN_KM_MIN 0x0A
/* Single mode, length of fiber in units of 100m */
#define XGBE_SFP_BASE_SM_LEN_100M 15
#define XGBE_SFP_BASE_SM_LEN_100M_MIN 0x64
#define XGBE_SFP_BASE_CU_CABLE_LEN 18
#define XGBE_SFP_BASE_VENDOR_NAME 20
#define XGBE_SFP_BASE_VENDOR_NAME_LEN 16
#define XGBE_SFP_BASE_VENDOR_PN 40
#define XGBE_SFP_BASE_VENDOR_PN_LEN 16
#define XGBE_SFP_BASE_VENDOR_REV 56
#define XGBE_SFP_BASE_VENDOR_REV_LEN 4
/*
* Optical specification compliance - denotes wavelength
* for optical tranceivers
*/
#define XGBE_SFP_BASE_OSC 60
#define XGBE_SFP_BASE_OSC_LEN 2
#define XGBE_SFP_BASE_OSC_1310 0x051E
#define XGBE_SFP_BASE_CC 63
/* SFP Serial ID Extended ID values relative to an offset of 64 */
#define XGBE_SFP_BASE_VENDOR_SN 4
#define XGBE_SFP_BASE_VENDOR_SN_LEN 16
#define XGBE_SFP_EXTD_OPT1 1
#define XGBE_SFP_EXTD_OPT1_RX_LOS BIT(1)
#define XGBE_SFP_EXTD_OPT1_TX_FAULT BIT(3)
#define XGBE_SFP_EXTD_DIAG 28
#define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2)
#define XGBE_SFP_EXTD_SFF_8472 30
#define XGBE_SFP_EXTD_CC 31
struct xgbe_sfp_eeprom {
uint8_t base[64];
uint8_t extd[32];
uint8_t vendor[32];
};
#define XGBE_SFP_DIAGS_SUPPORTED(_x) \
((_x)->extd[XGBE_SFP_EXTD_SFF_8472] && \
!((_x)->extd[XGBE_SFP_EXTD_DIAG] & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE))
#define XGBE_SFP_EEPROM_BASE_LEN 256
#define XGBE_SFP_EEPROM_DIAG_LEN 256
#define XGBE_SFP_EEPROM_MAX (XGBE_SFP_EEPROM_BASE_LEN + \
XGBE_SFP_EEPROM_DIAG_LEN)
#define XGBE_BEL_FUSE_VENDOR "BEL-FUSE "
#define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 "
struct xgbe_sfp_ascii {
union {
char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1];
char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1];
char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1];
char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1];
} u;
};
/* MDIO PHY reset types */
enum xgbe_mdio_reset {
XGBE_MDIO_RESET_NONE = 0,
XGBE_MDIO_RESET_I2C_GPIO,
XGBE_MDIO_RESET_INT_GPIO,
XGBE_MDIO_RESET_MAX,
};
/* Re-driver related definitions */
enum xgbe_phy_redrv_if {
XGBE_PHY_REDRV_IF_MDIO = 0,
XGBE_PHY_REDRV_IF_I2C,
XGBE_PHY_REDRV_IF_MAX,
};
enum xgbe_phy_redrv_model {
XGBE_PHY_REDRV_MODEL_4223 = 0,
XGBE_PHY_REDRV_MODEL_4227,
XGBE_PHY_REDRV_MODEL_MAX,
};
enum xgbe_phy_redrv_mode {
XGBE_PHY_REDRV_MODE_CX = 5,
XGBE_PHY_REDRV_MODE_SR = 9,
};
#define XGBE_PHY_REDRV_MODE_REG 0x12b0
/* PHY related configuration information */
struct xgbe_phy_data {
enum xgbe_port_mode port_mode;
unsigned int port_id;
unsigned int port_speeds;
enum xgbe_conn_type conn_type;
enum xgbe_mode cur_mode;
enum xgbe_mode start_mode;
unsigned int rrc_count;
unsigned int mdio_addr;
/* SFP Support */
enum xgbe_sfp_comm sfp_comm;
unsigned int sfp_mux_address;
unsigned int sfp_mux_channel;
unsigned int sfp_gpio_address;
unsigned int sfp_gpio_mask;
unsigned int sfp_gpio_inputs;
unsigned int sfp_gpio_outputs;
unsigned int sfp_gpio_polarity;
unsigned int sfp_gpio_configuration;
unsigned int sfp_gpio_rx_los;
unsigned int sfp_gpio_tx_fault;
unsigned int sfp_gpio_mod_absent;
unsigned int sfp_gpio_rate_select;
unsigned int sfp_rx_los;
unsigned int sfp_tx_fault;
unsigned int sfp_mod_absent;
unsigned int sfp_changed;
unsigned int sfp_phy_avail;
unsigned int sfp_cable_len;
enum xgbe_sfp_base sfp_base;
enum xgbe_sfp_cable sfp_cable;
enum xgbe_sfp_speed sfp_speed;
struct xgbe_sfp_eeprom sfp_eeprom;
/* External PHY support */
enum xgbe_mdio_mode phydev_mode;
uint32_t phy_id;
int phydev;
enum xgbe_mdio_reset mdio_reset;
unsigned int mdio_reset_addr;
unsigned int mdio_reset_gpio;
int sfp_phy_retries;
/* Re-driver support */
unsigned int redrv;
unsigned int redrv_if;
unsigned int redrv_addr;
unsigned int redrv_lane;
unsigned int redrv_model;
/* KR AN support */
unsigned int phy_cdr_notrack;
unsigned int phy_cdr_delay;
uint8_t port_sfp_inputs;
};
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata);
static int xgbe_phy_reset(struct xgbe_prv_data *pdata);
static int axgbe_ifmedia_upd(struct ifnet *ifp);
static void axgbe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static int
xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata, struct xgbe_i2c_op *i2c_op)
{
return (pdata->i2c_if.i2c_xfer(pdata, i2c_op));
}
static int
xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg,
unsigned int val)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
__be16 *redrv_val;
uint8_t redrv_data[5], csum;
unsigned int i, retry;
int ret;
/* High byte of register contains read/write indicator */
redrv_data[0] = ((reg >> 8) & 0xff) << 1;
redrv_data[1] = reg & 0xff;
redrv_val = (__be16 *)&redrv_data[2];
*redrv_val = cpu_to_be16(val);
/* Calculate 1 byte checksum */
csum = 0;
for (i = 0; i < 4; i++) {
csum += redrv_data[i];
if (redrv_data[i] > csum)
csum++;
}
redrv_data[4] = ~csum;
retry = 1;
again1:
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = sizeof(redrv_data);
i2c_op.buf = redrv_data;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return (ret);
}
retry = 1;
again2:
i2c_op.cmd = XGBE_I2C_CMD_READ;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = 1;
i2c_op.buf = redrv_data;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again2;
return (ret);
}
if (redrv_data[0] != 0xff) {
axgbe_error("Redriver write checksum error\n");
ret = -EIO;
}
return (ret);
}
static int
xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target, void *val,
unsigned int val_len)
{
struct xgbe_i2c_op i2c_op;
int retry, ret;
retry = 1;
again:
/* Write the specified register */
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = target;
i2c_op.len = val_len;
i2c_op.buf = val;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if ((ret == -EAGAIN) && retry--)
goto again;
return (ret);
}
static int
xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target, void *reg,
unsigned int reg_len, void *val, unsigned int val_len)
{
struct xgbe_i2c_op i2c_op;
int retry, ret;
axgbe_printf(3, "%s: target 0x%x reg_len %d val_len %d\n", __func__,
target, reg_len, val_len);
retry = 1;
again1:
/* Set the specified register to read */
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = target;
i2c_op.len = reg_len;
i2c_op.buf = reg;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
axgbe_printf(3, "%s: ret1 %d retry %d\n", __func__, ret, retry);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return (ret);
}
retry = 1;
again2:
/* Read the specified register */
i2c_op.cmd = XGBE_I2C_CMD_READ;
i2c_op.target = target;
i2c_op.len = val_len;
i2c_op.buf = val;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
axgbe_printf(3, "%s: ret2 %d retry %d\n", __func__, ret, retry);
if ((ret == -EAGAIN) && retry--)
goto again2;
return (ret);
}
static int
xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
uint8_t mux_channel;
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
return (0);
/* Select no mux channels */
mux_channel = 0;
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return (xgbe_phy_i2c_xfer(pdata, &i2c_op));
}
static int
xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
uint8_t mux_channel;
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
return (0);
/* Select desired mux channel */
mux_channel = 1 << phy_data->sfp_mux_channel;
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return (xgbe_phy_i2c_xfer(pdata, &i2c_op));
}
static void
xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata)
{
mtx_unlock(&xgbe_phy_comm_lock);
}
static int
xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned long timeout;
unsigned int mutex_id;
/* The I2C and MDIO/GPIO bus is multiplexed between multiple devices,
* the driver needs to take the software mutex and then the hardware
* mutexes before being able to use the busses.
