/*
 * AMD 10Gb Ethernet driver
 *
 * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
 *
 * This file is available to you under your choice of the following two
 * licenses:
 *
 * License 1: GPLv2
 *
 * This file is free software; you may copy, redistribute and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or (at
 * your option) any later version.
 *
 * This file is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * This file incorporates work covered by the following copyright and
 * permission notice:
 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
 *     and you.
 *
 *     The Software IS NOT an item of Licensed Software or Licensed Product
 *     under any End User Software License Agreement or Agreement for Licensed
 *     Product with Synopsys or any supplement thereto.  Permission is hereby
 *     granted, free of charge, to any person obtaining a copy of this software
 *     annotated with this license and the Software, to deal in the Software
 *     without restriction, including without limitation the rights to use,
 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
 *     of the Software, and to permit persons to whom the Software is furnished
 *     to do so, subject to the following conditions:
 *
 *     The above copyright notice and this permission notice shall be included
 *     in all copies or substantial portions of the Software.
 *
 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 *     THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * License 2: Modified BSD
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * This file incorporates work covered by the following copyright and
 * permission notice:
 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
 *     and you.
 *
 *     The Software IS NOT an item of Licensed Software or Licensed Product
 *     under any End User Software License Agreement or Agreement for Licensed
 *     Product with Synopsys or any supplement thereto.  Permission is hereby
 *     granted, free of charge, to any person obtaining a copy of this software
 *     annotated with this license and the Software, to deal in the Software
 *     without restriction, including without limitation the rights to use,
 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
 *     of the Software, and to permit persons to whom the Software is furnished
 *     to do so, subject to the following conditions:
 *
 *     The above copyright notice and this permission notice shall be included
 *     in all copies or substantial portions of the Software.
 *
 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 *     THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#include "xgbe.h"
#include "xgbe-common.h"

#include <net/if_dl.h>

static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
{
	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
}

static unsigned int
xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
{
	unsigned long rate;
	unsigned int ret;

	rate = pdata->sysclk_rate;

	/*
	 * Convert the input usec value to the watchdog timer value. Each
	 * watchdog timer value is equivalent to 256 clock cycles.
	 * Calculate the required value as:
	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
	 */
	ret = (usec * (rate / 1000000)) / 256;

	return (ret);
}

static unsigned int
xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
{
	unsigned long rate;
	unsigned int ret;

	rate = pdata->sysclk_rate;

	/*
	 * Convert the input watchdog timer value to the usec value. Each
	 * watchdog timer value is equivalent to 256 clock cycles.
	 * Calculate the required value as:
	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
	 */
	ret = (riwt * 256) / (rate / 1000000);

	return (ret);
}

static int
xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
{
	unsigned int pblx8, pbl;
	unsigned int i;

	pblx8 = DMA_PBL_X8_DISABLE;
	pbl = pdata->pbl;

	if (pdata->pbl > 32) {
		pblx8 = DMA_PBL_X8_ENABLE;
		pbl >>= 3;
	}

	for (i = 0; i < pdata->channel_count; i++) {
		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
		    pblx8);

		if (pdata->channel[i]->tx_ring)
			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
			    PBL, pbl);

		if (pdata->channel[i]->rx_ring)
			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
			    PBL, pbl);
	}

	return (0);
}

static int
xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
		    pdata->tx_osp_mode);
	}

	return (0);
}

static int
xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
	unsigned int i;

	for (i = 0; i < pdata->rx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);

	return (0);
}

static int
xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
	unsigned int i;

	for (i = 0; i < pdata->tx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);

	return (0);
}

static int
xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
	unsigned int i;

	for (i = 0; i < pdata->rx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);

	return (0);
}

static int
xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
	unsigned int i;

	for (i = 0; i < pdata->tx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);

	return (0);
}

static int
xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
		    pdata->rx_riwt);
	}

	return (0);
}

static int
xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
{
	return (0);
}

static void
xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
		    pdata->rx_buf_size);
	}
}

static void
xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);

	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
	}
}

static void
xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
{
	unsigned int i;
	int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);

	axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
	    pdata->sph_enable, sph_enable_flag);

	if (pdata->sph_enable && sph_enable_flag)
		axgbe_printf(0, "SPH Enabled\n");