*/
mtx_lock(&xgbe_phy_comm_lock);
/* Clear the mutexes */
XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE);
/* Mutex formats are the same for I2C and MDIO/GPIO */
mutex_id = 0;
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id);
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1);
timeout = ticks + (5 * hz);
while (ticks < timeout) {
/* Must be all zeroes in order to obtain the mutex */
if (XP_IOREAD(pdata, XP_I2C_MUTEX) ||
XP_IOREAD(pdata, XP_MDIO_MUTEX)) {
DELAY(200);
continue;
}
/* Obtain the mutex */
XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id);
return (0);
}
mtx_unlock(&xgbe_phy_comm_lock);
axgbe_error("unable to obtain hardware mutexes\n");
return (-ETIMEDOUT);
}
static int
xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr, int reg,
uint16_t val)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (reg & MII_ADDR_C45) {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
return (-ENOTSUP);
} else {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
return (-ENOTSUP);
}
return (pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val));
}
static int
xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, uint16_t val)
{
__be16 *mii_val;
uint8_t mii_data[3];
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret)
return (ret);
mii_data[0] = reg & 0xff;
mii_val = (__be16 *)&mii_data[1];
*mii_val = cpu_to_be16(val);
ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS,
mii_data, sizeof(mii_data));
xgbe_phy_sfp_put_mux(pdata);
return (ret);
}
int
xgbe_phy_mii_write(struct xgbe_prv_data *pdata, int addr, int reg, uint16_t val)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
axgbe_printf(3, "%s: addr %d reg %d val %#x\n", __func__, addr, reg, val);
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return (ret);
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
ret = xgbe_phy_i2c_mii_write(pdata, reg, val);
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val);
else
ret = -ENOTSUP;
xgbe_phy_put_comm_ownership(pdata);
return (ret);
}
static int
xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr, int reg)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (reg & MII_ADDR_C45) {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
return (-ENOTSUP);
} else {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
return (-ENOTSUP);
}
return (pdata->hw_if.read_ext_mii_regs(pdata, addr, reg));
}
static int
xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg)
{
__be16 mii_val;
uint8_t mii_reg;
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret)
return (ret);
mii_reg = reg;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS,
&mii_reg, sizeof(mii_reg),
&mii_val, sizeof(mii_val));
if (!ret)
ret = be16_to_cpu(mii_val);
xgbe_phy_sfp_put_mux(pdata);
return (ret);
}
int
xgbe_phy_mii_read(struct xgbe_prv_data *pdata, int addr, int reg)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
axgbe_printf(3, "%s: addr %d reg %d\n", __func__, addr, reg);
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return (ret);
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
ret = xgbe_phy_i2c_mii_read(pdata, reg);
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
ret = xgbe_phy_mdio_mii_read(pdata, addr, reg);
else
ret = -ENOTSUP;
xgbe_phy_put_comm_ownership(pdata);
return (ret);
}
static void
xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (!phy_data->sfp_mod_absent && !phy_data->sfp_changed)
return;
XGBE_ZERO_SUP(&pdata->phy);
if (phy_data->sfp_mod_absent) {
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.pause_autoneg = AUTONEG_ENABLE;
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, TP);
XGBE_SET_SUP(&pdata->phy, FIBRE);
XGBE_LM_COPY(&pdata->phy, advertising, &pdata->phy, supported);
return;
}
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_100_FX:
case XGBE_SFP_BASE_100_LX10:
case XGBE_SFP_BASE_100_BX:
pdata->phy.speed = SPEED_100;
pdata->phy.duplex = DUPLEX_FULL;
pdata->phy.autoneg = AUTONEG_DISABLE;
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
break;
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.pause_autoneg = AUTONEG_ENABLE;
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) {
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
XGBE_SET_SUP(&pdata->phy, 100baseT_Full);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
XGBE_SET_SUP(&pdata->phy, 1000baseT_Full);
} else {
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
XGBE_SET_SUP(&pdata->phy, 1000baseX_Full);
}
break;
case XGBE_SFP_BASE_1000_BX:
case XGBE_SFP_BASE_PX:
pdata->phy.speed = SPEED_1000;
pdata->phy.duplex = DUPLEX_FULL;
pdata->phy.autoneg = AUTONEG_DISABLE;
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
break;
case XGBE_SFP_BASE_10000_SR:
case XGBE_SFP_BASE_10000_LR:
case XGBE_SFP_BASE_10000_LRM:
case XGBE_SFP_BASE_10000_ER:
case XGBE_SFP_BASE_10000_CR:
pdata->phy.speed = SPEED_10000;
pdata->phy.duplex = DUPLEX_FULL;
pdata->phy.autoneg = AUTONEG_DISABLE;
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_10000_SR:
XGBE_SET_SUP(&pdata->phy, 10000baseSR_Full);
break;
case XGBE_SFP_BASE_10000_LR:
XGBE_SET_SUP(&pdata->phy, 10000baseLR_Full);
break;
case XGBE_SFP_BASE_10000_LRM:
XGBE_SET_SUP(&pdata->phy, 10000baseLRM_Full);
break;
case XGBE_SFP_BASE_10000_ER:
XGBE_SET_SUP(&pdata->phy, 10000baseER_Full);
break;
case XGBE_SFP_BASE_10000_CR:
XGBE_SET_SUP(&pdata->phy, 10000baseCR_Full);
break;
default:
break;
}
}
break;
default:
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_DISABLE;
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
break;
}
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_CX:
case XGBE_SFP_BASE_10000_CR:
XGBE_SET_SUP(&pdata->phy, TP);
break;
default:
XGBE_SET_SUP(&pdata->phy, FIBRE);
break;
}
XGBE_LM_COPY(&pdata->phy, advertising, &pdata->phy, supported);
axgbe_printf(1, "%s: link speed %d spf_base 0x%x pause_autoneg %d "
"advert 0x%x support 0x%x\n", __func__, pdata->phy.speed,
phy_data->sfp_base, pdata->phy.pause_autoneg,
pdata->phy.advertising, pdata->phy.supported);
}
static bool
xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom,
enum xgbe_sfp_speed sfp_speed)
{
uint8_t *sfp_base, min, max;
sfp_base = sfp_eeprom->base;
switch (sfp_speed) {
case XGBE_SFP_SPEED_100:
min = XGBE_SFP_BASE_BR_100M_MIN;
max = XGBE_SFP_BASE_BR_100M_MAX;
break;
case XGBE_SFP_SPEED_1000:
min = XGBE_SFP_BASE_BR_1GBE_MIN;
max = XGBE_SFP_BASE_BR_1GBE_MAX;
break;
case XGBE_SFP_SPEED_10000:
min = XGBE_SFP_BASE_BR_10GBE_MIN;
max = XGBE_SFP_BASE_BR_10GBE_MAX;
break;
case XGBE_SFP_SPEED_25000:
min = XGBE_SFP_BASE_BR_25GBE;
max = XGBE_SFP_BASE_BR_25GBE;
break;
default:
return (false);
}
return ((sfp_base[XGBE_SFP_BASE_BR] >= min) &&
(sfp_base[XGBE_SFP_BASE_BR] <= max));
}
static void
xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->phydev)
phy_data->phydev = 0;
if (pdata->axgbe_miibus != NULL) {
device_delete_child(pdata->dev, pdata->axgbe_miibus);
pdata->axgbe_miibus = NULL;
}
}
static bool
xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int phy_id = phy_data->phy_id;
if (phy_data->port_mode != XGBE_PORT_MODE_SFP)
return (false);
if ((phy_id & 0xfffffff0) != 0x01ff0cc0)
return (false);
/* Enable Base-T AN */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x16, 0x0001);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x9140);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x16, 0x0000);
/* Enable SGMII at 100Base-T/1000Base-T Full Duplex */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1b, 0x9084);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x09, 0x0e00);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x8140);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x04, 0x0d01);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x9140);
axgbe_printf(3, "Finisar PHY quirk in place\n");
return (true);
}
static bool
xgbe_phy_belfuse_phy_quirks(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
unsigned int phy_id = phy_data->phy_id;
int reg;
if (phy_data->port_mode != XGBE_PORT_MODE_SFP)
return (false);
if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN))
return (false);
/* For Bel-Fuse, use the extra AN flag */
pdata->an_again = 1;
if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN))
return (false);
if ((phy_id & 0xfffffff0) != 0x03625d10)
return (false);
/* Disable RGMII mode */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x18, 0x7007);
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x18);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x18, reg & ~0x0080);
/* Enable fiber register bank */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00);
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c);
reg &= 0x03ff;
reg &= ~0x0001;
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 |
reg | 0x0001);
/* Power down SerDes */
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg | 0x00800);
/* Configure SGMII-to-Copper mode */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00);
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c);
reg &= 0x03ff;
reg &= ~0x0006;
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 |
reg | 0x0004);
/* Power up SerDes */
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg & ~0x00800);
/* Enable copper register bank */
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00);
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c);
reg &= 0x03ff;
reg &= ~0x0001;
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 |
reg);
/* Power up SerDes */
reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00);
xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg & ~0x00800);
axgbe_printf(3, "BelFuse PHY quirk in place\n");
return (true);
}
static void
xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata)
{
if (xgbe_phy_belfuse_phy_quirks(pdata))
return;
if (xgbe_phy_finisar_phy_quirks(pdata))
return;
}
static int
xgbe_get_phy_id(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint32_t oui, model, phy_id1, phy_id2;
int phy_reg;
phy_reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x02);
if (phy_reg < 0)
return (-EIO);
phy_id1 = (phy_reg & 0xffff);
phy_data->phy_id = (phy_reg & 0xffff) << 16;
phy_reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x03);
if (phy_reg < 0)
return (-EIO);
phy_id2 = (phy_reg & 0xffff);
phy_data->phy_id |= (phy_reg & 0xffff);
oui = MII_OUI(phy_id1, phy_id2);
model = MII_MODEL(phy_id2);
axgbe_printf(2, "%s: phy_id1: 0x%x phy_id2: 0x%x oui: %#x model %#x\n",
__func__, phy_id1, phy_id2, oui, model);
return (0);
}
static int
xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
axgbe_printf(2, "%s: phydev %d phydev_mode %d sfp_phy_avail %d phy_id "
"0x%08x\n", __func__, phy_data->phydev, phy_data->phydev_mode,
phy_data->sfp_phy_avail, phy_data->phy_id);
/* If we already have a PHY, just return */
if (phy_data->phydev) {
axgbe_printf(3, "%s: phy present already\n", __func__);
return (0);
}
/* Clear the extra AN flag */
pdata->an_again = 0;
/* Check for the use of an external PHY */
if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE) {
axgbe_printf(3, "%s: phydev_mode %d\n", __func__,
phy_data->phydev_mode);
return (0);
}
/* For SFP, only use an external PHY if available */
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
!phy_data->sfp_phy_avail) {
axgbe_printf(3, "%s: port_mode %d avail %d\n", __func__,
phy_data->port_mode, phy_data->sfp_phy_avail);
return (0);
}
/* Set the proper MDIO mode for the PHY */
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
phy_data->phydev_mode);
if (ret) {
axgbe_error("mdio port/clause not compatible (%u/%u) ret %d\n",
phy_data->mdio_addr, phy_data->phydev_mode, ret);
return (ret);
}
ret = xgbe_get_phy_id(pdata);
if (ret)
return (ret);
axgbe_printf(2, "Get phy_id 0x%08x\n", phy_data->phy_id);
phy_data->phydev = 1;
xgbe_phy_external_phy_quirks(pdata);
return (0);
}
static void
xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
axgbe_printf(3, "%s: sfp_changed: 0x%x\n", __func__,
phy_data->sfp_changed);
if (!phy_data->sfp_phy_retries && !phy_data->sfp_changed)
return;
phy_data->sfp_phy_avail = 0;
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return;
/* Check access to the PHY by reading CTRL1 */
ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR);
if (ret < 0) {
phy_data->sfp_phy_retries++;
if (phy_data->sfp_phy_retries >= XGBE_SFP_PHY_RETRY_MAX)
phy_data->sfp_phy_retries = 0;
axgbe_printf(1, "%s: ext phy fail %d. retrying.\n", __func__, ret);
return;
}
/* Successfully accessed the PHY */
phy_data->sfp_phy_avail = 1;
axgbe_printf(3, "Successfully accessed External PHY\n");
/* Attach external PHY to the miibus */
ret = mii_attach(pdata->dev, &pdata->axgbe_miibus, pdata->netdev,
(ifm_change_cb_t)axgbe_ifmedia_upd,
(ifm_stat_cb_t)axgbe_ifmedia_sts, BMSR_DEFCAPMASK,
pdata->mdio_addr, MII_OFFSET_ANY, MIIF_FORCEANEG);
if (ret) {
axgbe_error("mii attach failed with err=(%d)\n", ret);
}
}
static bool
xgbe_phy_check_sfp_rx_los(struct xgbe_phy_data *phy_data)
{
uint8_t *sfp_extd = phy_data->sfp_eeprom.extd;
if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_RX_LOS))
return (false);
if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS)
return (false);
if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_rx_los))
return (true);
return (false);
}
static bool
xgbe_phy_check_sfp_tx_fault(struct xgbe_phy_data *phy_data)
{
uint8_t *sfp_extd = phy_data->sfp_eeprom.extd;
if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_TX_FAULT))
return (false);
if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT)
return (false);
if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_tx_fault))
return (true);
return (false);
}
static bool
xgbe_phy_check_sfp_mod_absent(struct xgbe_phy_data *phy_data)
{
if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT)
return (false);
if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_mod_absent))
return (true);
return (false);
}
static void
xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
uint8_t *sfp_base;
uint16_t wavelen = 0;
sfp_base = sfp_eeprom->base;
if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP) {
axgbe_error("base id %d\n", sfp_base[XGBE_SFP_BASE_ID]);
return;
}
if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP) {
axgbe_error("base id %d\n", sfp_base[XGBE_SFP_BASE_EXT_ID]);
return;
}
/* Update transceiver signals (eeprom extd/options) */
phy_data->sfp_tx_fault = xgbe_phy_check_sfp_tx_fault(phy_data);
phy_data->sfp_rx_los = xgbe_phy_check_sfp_rx_los(phy_data);
/* Assume ACTIVE cable unless told it is PASSIVE */
if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) {
phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE;
phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN];
} else
phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE;
wavelen = (sfp_base[XGBE_SFP_BASE_OSC] << 8) | sfp_base[XGBE_SFP_BASE_OSC + 1];
/*
* Determine the type of SFP. Certain 10G SFP+ modules read as
* 1000BASE-CX. To prevent 10G DAC cables to be recognized as
* 1G, we first check if it is a DAC and the bitrate is 10G.
* If it's greater than 10G, we assume the DAC is capable
* of multiple bitrates, set the MAC to 10G and hope for the best.
*/
if (((sfp_base[XGBE_SFP_BASE_CV] & XGBE_SFP_BASE_CV_CP) ||
(phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE)) &&
(xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000) ||
xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_25000)))
phy_data->sfp_base = XGBE_SFP_BASE_10000_CR;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR)
phy_data->sfp_base = XGBE_SFP_BASE_10000_SR;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR)
phy_data->sfp_base = XGBE_SFP_BASE_10000_LR;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM)
phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER)
phy_data->sfp_base = XGBE_SFP_BASE_10000_ER;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_SX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_LX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_CX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T)
phy_data->sfp_base = XGBE_SFP_BASE_1000_T;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_100M_CC_LX10)
phy_data->sfp_base = XGBE_SFP_BASE_100_LX10;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_100M_CC_FX)
phy_data->sfp_base = XGBE_SFP_BASE_100_FX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_CC_BX10) {
/* BX10 can be either 100 or 1000 */
if (xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_100)) {
phy_data->sfp_base = XGBE_SFP_BASE_100_BX;
} else {
/* default to 1000 */
phy_data->sfp_base = XGBE_SFP_BASE_1000_BX;
}
} else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_CC_PX)
phy_data->sfp_base = XGBE_SFP_BASE_PX;
else if (xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_1000)
&& (sfp_base[XGBE_SFP_BASE_SM_LEN_KM] >= XGBE_SFP_BASE_SM_LEN_KM_MIN
|| sfp_base[XGBE_SFP_BASE_SM_LEN_100M] >= XGBE_SFP_BASE_SM_LEN_100M_MIN)
&& wavelen >= XGBE_SFP_BASE_OSC_1310)
phy_data->sfp_base = XGBE_SFP_BASE_1000_BX;
else if (xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_100)
&& (sfp_base[XGBE_SFP_BASE_SM_LEN_KM] >= XGBE_SFP_BASE_SM_LEN_KM_MIN
|| sfp_base[XGBE_SFP_BASE_SM_LEN_100M] >= XGBE_SFP_BASE_SM_LEN_100M_MIN)
&& wavelen >= XGBE_SFP_BASE_OSC_1310)
phy_data->sfp_base = XGBE_SFP_BASE_100_BX;
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_100_FX:
case XGBE_SFP_BASE_100_LX10:
case XGBE_SFP_BASE_100_BX:
phy_data->sfp_speed = XGBE_SFP_SPEED_100;
case XGBE_SFP_BASE_1000_T:
phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000;
break;
case XGBE_SFP_BASE_PX:
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
case XGBE_SFP_BASE_1000_BX:
phy_data->sfp_speed = XGBE_SFP_SPEED_1000;
break;
case XGBE_SFP_BASE_10000_SR:
case XGBE_SFP_BASE_10000_LR:
case XGBE_SFP_BASE_10000_LRM:
case XGBE_SFP_BASE_10000_ER:
case XGBE_SFP_BASE_10000_CR:
phy_data->sfp_speed = XGBE_SFP_SPEED_10000;
break;
default:
break;
}
axgbe_printf(3, "%s: sfp_base: 0x%x sfp_speed: 0x%x sfp_cable: 0x%x "
"rx_los 0x%x tx_fault 0x%x\n", __func__, phy_data->sfp_base,
phy_data->sfp_speed, phy_data->sfp_cable, phy_data->sfp_rx_los,
phy_data->sfp_tx_fault);
}
static void
xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata,
struct xgbe_sfp_eeprom *sfp_eeprom)
{
struct xgbe_sfp_ascii sfp_ascii;
char *sfp_data = (char *)&sfp_ascii;
axgbe_printf(0, "SFP detected:\n");
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
XGBE_SFP_BASE_VENDOR_NAME_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0';
axgbe_printf(0, " vendor: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
XGBE_SFP_BASE_VENDOR_PN_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0';
axgbe_printf(0, " part number: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV],
XGBE_SFP_BASE_VENDOR_REV_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0';
axgbe_printf(0, " revision level: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN],
XGBE_SFP_BASE_VENDOR_SN_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0';
axgbe_printf(0, " serial number: %s\n",
sfp_data);
}
static bool
xgbe_phy_sfp_verify_eeprom(uint8_t cc_in, uint8_t *buf, unsigned int len)
{
uint8_t cc;
for (cc = 0; len; buf++, len--)
cc += *buf;
return ((cc == cc_in) ? true : false);
}
static void
dump_sfp_eeprom(struct xgbe_prv_data *pdata, uint8_t *sfp_base)
{
axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_ID] : 0x%04x\n",
sfp_base[XGBE_SFP_BASE_ID]);
axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_EXT_ID] : 0x%04x\n",
sfp_base[XGBE_SFP_BASE_EXT_ID]);
axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_CABLE] : 0x%04x\n",
sfp_base[XGBE_SFP_BASE_CABLE]);
}
static int
xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom sfp_eeprom, *eeprom;
uint8_t eeprom_addr, *base;
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
axgbe_error("I2C error setting SFP MUX\n");
return (ret);
}
/* Read the SFP serial ID eeprom */
eeprom_addr = 0;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS,
&eeprom_addr, sizeof(eeprom_addr),
&sfp_eeprom, sizeof(sfp_eeprom));
if (ret) {
axgbe_error("I2C error reading SFP EEPROM\n");
goto put;
}
eeprom = &sfp_eeprom;
base = eeprom->base;
dump_sfp_eeprom(pdata, base);
/* Validate the contents read */
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC],
sfp_eeprom.base, sizeof(sfp_eeprom.base) - 1)) {
axgbe_error("verify eeprom base failed\n");
ret = -EINVAL;
goto put;
}
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC],
sfp_eeprom.extd, sizeof(sfp_eeprom.extd) - 1)) {
axgbe_error("verify eeprom extd failed\n");
ret = -EINVAL;
goto put;
}
/* Check for an added or changed SFP */
if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) {
phy_data->sfp_changed = 1;
xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom);
memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom));
xgbe_phy_free_phy_device(pdata);
} else
phy_data->sfp_changed = 0;
put:
xgbe_phy_sfp_put_mux(pdata);
return (ret);
}
static void
xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint8_t gpio_reg, gpio_ports[2];
int ret, prev_sfp_inputs = phy_data->port_sfp_inputs;
int shift = GPIO_MASK_WIDTH * (3 - phy_data->port_id);
/* Read the input port registers */
axgbe_printf(3, "%s: befor sfp_mod:%d sfp_gpio_address:0x%x\n",
__func__, phy_data->sfp_mod_absent, phy_data->sfp_gpio_address);
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
axgbe_error("I2C error setting SFP MUX\n");
return;
}
gpio_reg = 0;
ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address, &gpio_reg,
sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports));
if (ret) {
axgbe_error("%s: I2C error reading SFP GPIO addr:0x%x\n",
__func__, phy_data->sfp_gpio_address);
goto put_mux;
}
phy_data->sfp_gpio_inputs = (gpio_ports[1] << 8) | gpio_ports[0];
phy_data->port_sfp_inputs = (phy_data->sfp_gpio_inputs >> shift) & 0x0F;
if (prev_sfp_inputs != phy_data->port_sfp_inputs)
axgbe_printf(0, "%s: port_sfp_inputs: 0x%0x\n", __func__,
phy_data->port_sfp_inputs);
phy_data->sfp_mod_absent = xgbe_phy_check_sfp_mod_absent(phy_data);
axgbe_printf(3, "%s: after sfp_mod:%d sfp_gpio_inputs:0x%x\n",
__func__, phy_data->sfp_mod_absent, phy_data->sfp_gpio_inputs);
put_mux:
xgbe_phy_sfp_put_mux(pdata);
}
static int
xgbe_read_gpio_expander(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint8_t gpio_reg, gpio_ports[2];
int ret = 0;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
axgbe_error("I2C error setting SFP MUX\n");
return (ret);
}
gpio_reg = 2;
for (int i = 0; i < 3; i++) {
ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address,
&gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports));
if (ret) {
axgbe_error("%s: I2C error reading GPIO expander register: %d\n",
__func__, gpio_reg);
goto put_mux;
}
if (gpio_reg == 2)
phy_data->sfp_gpio_outputs = (gpio_ports[1] << 8) | gpio_ports[0];
else if (gpio_reg == 4)
phy_data->sfp_gpio_polarity = (gpio_ports[1] << 8) | gpio_ports[0];
else if (gpio_reg == 6)
phy_data->sfp_gpio_configuration = (gpio_ports[1] << 8) | gpio_ports[0];
memset(gpio_ports, 0, sizeof(gpio_ports));
gpio_reg += 2;
}
put_mux:
xgbe_phy_sfp_put_mux(pdata);
return (ret);
}
static void
xgbe_log_gpio_expander(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
axgbe_printf(1, "Input port registers: 0x%x\n", phy_data->sfp_gpio_inputs);
axgbe_printf(1, "Output port registers: 0x%x\n", phy_data->sfp_gpio_outputs);
axgbe_printf(1, "Polarity port registers: 0x%x\n", phy_data->sfp_gpio_polarity);
axgbe_printf(1, "Configuration port registers: 0x%x\n", phy_data->sfp_gpio_configuration);
}
static int
xgbe_phy_validate_gpio_expander(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint8_t gpio_data[3] = {0};
int shift = GPIO_MASK_WIDTH * (3 - phy_data->port_id);
int rx_los_pos = (1 << phy_data->sfp_gpio_rx_los);
int tx_fault_pos = (1 << phy_data->sfp_gpio_tx_fault);
int mod_abs_pos = (1 << phy_data->sfp_gpio_mod_absent);
int port_sfp_pins = (mod_abs_pos | rx_los_pos | tx_fault_pos);
uint16_t config = 0;
int ret = 0;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return (ret);
ret = xgbe_read_gpio_expander(pdata);
if (ret)
goto put;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
axgbe_error("I2C error setting SFP MUX\n");
goto put;
}
if (phy_data->sfp_gpio_polarity) {
axgbe_printf(0, "GPIO polarity inverted, resetting\n");
xgbe_log_gpio_expander(pdata);
gpio_data[0] = 4; /* polarity register */
ret = xgbe_phy_i2c_write(pdata, phy_data->sfp_gpio_address,
gpio_data, sizeof(gpio_data));
if (ret) {
axgbe_error("%s: I2C error writing to GPIO polarity register\n",
__func__);
goto put_mux;
}
}
config = phy_data->sfp_gpio_configuration;
if ((config & port_sfp_pins) != port_sfp_pins) {
xgbe_log_gpio_expander(pdata);
/* Write the I/O states to the configuration register */
axgbe_error("Invalid GPIO configuration, resetting\n");
gpio_data[0] = 6; /* configuration register */
config = config & ~(0xF << shift); /* clear port id bits */
config |= port_sfp_pins;
gpio_data[1] = config & 0xff;
gpio_data[2] = (config >> 8);
ret = xgbe_phy_i2c_write(pdata, phy_data->sfp_gpio_address,
gpio_data, sizeof(gpio_data));
if (ret) {
axgbe_error("%s: I2C error writing to GPIO configuration register\n",
__func__);
goto put_mux;
}
} else {
axgbe_printf(0, "GPIO configuration valid\n");
}
put_mux:
xgbe_phy_sfp_put_mux(pdata);
put:
xgbe_phy_put_comm_ownership(pdata);
return (ret);