	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;
		if (pdata->sph_enable && sph_enable_flag) {
			/* Enable split header feature */
			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
		} else {
			/* Disable split header feature */
			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
		}

		/* per-channel confirmation of SPH being disabled/enabled */
		int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
		axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
		    (val ? "enabled" : "disabled"), i);
	}

	if (pdata->sph_enable && sph_enable_flag)
		XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
}

static int
xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
    unsigned int index, unsigned int val)
{
	unsigned int wait;
	int ret = 0;

	mtx_lock(&pdata->rss_mutex);

	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
		ret = -EBUSY;
		goto unlock;
	}

	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);

	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);

	wait = 1000;
	while (wait--) {
		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
			goto unlock;

		DELAY(1000);
	}

	ret = -EBUSY;

unlock:
	mtx_unlock(&pdata->rss_mutex);

	return (ret);
}

static int
xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
{
	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
	unsigned int *key = (unsigned int *)&pdata->rss_key;
	int ret;

	while (key_regs--) {
		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
		    key_regs, *key++);
		if (ret)
			return (ret);
	}

	return (0);
}

static int
xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
{
	unsigned int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
		    pdata->rss_table[i]);
		if (ret)
			return (ret);
	}

	return (0);
}

static int
xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
{
	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));

	return (xgbe_write_rss_hash_key(pdata));
}

static int
xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);

	return (xgbe_write_rss_lookup_table(pdata));
}

static int
xgbe_enable_rss(struct xgbe_prv_data *pdata)
{
	int ret;

	if (!pdata->hw_feat.rss)
		return (-EOPNOTSUPP);

	/* Program the hash key */
	ret = xgbe_write_rss_hash_key(pdata);
	if (ret)
		return (ret);

	/* Program the lookup table */
	ret = xgbe_write_rss_lookup_table(pdata);
	if (ret)
		return (ret);

	/* Set the RSS options */
	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);

	/* Enable RSS */
	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);

	axgbe_printf(0, "RSS Enabled\n");

	return (0);
}

static int
xgbe_disable_rss(struct xgbe_prv_data *pdata)
{
	if (!pdata->hw_feat.rss)
		return (-EOPNOTSUPP);

	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);

	axgbe_printf(0, "RSS Disabled\n");

	return (0);
}

static void
xgbe_config_rss(struct xgbe_prv_data *pdata)
{
	int ret;

	if (!pdata->hw_feat.rss)
		return;

	/* Check if the interface has RSS capability */
	if (pdata->enable_rss)
		ret = xgbe_enable_rss(pdata);
	else
		ret = xgbe_disable_rss(pdata);

	if (ret)
		axgbe_error("error configuring RSS, RSS disabled\n");
}

static int
xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
{
	unsigned int max_q_count, q_count;
	unsigned int reg, reg_val;
	unsigned int i;

	/* Clear MTL flow control */
	for (i = 0; i < pdata->rx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);

	/* Clear MAC flow control */
	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
	reg = MAC_Q0TFCR;
	for (i = 0; i < q_count; i++) {
		reg_val = XGMAC_IOREAD(pdata, reg);
		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
		XGMAC_IOWRITE(pdata, reg, reg_val);

		reg += MAC_QTFCR_INC;
	}

	return (0);
}

static int
xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
{
	unsigned int max_q_count, q_count;
	unsigned int reg, reg_val;
	unsigned int i;

	/* Set MTL flow control */
	for (i = 0; i < pdata->rx_q_count; i++) {
		unsigned int ehfc = 0;

		if (pdata->rx_rfd[i]) {
			/* Flow control thresholds are established */
			/* TODO - enable pfc/ets support */
			ehfc = 1;
		}

		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);

		axgbe_printf(1, "flow control %s for RXq%u\n",
		    ehfc ? "enabled" : "disabled", i);
	}

	/* Set MAC flow control */
	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
	reg = MAC_Q0TFCR;
	for (i = 0; i < q_count; i++) {
		reg_val = XGMAC_IOREAD(pdata, reg);

		/* Enable transmit flow control */
		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);

		/* Set pause time */
		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);

		XGMAC_IOWRITE(pdata, reg, reg_val);

		reg += MAC_QTFCR_INC;
	}

	return (0);
}

static int
xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);

	return (0);
}

static int
xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);

	return (0);
}

static int
xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
{
	if (pdata->tx_pause)
		xgbe_enable_tx_flow_control(pdata);
	else
		xgbe_disable_tx_flow_control(pdata);

	return (0);
}

static int
xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
{
	if (pdata->rx_pause)
		xgbe_enable_rx_flow_control(pdata);
	else
		xgbe_disable_rx_flow_control(pdata);

	return (0);
}

static void
xgbe_config_flow_control(struct xgbe_prv_data *pdata)
{
	xgbe_config_tx_flow_control(pdata);
	xgbe_config_rx_flow_control(pdata);

	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
}

static void
xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
{
	struct xgbe_channel *channel;
	unsigned int i, ver;

	/* Set the interrupt mode if supported */
	if (pdata->channel_irq_mode)
		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
		    pdata->channel_irq_mode);

	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);

	for (i = 0; i < pdata->channel_count; i++) {
		channel = pdata->channel[i];

		/* Clear all the interrupts which are set */
		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));

		/* Clear all interrupt enable bits */
		channel->curr_ier = 0;

		/* Enable following interrupts
		 *   NIE  - Normal Interrupt Summary Enable
		 *   AIE  - Abnormal Interrupt Summary Enable
		 *   FBEE - Fatal Bus Error Enable
		 */
		if (ver < 0x21) {
			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
		} else {
			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
		}
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);

		if (channel->tx_ring) {
			/* Enable the following Tx interrupts
			 *   TIE  - Transmit Interrupt Enable (unless using
			 *	  per channel interrupts in edge triggered
			 *	  mode)
			 */
			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
				XGMAC_SET_BITS(channel->curr_ier,
					       DMA_CH_IER, TIE, 1);
		}
		if (channel->rx_ring) {
			/* Enable following Rx interrupts
			 *   RBUE - Receive Buffer Unavailable Enable
			 *   RIE  - Receive Interrupt Enable (unless using
			 *	  per channel interrupts in edge triggered
			 *	  mode)
			 */
			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
				XGMAC_SET_BITS(channel->curr_ier,
					       DMA_CH_IER, RIE, 1);
		}

		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
	}
}

static void
xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
{
	unsigned int mtl_q_isr;
	unsigned int q_count, i;

	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
	for (i = 0; i < q_count; i++) {
		/* Clear all the interrupts which are set */
		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);

		/* No MTL interrupts to be enabled */
		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
	}
}

static void
xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
{
	unsigned int mac_ier = 0;

	/* Enable Timestamp interrupt */
	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);

	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);

	/* Enable all counter interrupts */
	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);

	/* Enable MDIO single command completion interrupt */
	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
}

static int
xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
{
	unsigned int ss;

	switch (speed) {
	case SPEED_1000:
		ss = 0x03;
		break;
	case SPEED_2500:
		ss = 0x02;
		break;
	case SPEED_10000:
		ss = 0x00;
		break;
	default:
		return (-EINVAL);
	}

	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);

	return (0);
}

static int
xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
	/* Put the VLAN tag in the Rx descriptor */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);

	/* Don't check the VLAN type */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);

	/* Check only C-TAG (0x8100) packets */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);

	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);

	/* Enable VLAN tag stripping */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);

	axgbe_printf(0, "VLAN Stripping Enabled\n");

	return (0);
}

static int
xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);

	axgbe_printf(0, "VLAN Stripping Disabled\n");

	return (0);
}

static int
xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
	/* Enable VLAN filtering */
	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);

	/* Enable VLAN Hash Table filtering */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);

	/* Disable VLAN tag inverse matching */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);

	/* Only filter on the lower 12-bits of the VLAN tag */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);