}
static void
xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_free_phy_device(pdata);
phy_data->sfp_mod_absent = 1;
phy_data->sfp_phy_avail = 0;
memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom));
}
static void
xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data)
{
phy_data->sfp_rx_los = 0;
phy_data->sfp_tx_fault = 0;
phy_data->sfp_mod_absent = 1;
phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN;
phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN;
phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN;
}
static void
xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret, prev_sfp_state = phy_data->sfp_mod_absent;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
/* Read the SFP signals and check for module presence */
xgbe_phy_sfp_signals(pdata);
if (phy_data->sfp_mod_absent) {
if (prev_sfp_state != phy_data->sfp_mod_absent)
axgbe_error("%s: mod absent\n", __func__);
xgbe_phy_sfp_mod_absent(pdata);
goto put;
}
ret = xgbe_phy_sfp_read_eeprom(pdata);
if (ret) {
/* Treat any error as if there isn't an SFP plugged in */
axgbe_error("%s: eeprom read failed\n", __func__);
ret = xgbe_read_gpio_expander(pdata);
if (!ret)
xgbe_log_gpio_expander(pdata);
xgbe_phy_sfp_reset(phy_data);
xgbe_phy_sfp_mod_absent(pdata);
goto put;
}
xgbe_phy_sfp_parse_eeprom(pdata);
xgbe_phy_sfp_external_phy(pdata);
put:
xgbe_phy_sfp_phy_settings(pdata);
axgbe_printf(3, "%s: phy speed: 0x%x duplex: 0x%x autoneg: 0x%x "
"pause_autoneg: 0x%x\n", __func__, pdata->phy.speed,
pdata->phy.duplex, pdata->phy.autoneg, pdata->phy.pause_autoneg);
xgbe_phy_put_comm_ownership(pdata);
}
static int
xgbe_phy_module_eeprom(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint8_t eeprom_addr, eeprom_data[XGBE_SFP_EEPROM_MAX];
struct xgbe_sfp_eeprom *sfp_eeprom;
int ret;
if (phy_data->port_mode != XGBE_PORT_MODE_SFP) {
ret = -ENXIO;
goto done;
}
if (phy_data->sfp_mod_absent) {
ret = -EIO;
goto done;
}
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret) {
ret = -EIO;
goto done;
}
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
axgbe_error("I2C error setting SFP MUX\n");
ret = -EIO;
goto put_own;
}
/* Read the SFP serial ID eeprom */
eeprom_addr = 0;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS,
&eeprom_addr, sizeof(eeprom_addr),
eeprom_data, XGBE_SFP_EEPROM_BASE_LEN);
if (ret) {
axgbe_error("I2C error reading SFP EEPROM\n");
ret = -EIO;
goto put_mux;
}
sfp_eeprom = (struct xgbe_sfp_eeprom *)eeprom_data;
if (XGBE_SFP_DIAGS_SUPPORTED(sfp_eeprom)) {
/* Read the SFP diagnostic eeprom */
eeprom_addr = 0;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_DIAG_INFO_ADDRESS,
&eeprom_addr, sizeof(eeprom_addr),
eeprom_data + XGBE_SFP_EEPROM_BASE_LEN,
XGBE_SFP_EEPROM_DIAG_LEN);
if (ret) {
axgbe_error("I2C error reading SFP DIAGS\n");
ret = -EIO;
goto put_mux;
}
}
put_mux:
xgbe_phy_sfp_put_mux(pdata);
put_own:
xgbe_phy_put_comm_ownership(pdata);
done:
return (ret);
}
static int
xgbe_phy_module_info(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->port_mode != XGBE_PORT_MODE_SFP)
return (-ENXIO);
if (phy_data->sfp_mod_absent)
return (-EIO);
return (0);
}
static void
xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (!phy_data->phydev)
return;
if (pdata->phy.pause)
XGBE_SET_LP_ADV(&pdata->phy, Pause);
if (pdata->phy.asym_pause)
XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause);
axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__,
pdata->phy.tx_pause, pdata->phy.rx_pause);
}
static enum xgbe_mode
xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
XGBE_SET_LP_ADV(&pdata->phy, Autoneg);
XGBE_SET_LP_ADV(&pdata->phy, TP);
axgbe_printf(1, "%s: pause_autoneg %d\n", __func__,
pdata->phy.pause_autoneg);
/* Use external PHY to determine flow control */
if (pdata->phy.pause_autoneg)
xgbe_phy_phydev_flowctrl(pdata);
switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) {
case XGBE_SGMII_AN_LINK_SPEED_100:
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
XGBE_SET_LP_ADV(&pdata->phy, 100baseT_Full);
mode = XGBE_MODE_SGMII_100;
} else {
/* Half-duplex not supported */
XGBE_SET_LP_ADV(&pdata->phy, 100baseT_Half);
mode = XGBE_MODE_UNKNOWN;
}
break;
case XGBE_SGMII_AN_LINK_SPEED_1000:
default:
/* Default to 1000 */
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
XGBE_SET_LP_ADV(&pdata->phy, 1000baseT_Full);
mode = XGBE_MODE_SGMII_1000;
} else {
/* Half-duplex not supported */
XGBE_SET_LP_ADV(&pdata->phy, 1000baseT_Half);
mode = XGBE_MODE_SGMII_1000;
}
break;
}
return (mode);
}
static enum xgbe_mode
xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
XGBE_SET_LP_ADV(&pdata->phy, Autoneg);
XGBE_SET_LP_ADV(&pdata->phy, FIBRE);
/* Compare Advertisement and Link Partner register */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY);
if (lp_reg & 0x100)
XGBE_SET_LP_ADV(&pdata->phy, Pause);
if (lp_reg & 0x80)
XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause);
axgbe_printf(1, "%s: pause_autoneg %d ad_reg 0x%x lp_reg 0x%x\n",
__func__, pdata->phy.pause_autoneg, ad_reg, lp_reg);
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x100) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x80) {
if (ad_reg & 0x100)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x100)
pdata->phy.tx_pause = 1;
}
}
axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__, pdata->phy.tx_pause,
pdata->phy.rx_pause);
if (lp_reg & 0x20)
XGBE_SET_LP_ADV(&pdata->phy, 1000baseX_Full);
/* Half duplex is not supported */
ad_reg &= lp_reg;
mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN;
return (mode);
}
static enum xgbe_mode
xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
XGBE_SET_LP_ADV(&pdata->phy, Autoneg);
XGBE_SET_LP_ADV(&pdata->phy, Backplane);
axgbe_printf(1, "%s: pause_autoneg %d\n", __func__,
pdata->phy.pause_autoneg);
/* Use external PHY to determine flow control */
if (pdata->phy.pause_autoneg)
xgbe_phy_phydev_flowctrl(pdata);
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
XGBE_SET_LP_ADV(&pdata->phy, 10000baseKR_Full);
if (lp_reg & 0x20)
XGBE_SET_LP_ADV(&pdata->phy, 1000baseKX_Full);
ad_reg &= lp_reg;
if (ad_reg & 0x80) {
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
mode = XGBE_MODE_KR;
break;
default:
mode = XGBE_MODE_SFI;
break;
}
} else if (ad_reg & 0x20) {
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
mode = XGBE_MODE_KX_1000;
break;
case XGBE_PORT_MODE_1000BASE_X:
mode = XGBE_MODE_X;
break;
case XGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
if ((phy_data->phydev) &&
(pdata->phy.speed == SPEED_100))
mode = XGBE_MODE_SGMII_100;
else
mode = XGBE_MODE_SGMII_1000;
break;
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
default:
mode = XGBE_MODE_X;
break;
}
break;
default:
if ((phy_data->phydev) &&
(pdata->phy.speed == SPEED_100))
mode = XGBE_MODE_SGMII_100;
else
mode = XGBE_MODE_SGMII_1000;
break;
}
} else {
mode = XGBE_MODE_UNKNOWN;
}
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
XGBE_SET_LP_ADV(&pdata->phy, 10000baseR_FEC);
return (mode);
}
static enum xgbe_mode
xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
XGBE_SET_LP_ADV(&pdata->phy, Autoneg);
XGBE_SET_LP_ADV(&pdata->phy, Backplane);
/* Compare Advertisement and Link Partner register 1 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg & 0x400)
XGBE_SET_LP_ADV(&pdata->phy, Pause);
if (lp_reg & 0x800)
XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause);
axgbe_printf(1, "%s: pause_autoneg %d ad_reg 0x%x lp_reg 0x%x\n",
__func__, pdata->phy.pause_autoneg, ad_reg, lp_reg);
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x400) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x800) {
if (ad_reg & 0x400)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x400)
pdata->phy.tx_pause = 1;
}
}
axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__, pdata->phy.tx_pause,
pdata->phy.rx_pause);
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
XGBE_SET_LP_ADV(&pdata->phy, 10000baseKR_Full);
if (lp_reg & 0x20)
XGBE_SET_LP_ADV(&pdata->phy, 1000baseKX_Full);
ad_reg &= lp_reg;
if (ad_reg & 0x80)
mode = XGBE_MODE_KR;
else if (ad_reg & 0x20)
mode = XGBE_MODE_KX_1000;
else
mode = XGBE_MODE_UNKNOWN;
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
XGBE_SET_LP_ADV(&pdata->phy, 10000baseR_FEC);
return (mode);
}
static enum xgbe_mode
xgbe_phy_an_outcome(struct xgbe_prv_data *pdata)
{
switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73:
return (xgbe_phy_an73_outcome(pdata));
case XGBE_AN_MODE_CL73_REDRV:
return (xgbe_phy_an73_redrv_outcome(pdata));
case XGBE_AN_MODE_CL37:
return (xgbe_phy_an37_outcome(pdata));
case XGBE_AN_MODE_CL37_SGMII:
return (xgbe_phy_an37_sgmii_outcome(pdata));
default:
return (XGBE_MODE_UNKNOWN);
}
}
static void
xgbe_phy_an_advertising(struct xgbe_prv_data *pdata, struct xgbe_phy *dphy)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
XGBE_LM_COPY(dphy, advertising, &pdata->phy, advertising);
/* Without a re-driver, just return current advertising */
if (!phy_data->redrv)
return;
/* With the KR re-driver we need to advertise a single speed */
XGBE_CLR_ADV(dphy, 1000baseKX_Full);
XGBE_CLR_ADV(dphy, 10000baseKR_Full);
/* Advertise FEC support is present */
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
XGBE_SET_ADV(dphy, 10000baseR_FEC);
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
XGBE_SET_ADV(dphy, 10000baseKR_Full);
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
XGBE_SET_ADV(dphy, 1000baseKX_Full);
break;
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_NBASE_T:
XGBE_SET_ADV(dphy, 1000baseKX_Full);
break;
case XGBE_PORT_MODE_10GBASE_T:
if ((phy_data->phydev) &&
(pdata->phy.speed == SPEED_10000))
XGBE_SET_ADV(dphy, 10000baseKR_Full);
else
XGBE_SET_ADV(dphy, 1000baseKX_Full);
break;
case XGBE_PORT_MODE_10GBASE_R:
XGBE_SET_ADV(dphy, 10000baseKR_Full);
break;
case XGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
XGBE_SET_ADV(dphy, 1000baseKX_Full);
break;
default:
XGBE_SET_ADV(dphy, 10000baseKR_Full);
break;
}
break;
default:
XGBE_SET_ADV(dphy, 10000baseKR_Full);
break;
}
}
static int
xgbe_phy_an_config(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
ret = xgbe_phy_find_phy_device(pdata);
if (ret)
return (ret);
axgbe_printf(2, "%s: find_phy_device return %s.\n", __func__,
ret ? "Failure" : "Success");
if (!phy_data->phydev)
return (0);
return (ret);
}