	/* In order for the VLAN Hash Table filtering to be effective,
	 * the VLAN tag identifier in the VLAN Tag Register must not
	 * be zero.  Set the VLAN tag identifier to "1" to enable the
	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
	 * 1 will always pass filtering.
	 */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);

	axgbe_printf(0, "VLAN filtering Enabled\n");

	return (0);
}

static int
xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
	/* Disable VLAN filtering */
	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);

	axgbe_printf(0, "VLAN filtering Disabled\n");

	return (0);
}

static uint32_t
xgbe_vid_crc32_le(__le16 vid_le)
{
	uint32_t crc = ~0;
	uint32_t temp = 0;
	unsigned char *data = (unsigned char *)&vid_le;
	unsigned char data_byte = 0;
	int i, bits;

	bits = get_bitmask_order(VLAN_VID_MASK);
	for (i = 0; i < bits; i++) {
		if ((i % 8) == 0)
			data_byte = data[i / 8];

		temp = ((crc & 1) ^ data_byte) & 1;
		crc >>= 1;
		data_byte >>= 1;

		if (temp)
			crc ^= CRC32_POLY_LE;
	}

	return (crc);
}

static int
xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
{
	uint32_t crc;
	uint16_t vid;
	uint16_t vlan_hash_table = 0;
	__le16 vid_le = 0;

	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
 
	/* Generate the VLAN Hash Table value */
	for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {

		/* Get the CRC32 value of the VLAN ID */
		vid_le = cpu_to_le16(vid);
		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;

		vlan_hash_table |= (1 << crc);
		axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
		    vlan_hash_table);
	}

	/* Set the VLAN Hash Table filtering register */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);

	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
		XGMAC_IOREAD(pdata, MAC_VLANHTR));
 
	return (0);
}

static int
xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
	unsigned int val = enable ? 1 : 0;

	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
		return (0);

	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");

	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);

	/* Hardware will still perform VLAN filtering in promiscuous mode */
	if (enable) {
		axgbe_printf(1, "Disabling rx vlan filtering\n");
		xgbe_disable_rx_vlan_filtering(pdata);
	} else {
		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
			axgbe_printf(1, "Enabling rx vlan filtering\n");
			xgbe_enable_rx_vlan_filtering(pdata);
		}
	}

	return (0);
}

static int
xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
	unsigned int val = enable ? 1 : 0;

	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
		return (0);

	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);

	return (0);
}

static void
xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
{
	unsigned int mac_addr_hi, mac_addr_lo;
	uint8_t *mac_addr;

	mac_addr_lo = 0;
	mac_addr_hi = 0;

	if (addr) {
		mac_addr = (uint8_t *)&mac_addr_lo;
		mac_addr[0] = addr[0];
		mac_addr[1] = addr[1];
		mac_addr[2] = addr[2];
		mac_addr[3] = addr[3];
		mac_addr = (uint8_t *)&mac_addr_hi;
		mac_addr[0] = addr[4];
		mac_addr[1] = addr[5];

		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);

		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
	}

	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
	*mac_reg += MAC_MACA_INC;
	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
	*mac_reg += MAC_MACA_INC;
}

static void
xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
{
	unsigned int mac_reg;
	unsigned int addn_macs;

	mac_reg = MAC_MACA1HR;
	addn_macs = pdata->hw_feat.addn_mac;

	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
	addn_macs--;

	/* Clear remaining additional MAC address entries */
	while (addn_macs--)
		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
}

static int
xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
{
	/* TODO - add support to set mac hash table */
	xgbe_set_mac_addn_addrs(pdata);

	return (0);
}

static int
xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
{
	unsigned int mac_addr_hi, mac_addr_lo;

	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
		      (addr[1] <<  8) | (addr[0] <<  0);

	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);

	return (0);
}

static int
xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
{
	unsigned int pr_mode, am_mode;

	pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
	am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);

	xgbe_set_promiscuous_mode(pdata, pr_mode);
	xgbe_set_all_multicast_mode(pdata, am_mode);

	xgbe_add_mac_addresses(pdata);

	return (0);
}

static int
xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
	unsigned int reg;

	if (gpio > 15)
		return (-EINVAL);

	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);

	reg &= ~(1 << (gpio + 16));
	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);

	return (0);
}

static int
xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
	unsigned int reg;

	if (gpio > 15)
		return (-EINVAL);

	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);

	reg |= (1 << (gpio + 16));
	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);

	return (0);
}

static int
xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
	unsigned long flags;
	unsigned int mmd_address, index, offset;
	int mmd_data;

	if (mmd_reg & MII_ADDR_C45)
		mmd_address = mmd_reg & ~MII_ADDR_C45;
	else
		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);

	/* The PCS registers are accessed using mmio. The underlying
	 * management interface uses indirect addressing to access the MMD
	 * register sets. This requires accessing of the PCS register in two
	 * phases, an address phase and a data phase.
	 *
	 * The mmio interface is based on 16-bit offsets and values. All
	 * register offsets must therefore be adjusted by left shifting the
	 * offset 1 bit and reading 16 bits of data.
	 */
	mmd_address <<= 1;
	index = mmd_address & ~pdata->xpcs_window_mask;
	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);

	spin_lock_irqsave(&pdata->xpcs_lock, flags);
	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
	mmd_data = XPCS16_IOREAD(pdata, offset);
	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);

	return (mmd_data);
}

static void
xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
    int mmd_data)
{
	unsigned long flags;
	unsigned int mmd_address, index, offset;

	if (mmd_reg & MII_ADDR_C45)
		mmd_address = mmd_reg & ~MII_ADDR_C45;
	else
		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);

	/* The PCS registers are accessed using mmio. The underlying
	 * management interface uses indirect addressing to access the MMD
	 * register sets. This requires accessing of the PCS register in two
	 * phases, an address phase and a data phase.
	 *
	 * The mmio interface is based on 16-bit offsets and values. All
	 * register offsets must therefore be adjusted by left shifting the
	 * offset 1 bit and writing 16 bits of data.
	 */
	mmd_address <<= 1;
	index = mmd_address & ~pdata->xpcs_window_mask;
	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);

	spin_lock_irqsave(&pdata->xpcs_lock, flags);
	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
	XPCS16_IOWRITE(pdata, offset, mmd_data);
	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}

static int
xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
	unsigned long flags;
	unsigned int mmd_address;
	int mmd_data;

	if (mmd_reg & MII_ADDR_C45)
		mmd_address = mmd_reg & ~MII_ADDR_C45;
	else
		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);

	/* The PCS registers are accessed using mmio. The underlying APB3
	 * management interface uses indirect addressing to access the MMD
	 * register sets. This requires accessing of the PCS register in two
	 * phases, an address phase and a data phase.
	 *
	 * The mmio interface is based on 32-bit offsets and values. All
	 * register offsets must therefore be adjusted by left shifting the
	 * offset 2 bits and reading 32 bits of data.
	 */
	spin_lock_irqsave(&pdata->xpcs_lock, flags);
	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);

	return (mmd_data);
}

static void
xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
    int mmd_data)
{
	unsigned int mmd_address;
	unsigned long flags;

	if (mmd_reg & MII_ADDR_C45)
		mmd_address = mmd_reg & ~MII_ADDR_C45;
	else
		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);

	/* The PCS registers are accessed using mmio. The underlying APB3
	 * management interface uses indirect addressing to access the MMD
	 * register sets. This requires accessing of the PCS register in two
	 * phases, an address phase and a data phase.
	 *
	 * The mmio interface is based on 32-bit offsets and values. All
	 * register offsets must therefore be adjusted by left shifting the
	 * offset 2 bits and writing 32 bits of data.
	 */
	spin_lock_irqsave(&pdata->xpcs_lock, flags);
	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}

static int
xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
	switch (pdata->vdata->xpcs_access) {
	case XGBE_XPCS_ACCESS_V1:
		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));

	case XGBE_XPCS_ACCESS_V2:
	default:
		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
	}
}

static void
xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
    int mmd_data)
{
	switch (pdata->vdata->xpcs_access) {
	case XGBE_XPCS_ACCESS_V1:
		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));

	case XGBE_XPCS_ACCESS_V2:
	default:
		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
	}
}

static unsigned int
xgbe_create_mdio_sca(int port, int reg)
{
	unsigned int mdio_sca, da;