static enum xgbe_an_mode
xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data)
{
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
return (XGBE_AN_MODE_CL37_SGMII);
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
return (XGBE_AN_MODE_CL37);
default:
return (XGBE_AN_MODE_NONE);
}
}
static enum xgbe_an_mode
xgbe_phy_an_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* A KR re-driver will always require CL73 AN */
if (phy_data->redrv)
return (XGBE_AN_MODE_CL73_REDRV);
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return (XGBE_AN_MODE_CL73);
case XGBE_PORT_MODE_BACKPLANE_2500:
return (XGBE_AN_MODE_NONE);
case XGBE_PORT_MODE_1000BASE_T:
return (XGBE_AN_MODE_CL37_SGMII);
case XGBE_PORT_MODE_1000BASE_X:
return (XGBE_AN_MODE_CL37);
case XGBE_PORT_MODE_NBASE_T:
return (XGBE_AN_MODE_CL37_SGMII);
case XGBE_PORT_MODE_10GBASE_T:
return (XGBE_AN_MODE_CL73);
case XGBE_PORT_MODE_10GBASE_R:
return (XGBE_AN_MODE_NONE);
case XGBE_PORT_MODE_SFP:
return (xgbe_phy_an_sfp_mode(phy_data));
default:
return (XGBE_AN_MODE_NONE);
}
}
static int
xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata,
enum xgbe_phy_redrv_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint16_t redrv_reg, redrv_val;
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
redrv_val = (uint16_t)mode;
return (pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr,
redrv_reg, redrv_val));
}
static int
xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata,
enum xgbe_phy_redrv_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int redrv_reg;
int ret;
/* Calculate the register to write */
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode);
return (ret);
}
static void
xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_phy_redrv_mode mode;
int ret;
if (!phy_data->redrv)
return;
mode = XGBE_PHY_REDRV_MODE_CX;
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
(phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) &&
(phy_data->sfp_base != XGBE_SFP_BASE_10000_CR))
mode = XGBE_PHY_REDRV_MODE_SR;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
axgbe_printf(2, "%s: redrv_if set: %d\n", __func__, phy_data->redrv_if);
if (phy_data->redrv_if)
xgbe_phy_set_redrv_mode_i2c(pdata, mode);
else
xgbe_phy_set_redrv_mode_mdio(pdata, mode);
xgbe_phy_put_comm_ownership(pdata);
}
static void
xgbe_phy_pll_ctrl(struct xgbe_prv_data *pdata, bool enable)
{
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_MISC_CTRL0,
XGBE_PMA_PLL_CTRL_MASK,
enable ? XGBE_PMA_PLL_CTRL_ENABLE
: XGBE_PMA_PLL_CTRL_DISABLE);
DELAY(200);
}
static void
xgbe_phy_rx_reset(struct xgbe_prv_data *pdata)
{
int reg;
reg = XMDIO_READ_BITS(pdata, MDIO_MMD_PCS, MDIO_PCS_DIGITAL_STAT,
XGBE_PCS_PSEQ_STATE_MASK);
if (reg == XGBE_PCS_PSEQ_STATE_POWER_GOOD) {
/*
* Mailbox command timed out, reset of RX block is required.
* This can be done by asserting the reset bit and waiting
* for its completion.
*/
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_RX_CTRL1,
XGBE_PMA_RX_RST_0_MASK, XGBE_PMA_RX_RST_0_RESET_ON);
DELAY(20);
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_RX_CTRL1,
XGBE_PMA_RX_RST_0_MASK, XGBE_PMA_RX_RST_0_RESET_OFF);
DELAY(50);
axgbe_printf(0, "%s: firmware mailbox reset performed\n", __func__);
}
}
static void
xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, unsigned int cmd,
unsigned int sub_cmd)
{
unsigned int s0 = 0;
unsigned int wait;
xgbe_phy_pll_ctrl(pdata, false);
/* Log if a previous command did not complete */
if (XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) {
axgbe_error("firmware mailbox not ready for command\n");
xgbe_phy_rx_reset(pdata);
}
/* Construct the command */
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, cmd);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, sub_cmd);
/* Issue the command */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
/* Wait for command to complete */
wait = XGBE_RATECHANGE_COUNT;
while (wait--) {
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) {
axgbe_printf(3, "%s: Rate change done\n", __func__);
goto reenable_pll;
}
DELAY(2000);
}
axgbe_printf(3, "firmware mailbox command did not complete\n");
reenable_pll:
xgbe_phy_pll_ctrl(pdata, true);
}
static void
xgbe_phy_rrc(struct xgbe_prv_data *pdata)
{
/* Receiver Reset Cycle */
xgbe_phy_perform_ratechange(pdata, 5, 0);
axgbe_printf(3, "receiver reset complete\n");
}
static void
xgbe_phy_power_off(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* Power off */
xgbe_phy_perform_ratechange(pdata, 0, 0);
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
axgbe_printf(3, "phy powered off\n");
}
static void
xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 10G/SFI */
axgbe_printf(3, "%s: cable %d len %d\n", __func__, phy_data->sfp_cable,
phy_data->sfp_cable_len);
if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE)
xgbe_phy_perform_ratechange(pdata, 3, 0);
else {
if (phy_data->sfp_cable_len <= 1)
xgbe_phy_perform_ratechange(pdata, 3, 1);
else if (phy_data->sfp_cable_len <= 3)
xgbe_phy_perform_ratechange(pdata, 3, 2);
else
xgbe_phy_perform_ratechange(pdata, 3, 3);
}
phy_data->cur_mode = XGBE_MODE_SFI;
axgbe_printf(3, "10GbE SFI mode set\n");
}
static void
xgbe_phy_x_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 1G/X */
xgbe_phy_perform_ratechange(pdata, 1, 3);
phy_data->cur_mode = XGBE_MODE_X;
axgbe_printf(3, "1GbE X mode set\n");
}
static void
xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 1G/SGMII */
xgbe_phy_perform_ratechange(pdata, 1, 2);
phy_data->cur_mode = XGBE_MODE_SGMII_1000;
axgbe_printf(2, "1GbE SGMII mode set\n");
}
static void
xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 100M/SGMII */
xgbe_phy_perform_ratechange(pdata, 1, 1);
phy_data->cur_mode = XGBE_MODE_SGMII_100;
axgbe_printf(3, "100MbE SGMII mode set\n");
}
static void
xgbe_phy_kr_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 10G/KR */
xgbe_phy_perform_ratechange(pdata, 4, 0);
phy_data->cur_mode = XGBE_MODE_KR;
axgbe_printf(3, "10GbE KR mode set\n");
}
static void
xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 2.5G/KX */
xgbe_phy_perform_ratechange(pdata, 2, 0);
phy_data->cur_mode = XGBE_MODE_KX_2500;
axgbe_printf(3, "2.5GbE KX mode set\n");
}
static void
xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_set_redrv_mode(pdata);
/* 1G/KX */
xgbe_phy_perform_ratechange(pdata, 1, 3);
phy_data->cur_mode = XGBE_MODE_KX_1000;
axgbe_printf(3, "1GbE KX mode set\n");
}
static enum xgbe_mode
xgbe_phy_cur_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
return (phy_data->cur_mode);
}
static enum xgbe_mode
xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* No switching if not 10GBase-T */
if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T)
return (xgbe_phy_cur_mode(pdata));
switch (xgbe_phy_cur_mode(pdata)) {
case XGBE_MODE_SGMII_100:
case XGBE_MODE_SGMII_1000:
return (XGBE_MODE_KR);
case XGBE_MODE_KR:
default:
return (XGBE_MODE_SGMII_1000);
}
}
static enum xgbe_mode
xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata)
{
return (XGBE_MODE_KX_2500);
}
static enum xgbe_mode
xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata)
{
/* If we are in KR switch to KX, and vice-versa */
switch (xgbe_phy_cur_mode(pdata)) {
case XGBE_MODE_KX_1000:
return (XGBE_MODE_KR);
case XGBE_MODE_KR:
default:
return (XGBE_MODE_KX_1000);
}
}
static enum xgbe_mode
xgbe_phy_switch_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return (xgbe_phy_switch_bp_mode(pdata));
case XGBE_PORT_MODE_BACKPLANE_2500:
return (xgbe_phy_switch_bp_2500_mode(pdata));
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return (xgbe_phy_switch_baset_mode(pdata));
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
case XGBE_PORT_MODE_SFP:
/* No switching, so just return current mode */
return (xgbe_phy_cur_mode(pdata));
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_1000:
return (XGBE_MODE_X);
case SPEED_10000:
return (XGBE_MODE_KR);
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_100:
return (XGBE_MODE_SGMII_100);
case SPEED_1000:
return (XGBE_MODE_SGMII_1000);
case SPEED_2500:
return (XGBE_MODE_KX_2500);
case SPEED_10000:
return (XGBE_MODE_KR);
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_100:
return (XGBE_MODE_SGMII_100);
case SPEED_1000:
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
return (XGBE_MODE_SGMII_1000);
else
return (XGBE_MODE_X);
case SPEED_10000:
case SPEED_UNKNOWN:
return (XGBE_MODE_SFI);
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_bp_2500_mode(int speed)
{
switch (speed) {
case SPEED_2500:
return (XGBE_MODE_KX_2500);
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_bp_mode(int speed)
{
switch (speed) {
case SPEED_1000:
return (XGBE_MODE_KX_1000);
case SPEED_10000:
return (XGBE_MODE_KR);
default:
return (XGBE_MODE_UNKNOWN);
}
}
static enum xgbe_mode
xgbe_phy_get_mode(struct xgbe_prv_data *pdata, int speed)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return (xgbe_phy_get_bp_mode(speed));
case XGBE_PORT_MODE_BACKPLANE_2500:
return (xgbe_phy_get_bp_2500_mode(speed));
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return (xgbe_phy_get_baset_mode(phy_data, speed));
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return (xgbe_phy_get_basex_mode(phy_data, speed));
case XGBE_PORT_MODE_SFP:
return (xgbe_phy_get_sfp_mode(phy_data, speed));
default:
return (XGBE_MODE_UNKNOWN);
}
}
static void
xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_1000:
xgbe_phy_kx_1000_mode(pdata);
break;
case XGBE_MODE_KX_2500:
xgbe_phy_kx_2500_mode(pdata);
break;
case XGBE_MODE_KR:
xgbe_phy_kr_mode(pdata);
break;
case XGBE_MODE_SGMII_100:
xgbe_phy_sgmii_100_mode(pdata);
break;
case XGBE_MODE_SGMII_1000:
xgbe_phy_sgmii_1000_mode(pdata);
break;
case XGBE_MODE_X:
xgbe_phy_x_mode(pdata);
break;
case XGBE_MODE_SFI:
xgbe_phy_sfi_mode(pdata);
break;
default:
break;
}
}
static void
xgbe_phy_get_type(struct xgbe_prv_data *pdata, struct ifmediareq * ifmr)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (pdata->phy.speed) {
case SPEED_10000:
if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE)
ifmr->ifm_active |= IFM_10G_KR;
else if(phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T)
ifmr->ifm_active |= IFM_10G_T;
else if(phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R)
ifmr->ifm_active |= IFM_10G_KR;
else if(phy_data->port_mode == XGBE_PORT_MODE_SFP)
ifmr->ifm_active |= IFM_10G_SFI;
else
ifmr->ifm_active |= IFM_OTHER;
break;
case SPEED_2500:
if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE_2500)
ifmr->ifm_active |= IFM_2500_KX;
else
ifmr->ifm_active |= IFM_OTHER;
break;
case SPEED_1000:
if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE)
ifmr->ifm_active |= IFM_1000_KX;
else if(phy_data->port_mode == XGBE_PORT_MODE_1000BASE_T)
ifmr->ifm_active |= IFM_1000_T;
#if 0
else if(phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X)
ifmr->ifm_active |= IFM_1000_SX;
ifmr->ifm_active |= IFM_1000_LX;
ifmr->ifm_active |= IFM_1000_CX;
#endif
else if(phy_data->port_mode == XGBE_PORT_MODE_SFP)
ifmr->ifm_active |= IFM_1000_SGMII;
else
ifmr->ifm_active |= IFM_OTHER;
break;
case SPEED_100:
if(phy_data->port_mode == XGBE_PORT_MODE_NBASE_T)
ifmr->ifm_active |= IFM_100_T;
else if(phy_data->port_mode == XGBE_PORT_MODE_SFP)
ifmr->ifm_active |= IFM_100_SGMII;
else
ifmr->ifm_active |= IFM_OTHER;
break;
default:
ifmr->ifm_active |= IFM_OTHER;
axgbe_printf(1, "Unknown mode detected\n");
break;
}
}
static bool
xgbe_phy_check_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode,
bool advert)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE)
return (advert);
else {
enum xgbe_mode cur_mode;
cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed);
if (cur_mode == mode)
return (true);
}
return (false);
}
static bool
xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_X:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
1000baseX_Full)));
case XGBE_MODE_KR:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
10000baseKR_Full)));
default:
return (false);
}
}
static bool
xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
axgbe_printf(3, "%s: check mode %d\n", __func__, mode);
switch (mode) {
case XGBE_MODE_SGMII_100:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
100baseT_Full)));
case XGBE_MODE_SGMII_1000:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
1000baseT_Full)));
case XGBE_MODE_KX_2500:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
2500baseT_Full)));
case XGBE_MODE_KR:
return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy,
10000baseT_Full)));
default:
return (false);
}
}
static bool
xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (mode) {
case XGBE_MODE_X:
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
return (false);
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 1000baseX_Full)));
case XGBE_MODE_SGMII_100:
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return (false);
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 100baseT_Full)));
case XGBE_MODE_SGMII_1000:
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return (false);
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 1000baseT_Full)));
case XGBE_MODE_SFI:
if (phy_data->sfp_mod_absent)
return (true);
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 10000baseSR_Full) ||
XGBE_ADV(&pdata->phy, 10000baseLR_Full) ||
XGBE_ADV(&pdata->phy, 10000baseLRM_Full) ||
XGBE_ADV(&pdata->phy, 10000baseER_Full) ||
XGBE_ADV(&pdata->phy, 10000baseCR_Full)));
default:
return (false);
}
}
static bool
xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_2500:
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 2500baseX_Full)));
default:
return (false);
}
}
static bool
xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_1000:
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 1000baseKX_Full)));
case XGBE_MODE_KR:
return (xgbe_phy_check_mode(pdata, mode,
XGBE_ADV(&pdata->phy, 10000baseKR_Full)));
default:
return (false);
}
}
static bool
xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return (xgbe_phy_use_bp_mode(pdata, mode));
case XGBE_PORT_MODE_BACKPLANE_2500:
return (xgbe_phy_use_bp_2500_mode(pdata, mode));
case XGBE_PORT_MODE_1000BASE_T:
axgbe_printf(3, "use_mode %s\n",
xgbe_phy_use_baset_mode(pdata, mode) ? "found" : "Not found");
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return (xgbe_phy_use_baset_mode(pdata, mode));
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return (xgbe_phy_use_basex_mode(pdata, mode));
case XGBE_PORT_MODE_SFP:
return (xgbe_phy_use_sfp_mode(pdata, mode));
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_1000:
return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X);
case SPEED_10000:
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R);
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_100:
case SPEED_1000:
return (true);
case SPEED_2500:
return (phy_data->port_mode == XGBE_PORT_MODE_NBASE_T);
case SPEED_10000:
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T);
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data, int speed)
{
switch (speed) {
case SPEED_100:
return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100) ||
(phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000));
case SPEED_1000:
return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) ||
(phy_data->sfp_speed == XGBE_SFP_SPEED_1000));
case SPEED_10000:
return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000);
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed_bp_2500_mode(int speed)
{
switch (speed) {
case SPEED_2500:
return (true);
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed_bp_mode(int speed)
{
switch (speed) {
case SPEED_1000:
case SPEED_10000:
return (true);
default:
return (false);
}
}
static bool
xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return (xgbe_phy_valid_speed_bp_mode(speed));
case XGBE_PORT_MODE_BACKPLANE_2500:
return (xgbe_phy_valid_speed_bp_2500_mode(speed));
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return (xgbe_phy_valid_speed_baset_mode(phy_data, speed));
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return (xgbe_phy_valid_speed_basex_mode(phy_data, speed));
case XGBE_PORT_MODE_SFP:
return (xgbe_phy_valid_speed_sfp_mode(phy_data, speed));
default:
return (false);
}
}
static int
xgbe_upd_link(struct xgbe_prv_data *pdata)
{
int reg;
axgbe_printf(2, "%s: Link %d\n", __func__, pdata->phy.link);
reg = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMSR);
reg = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMSR);
if (reg < 0)
return (reg);
if ((reg & BMSR_LINK) == 0)
pdata->phy.link = 0;
else
pdata->phy.link = 1;
axgbe_printf(2, "Link: %d updated reg %#x\n", pdata->phy.link, reg);
return (0);
}
static int
xgbe_phy_read_status(struct xgbe_prv_data *pdata)
{
int common_adv_gb = 0;
int common_adv;
int lpagb = 0;
int adv, lpa;
int ret;
ret = xgbe_upd_link(pdata);
if (ret) {
axgbe_printf(2, "Link Update return %d\n", ret);
return (ret);
}
if (AUTONEG_ENABLE == pdata->phy.autoneg) {
if (pdata->phy.supported == SUPPORTED_1000baseT_Half ||
pdata->phy.supported == SUPPORTED_1000baseT_Full) {
lpagb = xgbe_phy_mii_read(pdata, pdata->mdio_addr,
MII_100T2SR);
if (lpagb < 0)
return (lpagb);
adv = xgbe_phy_mii_read(pdata, pdata->mdio_addr,
MII_100T2CR);
if (adv < 0)
return (adv);
if (lpagb & GTSR_MAN_MS_FLT) {
if (adv & GTCR_MAN_MS)
axgbe_printf(2, "Master/Slave Resolution "
"failed, maybe conflicting manual settings\n");
else
axgbe_printf(2, "Master/Slave Resolution failed\n");
return (-ENOLINK);
}
if (pdata->phy.supported == SUPPORTED_1000baseT_Half)
XGBE_SET_ADV(&pdata->phy, 1000baseT_Half);
else if (pdata->phy.supported == SUPPORTED_1000baseT_Full)
XGBE_SET_ADV(&pdata->phy, 1000baseT_Full);
common_adv_gb = lpagb & adv << 2;
}
lpa = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_ANLPAR);
if (lpa < 0)
return (lpa);
if (pdata->phy.supported == SUPPORTED_Autoneg)
XGBE_SET_ADV(&pdata->phy, Autoneg);
adv = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_ANAR);
if (adv < 0)
return (adv);
common_adv = lpa & adv;
pdata->phy.speed = SPEED_10;
pdata->phy.duplex = DUPLEX_HALF;
pdata->phy.pause = 0;
pdata->phy.asym_pause = 0;
axgbe_printf(2, "%s: lpa %#x adv %#x common_adv_gb %#x "
"common_adv %#x\n", __func__, lpa, adv, common_adv_gb,
common_adv);
if (common_adv_gb & (GTSR_LP_1000TFDX | GTSR_LP_1000THDX)) {
axgbe_printf(2, "%s: SPEED 1000\n", __func__);
pdata->phy.speed = SPEED_1000;
if (common_adv_gb & GTSR_LP_1000TFDX)
pdata->phy.duplex = DUPLEX_FULL;
} else if (common_adv & (ANLPAR_TX_FD | ANLPAR_TX)) {
axgbe_printf(2, "%s: SPEED 100\n", __func__);
pdata->phy.speed = SPEED_100;
if (common_adv & ANLPAR_TX_FD)
pdata->phy.duplex = DUPLEX_FULL;
} else
if (common_adv & ANLPAR_10_FD)
pdata->phy.duplex = DUPLEX_FULL;
if (pdata->phy.duplex == DUPLEX_FULL) {
pdata->phy.pause = lpa & ANLPAR_FC ? 1 : 0;
pdata->phy.asym_pause = lpa & LPA_PAUSE_ASYM ? 1 : 0;
}
} else {
int bmcr = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMCR);
if (bmcr < 0)
return (bmcr);
if (bmcr & BMCR_FDX)
pdata->phy.duplex = DUPLEX_FULL;
else
pdata->phy.duplex = DUPLEX_HALF;
if (bmcr & BMCR_SPEED1)
pdata->phy.speed = SPEED_1000;
else if (bmcr & BMCR_SPEED100)
pdata->phy.speed = SPEED_100;
else
pdata->phy.speed = SPEED_10;
pdata->phy.pause = 0;
pdata->phy.asym_pause = 0;
axgbe_printf(2, "%s: link speed %#x duplex %#x media %#x "
"autoneg %#x\n", __func__, pdata->phy.speed,
pdata->phy.duplex, pdata->phy.link, pdata->phy.autoneg);
}
return (0);
}
static void
xgbe_rrc(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
if (phy_data->rrc_count++ > XGBE_RRC_FREQUENCY) {
axgbe_printf(1, "ENTERED RRC: rrc_count: %d\n",
phy_data->rrc_count);
phy_data->rrc_count = 0;
if (pdata->link_workaround) {
ret = xgbe_phy_reset(pdata);
if (ret)
axgbe_error("Error resetting phy\n");
} else
xgbe_phy_rrc(pdata);
}
}
static int
xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct mii_data *mii = NULL;
unsigned int reg;
int ret;
*an_restart = 0;
if (phy_data->port_mode == XGBE_PORT_MODE_SFP) {
/* Check SFP signals */
axgbe_printf(3, "%s: calling phy detect\n", __func__);
xgbe_phy_sfp_detect(pdata);
if (phy_data->sfp_changed) {
axgbe_printf(1, "%s: SFP changed observed\n", __func__);
*an_restart = 1;
return (0);
}
if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los) {
axgbe_printf(1, "%s: SFP absent 0x%x & sfp_rx_los 0x%x\n",
__func__, phy_data->sfp_mod_absent,
phy_data->sfp_rx_los);
if (!phy_data->sfp_mod_absent) {
xgbe_rrc(pdata);
}
return (0);
}
}
if (phy_data->phydev || phy_data->port_mode != XGBE_PORT_MODE_SFP) {
if (pdata->axgbe_miibus == NULL) {
axgbe_printf(1, "%s: miibus not initialized", __func__);
goto mdio_read;
}
mii = device_get_softc(pdata->axgbe_miibus);
mii_tick(mii);
ret = xgbe_phy_read_status(pdata);
if (ret) {
axgbe_error("Link: Read status returned %d\n", ret);
return (0);
}
axgbe_printf(2, "%s: link speed %#x duplex %#x media %#x "
"autoneg %#x\n", __func__, pdata->phy.speed,
pdata->phy.duplex, pdata->phy.link, pdata->phy.autoneg);
ret = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMSR);
ret = (ret < 0) ? ret : (ret & BMSR_ACOMP);
axgbe_printf(2, "Link: BMCR returned %d\n", ret);
if ((pdata->phy.autoneg == AUTONEG_ENABLE) && !ret)
return (0);
if (pdata->phy.link)
return (1);
xgbe_rrc(pdata);
}
mdio_read:
/* Link status is latched low, so read once to clear
* and then read again to get current state
*/
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
axgbe_printf(1, "%s: link_status reg: 0x%x\n", __func__, reg);
if (reg & MDIO_STAT1_LSTATUS)
return (1);
/* No link, attempt a receiver reset cycle */
xgbe_rrc(pdata);
return (0);
}
static void
xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_ADDR);
phy_data->sfp_gpio_mask = XP_GET_BITS(pdata->pp3, XP_PROP_3,
GPIO_MASK);
phy_data->sfp_gpio_rx_los = XP_GET_BITS(pdata->pp3, XP_PROP_3,
GPIO_RX_LOS);
phy_data->sfp_gpio_tx_fault = XP_GET_BITS(pdata->pp3, XP_PROP_3,
GPIO_TX_FAULT);
phy_data->sfp_gpio_mod_absent = XP_GET_BITS(pdata->pp3, XP_PROP_3,
GPIO_MOD_ABS);
phy_data->sfp_gpio_rate_select = XP_GET_BITS(pdata->pp3, XP_PROP_3,
GPIO_RATE_SELECT);
DBGPR("SFP: gpio_address=%#x\n", phy_data->sfp_gpio_address);
DBGPR("SFP: gpio_mask=%#x\n", phy_data->sfp_gpio_mask);
DBGPR("SFP: gpio_rx_los=%u\n", phy_data->sfp_gpio_rx_los);
DBGPR("SFP: gpio_tx_fault=%u\n", phy_data->sfp_gpio_tx_fault);
DBGPR("SFP: gpio_mod_absent=%u\n",
phy_data->sfp_gpio_mod_absent);
DBGPR("SFP: gpio_rate_select=%u\n",
phy_data->sfp_gpio_rate_select);
}
static void
xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int mux_addr_hi, mux_addr_lo;
mux_addr_hi = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_HI);
mux_addr_lo = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_LO);
if (mux_addr_lo == XGBE_SFP_DIRECT)
return;
phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545;
phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo;
phy_data->sfp_mux_channel = XP_GET_BITS(pdata->pp4, XP_PROP_4,
MUX_CHAN);
DBGPR("SFP: mux_address=%#x\n", phy_data->sfp_mux_address);
DBGPR("SFP: mux_channel=%u\n", phy_data->sfp_mux_channel);
}
static void
xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata)
{
xgbe_phy_sfp_comm_setup(pdata);
xgbe_phy_sfp_gpio_setup(pdata);
}
static int
xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int ret;
ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio);
if (ret)
return (ret);
ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio);
return (ret);
}
static int
xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
uint8_t gpio_reg, gpio_ports[2], gpio_data[3];
int ret;
/* Read the output port registers */
gpio_reg = 2;
ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr,
&gpio_reg, sizeof(gpio_reg),
gpio_ports, sizeof(gpio_ports));
if (ret)
return (ret);
/* Prepare to write the GPIO data */
gpio_data[0] = 2;
gpio_data[1] = gpio_ports[0];
gpio_data[2] = gpio_ports[1];
/* Set the GPIO pin */
if (phy_data->mdio_reset_gpio < 8)
gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8));
else
gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8));
/* Write the output port registers */
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
gpio_data, sizeof(gpio_data));
if (ret)
return (ret);
/* Clear the GPIO pin */
if (phy_data->mdio_reset_gpio < 8)
gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
else
gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
/* Write the output port registers */
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
gpio_data, sizeof(gpio_data));
return (ret);
}
static int
xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
return (0);
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return (ret);
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO)
ret = xgbe_phy_i2c_mdio_reset(pdata);
else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO)
ret = xgbe_phy_int_mdio_reset(pdata);
xgbe_phy_put_comm_ownership(pdata);
return (ret);
}
static bool
xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data)
{
if (!phy_data->redrv)
return (false);
if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX)
return (true);
switch (phy_data->redrv_model) {
case XGBE_PHY_REDRV_MODEL_4223:
if (phy_data->redrv_lane > 3)
return (true);
break;
case XGBE_PHY_REDRV_MODEL_4227:
if (phy_data->redrv_lane > 1)
return (true);
break;
default:
return (true);
}
return (false);
}
static int
xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
return (0);
phy_data->mdio_reset = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET);
switch (phy_data->mdio_reset) {
case XGBE_MDIO_RESET_NONE:
case XGBE_MDIO_RESET_I2C_GPIO:
case XGBE_MDIO_RESET_INT_GPIO:
break;
default:
axgbe_error("unsupported MDIO reset (%#x)\n",
phy_data->mdio_reset);
return (-EINVAL);
}
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) {
phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_I2C_ADDR);
phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3,
MDIO_RESET_I2C_GPIO);
} else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO)
phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3,
MDIO_RESET_INT_GPIO);
return (0);
}
static bool
xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return (false);
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)
return (false);
break;
case XGBE_PORT_MODE_1000BASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000))
return (false);
break;
case XGBE_PORT_MODE_1000BASE_X:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
return (false);
break;
case XGBE_PORT_MODE_NBASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500))
return (false);
break;
case XGBE_PORT_MODE_10GBASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return (false);
break;
case XGBE_PORT_MODE_10GBASE_R:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
return (false);
break;
case XGBE_PORT_MODE_SFP:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return (false);
break;
default:
break;
}
return (true);
}
static bool
xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
case XGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE)
return (false);
break;
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
case XGBE_PORT_MODE_10GBASE_R:
if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO)
return (false);
break;
case XGBE_PORT_MODE_SFP:
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
return (false);
break;
default:
break;
}
return (true);
}
static bool
xgbe_phy_port_enabled(struct xgbe_prv_data *pdata)
{
if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS))
return (false);
if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE))
return (false);
return (true);
}
static void
xgbe_phy_cdr_track(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
axgbe_printf(2, "%s: an_cdr_workaround %d phy_cdr_notrack %d\n",
__func__, pdata->sysctl_an_cdr_workaround, phy_data->phy_cdr_notrack);
if (!pdata->sysctl_an_cdr_workaround)
return;
if (!phy_data->phy_cdr_notrack)
return;
DELAY(phy_data->phy_cdr_delay + 500);
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL,
XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_ON);
phy_data->phy_cdr_notrack = 0;
axgbe_printf(2, "CDR TRACK DONE\n");
}
static void
xgbe_phy_cdr_notrack(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
axgbe_printf(2, "%s: an_cdr_workaround %d phy_cdr_notrack %d\n",
__func__, pdata->sysctl_an_cdr_workaround, phy_data->phy_cdr_notrack);
if (!pdata->sysctl_an_cdr_workaround)
return;
if (phy_data->phy_cdr_notrack)
return;
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL,
XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_OFF);
xgbe_phy_rrc(pdata);
phy_data->phy_cdr_notrack = 1;
}
static void
xgbe_phy_kr_training_post(struct xgbe_prv_data *pdata)
{
if (!pdata->sysctl_an_cdr_track_early)
xgbe_phy_cdr_track(pdata);
}
static void
xgbe_phy_kr_training_pre(struct xgbe_prv_data *pdata)
{
if (pdata->sysctl_an_cdr_track_early)
xgbe_phy_cdr_track(pdata);
}
static void
xgbe_phy_an_post(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
if (phy_data->cur_mode != XGBE_MODE_KR)
break;
xgbe_phy_cdr_track(pdata);
switch (pdata->an_result) {
case XGBE_AN_READY:
case XGBE_AN_COMPLETE:
break;
default:
if (phy_data->phy_cdr_delay < XGBE_CDR_DELAY_MAX)
phy_data->phy_cdr_delay += XGBE_CDR_DELAY_INC;
else
phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT;
break;
}
break;
default:
break;
}
}
static void
xgbe_phy_an_pre(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
if (phy_data->cur_mode != XGBE_MODE_KR)
break;
xgbe_phy_cdr_notrack(pdata);
break;
default:
break;
}
}
static void
xgbe_phy_stop(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* If we have an external PHY, free it */
xgbe_phy_free_phy_device(pdata);
/* Reset SFP data */
xgbe_phy_sfp_reset(phy_data);
xgbe_phy_sfp_mod_absent(pdata);
/* Reset CDR support */
xgbe_phy_cdr_track(pdata);
/* Power off the PHY */
xgbe_phy_power_off(pdata);
/* Stop the I2C controller */
pdata->i2c_if.i2c_stop(pdata);
}
static int
xgbe_phy_start(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
axgbe_printf(2, "%s: redrv %d redrv_if %d start_mode %d\n", __func__,
phy_data->redrv, phy_data->redrv_if, phy_data->start_mode);
/* Start the I2C controller */
ret = pdata->i2c_if.i2c_start(pdata);
if (ret) {
axgbe_error("%s: impl i2c start ret %d\n", __func__, ret);
return (ret);
}
/* Set the proper MDIO mode for the re-driver */
if (phy_data->redrv && !phy_data->redrv_if) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
XGBE_MDIO_MODE_CL22);
if (ret) {
axgbe_error("redriver mdio port not compatible (%u)\n",
phy_data->redrv_addr);
return (ret);
}
}
/* Start in highest supported mode */
xgbe_phy_set_mode(pdata, phy_data->start_mode);
/* Reset CDR support */
xgbe_phy_cdr_track(pdata);
/* After starting the I2C controller, we can check for an SFP */
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_SFP:
axgbe_printf(3, "%s: calling phy detect\n", __func__);
/*
* Validate the configuration of the GPIO expander before
* we interpret the SFP signals.
*/
axgbe_printf(1, "Checking GPIO expander validity\n");
xgbe_phy_validate_gpio_expander(pdata);
phy_data->sfp_phy_retries = 0;
xgbe_phy_sfp_detect(pdata);
break;
default:
break;
}
/* If we have an external PHY, start it */
ret = xgbe_phy_find_phy_device(pdata);
if (ret) {
axgbe_error("%s: impl find phy dev ret %d\n", __func__, ret);
goto err_i2c;
}
axgbe_printf(3, "%s: impl return success\n", __func__);
return (0);
err_i2c:
pdata->i2c_if.i2c_stop(pdata);
return (ret);
}
static int
xgbe_phy_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_mode cur_mode;
int ret;
/* Reset by power cycling the PHY */
cur_mode = phy_data->cur_mode;
xgbe_phy_power_off(pdata);
xgbe_phy_set_mode(pdata, cur_mode);
axgbe_printf(3, "%s: mode %d\n", __func__, cur_mode);
if (!phy_data->phydev) {
axgbe_printf(1, "%s: no phydev\n", __func__);
return (0);
}
/* Reset the external PHY */
ret = xgbe_phy_mdio_reset(pdata);
if (ret) {
axgbe_error("%s: mdio reset %d\n", __func__, ret);
return (ret);
}
axgbe_printf(3, "%s: return success\n", __func__);
return (0);
}
static void
axgbe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
{
struct axgbe_if_softc *sc;
struct xgbe_prv_data *pdata;
struct mii_data *mii;
sc = if_getsoftc(ifp);
pdata = &sc->pdata;
axgbe_printf(2, "%s: Invoked\n", __func__);
mtx_lock_spin(&pdata->mdio_mutex);
mii = device_get_softc(pdata->axgbe_miibus);
axgbe_printf(2, "%s: media_active %#x media_status %#x\n", __func__,
mii->mii_media_active, mii->mii_media_status);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
mtx_unlock_spin(&pdata->mdio_mutex);
}
static int
axgbe_ifmedia_upd(if_t ifp)
{
struct xgbe_prv_data *pdata;
struct axgbe_if_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int ret;
sc = if_getsoftc(ifp);
pdata = &sc->pdata;
axgbe_printf(2, "%s: Invoked\n", __func__);
mtx_lock_spin(&pdata->mdio_mutex);
mii = device_get_softc(pdata->axgbe_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
ret = mii_mediachg(mii);
mtx_unlock_spin(&pdata->mdio_mutex);
return (ret);
}
static void
xgbe_phy_exit(struct xgbe_prv_data *pdata)
{
if (pdata->axgbe_miibus != NULL)
device_delete_child(pdata->dev, pdata->axgbe_miibus);
/* free phy_data structure */
free(pdata->phy_data, M_AXGBE);
}
static int
xgbe_phy_init(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data;
int ret;
/* Initialize the global lock */
if (!mtx_initialized(&xgbe_phy_comm_lock))
mtx_init(&xgbe_phy_comm_lock, "xgbe phy common lock", NULL, MTX_DEF);
/* Check if enabled */
if (!xgbe_phy_port_enabled(pdata)) {
axgbe_error("device is not enabled\n");
return (-ENODEV);
}
/* Initialize the I2C controller */
ret = pdata->i2c_if.i2c_init(pdata);
if (ret)
return (ret);
phy_data = malloc(sizeof(*phy_data), M_AXGBE, M_WAITOK | M_ZERO);
if (!phy_data)
return (-ENOMEM);
pdata->phy_data = phy_data;
phy_data->port_mode = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_MODE);
phy_data->port_id = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_ID);
phy_data->port_speeds = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS);
phy_data->conn_type = XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE);
phy_data->mdio_addr = XP_GET_BITS(pdata->pp0, XP_PROP_0, MDIO_ADDR);
pdata->mdio_addr = phy_data->mdio_addr;
DBGPR("port mode=%u\n", phy_data->port_mode);
DBGPR("port id=%u\n", phy_data->port_id);
DBGPR("port speeds=%#x\n", phy_data->port_speeds);
DBGPR("conn type=%u\n", phy_data->conn_type);
DBGPR("mdio addr=%u\n", phy_data->mdio_addr);
phy_data->redrv = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_PRESENT);
phy_data->redrv_if = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_IF);
phy_data->redrv_addr = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_ADDR);
phy_data->redrv_lane = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_LANE);
phy_data->redrv_model = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_MODEL);
if (phy_data->redrv) {
DBGPR("redrv present\n");
DBGPR("redrv i/f=%u\n", phy_data->redrv_if);
DBGPR("redrv addr=%#x\n", phy_data->redrv_addr);
DBGPR("redrv lane=%u\n", phy_data->redrv_lane);
DBGPR("redrv model=%u\n", phy_data->redrv_model);
}
DBGPR("%s: redrv addr=%#x redrv i/f=%u\n", __func__,
phy_data->redrv_addr, phy_data->redrv_if);
/* Validate the connection requested */
if (xgbe_phy_conn_type_mismatch(pdata)) {
axgbe_error("phy mode/connection mismatch "
"(%#x/%#x)\n", phy_data->port_mode, phy_data->conn_type);
return (-EINVAL);
}
/* Validate the mode requested */
if (xgbe_phy_port_mode_mismatch(pdata)) {
axgbe_error("phy mode/speed mismatch "
"(%#x/%#x)\n", phy_data->port_mode, phy_data->port_speeds);
return (-EINVAL);
}
/* Check for and validate MDIO reset support */
ret = xgbe_phy_mdio_reset_setup(pdata);
if (ret) {
axgbe_error("%s, mdio_reset_setup ret %d\n", __func__, ret);
return (ret);
}
/* Validate the re-driver information */
if (xgbe_phy_redrv_error(phy_data)) {
axgbe_error("phy re-driver settings error\n");
return (-EINVAL);
}
pdata->kr_redrv = phy_data->redrv;
/* Indicate current mode is unknown */
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
/* Initialize supported features. Current code does not support ethtool */
XGBE_ZERO_SUP(&pdata->phy);
DBGPR("%s: port mode %d\n", __func__, phy_data->port_mode);
switch (phy_data->port_mode) {
/* Backplane support */
case XGBE_PORT_MODE_BACKPLANE:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, Backplane);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
XGBE_SET_SUP(&pdata->phy, 1000baseKX_Full);
phy_data->start_mode = XGBE_MODE_KX_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
XGBE_SET_SUP(&pdata->phy, 10000baseKR_Full);
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
XGBE_SET_SUP(&pdata->phy, 10000baseR_FEC);
phy_data->start_mode = XGBE_MODE_KR;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, Backplane);
XGBE_SET_SUP(&pdata->phy, 2500baseX_Full);
phy_data->start_mode = XGBE_MODE_KX_2500;
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
/* MDIO 1GBase-T support */
case XGBE_PORT_MODE_1000BASE_T:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, TP);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
XGBE_SET_SUP(&pdata->phy, 100baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
XGBE_SET_SUP(&pdata->phy, 1000baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
break;
/* MDIO Base-X support */
case XGBE_PORT_MODE_1000BASE_X:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, FIBRE);
XGBE_SET_SUP(&pdata->phy, 1000baseX_Full);
phy_data->start_mode = XGBE_MODE_X;
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
break;
/* MDIO NBase-T support */
case XGBE_PORT_MODE_NBASE_T:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, TP);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
XGBE_SET_SUP(&pdata->phy, 100baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
XGBE_SET_SUP(&pdata->phy, 1000baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) {
XGBE_SET_SUP(&pdata->phy, 2500baseT_Full);
phy_data->start_mode = XGBE_MODE_KX_2500;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL45;
break;
/* 10GBase-T support */
case XGBE_PORT_MODE_10GBASE_T:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, TP);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
XGBE_SET_SUP(&pdata->phy, 100baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
XGBE_SET_SUP(&pdata->phy, 1000baseT_Full);
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
XGBE_SET_SUP(&pdata->phy, 10000baseT_Full);
phy_data->start_mode = XGBE_MODE_KR;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL45;
break;
/* 10GBase-R support */
case XGBE_PORT_MODE_10GBASE_R:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, FIBRE);
XGBE_SET_SUP(&pdata->phy, 10000baseSR_Full);
XGBE_SET_SUP(&pdata->phy, 10000baseLR_Full);
XGBE_SET_SUP(&pdata->phy, 10000baseLRM_Full);
XGBE_SET_SUP(&pdata->phy, 10000baseER_Full);
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
XGBE_SET_SUP(&pdata->phy, 10000baseR_FEC);
phy_data->start_mode = XGBE_MODE_SFI;
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
/* SFP support */
case XGBE_PORT_MODE_SFP:
XGBE_SET_SUP(&pdata->phy, Autoneg);
XGBE_SET_SUP(&pdata->phy, Pause);
XGBE_SET_SUP(&pdata->phy, Asym_Pause);
XGBE_SET_SUP(&pdata->phy, TP);
XGBE_SET_SUP(&pdata->phy, FIBRE);
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
phy_data->start_mode = XGBE_MODE_SGMII_100;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
phy_data->start_mode = XGBE_MODE_SGMII_1000;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
phy_data->start_mode = XGBE_MODE_SFI;
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
xgbe_phy_sfp_setup(pdata);
DBGPR("%s: start %d mode %d adv 0x%x\n", __func__,
phy_data->start_mode, phy_data->phydev_mode,
pdata->phy.advertising);
break;
default:
return (-EINVAL);
}
axgbe_printf(2, "%s: start %d mode %d adv 0x%x\n", __func__,
phy_data->start_mode, phy_data->phydev_mode, pdata->phy.advertising);
DBGPR("%s: conn type %d mode %d\n", __func__,
phy_data->conn_type, phy_data->phydev_mode);
if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) &&
(phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
phy_data->phydev_mode);
if (ret) {
axgbe_error("mdio port/clause not compatible (%d/%u)\n",
phy_data->mdio_addr, phy_data->phydev_mode);
return (-EINVAL);
}
}
if (phy_data->redrv && !phy_data->redrv_if) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
XGBE_MDIO_MODE_CL22);
if (ret) {
axgbe_error("redriver mdio port not compatible (%u)\n",
phy_data->redrv_addr);
return (-EINVAL);
}
}
phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT;
if (phy_data->port_mode != XGBE_PORT_MODE_SFP) {
ret = mii_attach(pdata->dev, &pdata->axgbe_miibus, pdata->netdev,
(ifm_change_cb_t)axgbe_ifmedia_upd,
(ifm_stat_cb_t)axgbe_ifmedia_sts, BMSR_DEFCAPMASK,
pdata->mdio_addr, MII_OFFSET_ANY, MIIF_FORCEANEG);
if (ret){
axgbe_printf(2, "mii attach failed with err=(%d)\n", ret);
return (-EINVAL);
}
}
DBGPR("%s: return success\n", __func__);
return (0);
}
void
xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if)
{
struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl;
phy_impl->init = xgbe_phy_init;
phy_impl->exit = xgbe_phy_exit;
phy_impl->reset = xgbe_phy_reset;
phy_impl->start = xgbe_phy_start;
phy_impl->stop = xgbe_phy_stop;
phy_impl->link_status = xgbe_phy_link_status;
phy_impl->valid_speed = xgbe_phy_valid_speed;
phy_impl->use_mode = xgbe_phy_use_mode;
phy_impl->set_mode = xgbe_phy_set_mode;
phy_impl->get_mode = xgbe_phy_get_mode;
phy_impl->switch_mode = xgbe_phy_switch_mode;
phy_impl->cur_mode = xgbe_phy_cur_mode;
phy_impl->get_type = xgbe_phy_get_type;
phy_impl->an_mode = xgbe_phy_an_mode;
phy_impl->an_config = xgbe_phy_an_config;
phy_impl->an_advertising = xgbe_phy_an_advertising;
phy_impl->an_outcome = xgbe_phy_an_outcome;
phy_impl->an_pre = xgbe_phy_an_pre;
phy_impl->an_post = xgbe_phy_an_post;
phy_impl->kr_training_pre = xgbe_phy_kr_training_pre;
phy_impl->kr_training_post = xgbe_phy_kr_training_post;
phy_impl->module_info = xgbe_phy_module_info;
phy_impl->module_eeprom = xgbe_phy_module_eeprom;
}