	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;

	mdio_sca = 0;
	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);

	return (mdio_sca);
}

static int
xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
    uint16_t val)
{
	unsigned int mdio_sca, mdio_sccd;

	mtx_lock_spin(&pdata->mdio_mutex);

	mdio_sca = xgbe_create_mdio_sca(addr, reg);
	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);

	mdio_sccd = 0;
	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);

	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) == 
	    EWOULDBLOCK) {
		axgbe_error("%s: MDIO write error\n", __func__);
		mtx_unlock_spin(&pdata->mdio_mutex);
		return (-ETIMEDOUT);
	}

	mtx_unlock_spin(&pdata->mdio_mutex);
	return (0);
}

static int
xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
{
	unsigned int mdio_sca, mdio_sccd;

	mtx_lock_spin(&pdata->mdio_mutex);

	mdio_sca = xgbe_create_mdio_sca(addr, reg);
	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);

	mdio_sccd = 0;
	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);

	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
	    EWOULDBLOCK) {
		axgbe_error("%s: MDIO read error\n", __func__);
		mtx_unlock_spin(&pdata->mdio_mutex);
		return (-ETIMEDOUT);
	}

	mtx_unlock_spin(&pdata->mdio_mutex);

	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
}

static int
xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
    enum xgbe_mdio_mode mode)
{
	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);

	switch (mode) {
	case XGBE_MDIO_MODE_CL22:
		if (port > XGMAC_MAX_C22_PORT)
			return (-EINVAL);
		reg_val |= (1 << port);
		break;
	case XGBE_MDIO_MODE_CL45:
		break;
	default:
		return (-EINVAL);
	}

	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);

	return (0);
}

static int
xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
{
	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
}

static int
xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);

	axgbe_printf(0, "Receive checksum offload Disabled\n");
	return (0);
}

static int
xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);

	axgbe_printf(0, "Receive checksum offload Enabled\n");
	return (0);
}

static void
xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
{
	struct xgbe_ring_desc *rdesc = rdata->rdesc;

	/* Reset the Tx descriptor
	 *   Set buffer 1 (lo) address to zero
	 *   Set buffer 1 (hi) address to zero
	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
	 */
	rdesc->desc0 = 0;
	rdesc->desc1 = 0;
	rdesc->desc2 = 0;
	rdesc->desc3 = 0;

	wmb();
}

static void
xgbe_tx_desc_init(struct xgbe_channel *channel)
{
	struct xgbe_ring *ring = channel->tx_ring;
	struct xgbe_ring_data *rdata;
	int i;
	int start_index = ring->cur;

	/* Initialze all descriptors */
	for (i = 0; i < ring->rdesc_count; i++) {
		rdata = XGBE_GET_DESC_DATA(ring, i);

		/* Initialize Tx descriptor */
		xgbe_tx_desc_reset(rdata);
	}

	/* Update the total number of Tx descriptors */
	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);

	/* Update the starting address of descriptor ring */
	rdata = XGBE_GET_DESC_DATA(ring, start_index);
	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
	    upper_32_bits(rdata->rdata_paddr));
	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
	    lower_32_bits(rdata->rdata_paddr));
}

static void
xgbe_rx_desc_init(struct xgbe_channel *channel)
{
	struct xgbe_ring *ring = channel->rx_ring;
	struct xgbe_ring_data *rdata;
	unsigned int start_index = ring->cur;

	/* 
	 * Just set desc_count and the starting address of the desc list
	 * here. Rest will be done as part of the txrx path.
	 */

	/* Update the total number of Rx descriptors */
	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);

	/* Update the starting address of descriptor ring */
	rdata = XGBE_GET_DESC_DATA(ring, start_index);
	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
	    upper_32_bits(rdata->rdata_paddr));
	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
	    lower_32_bits(rdata->rdata_paddr));
}

static int
xgbe_dev_read(struct xgbe_channel *channel)
{
	struct xgbe_prv_data *pdata = channel->pdata;
	struct xgbe_ring *ring = channel->rx_ring;
	struct xgbe_ring_data *rdata;
	struct xgbe_ring_desc *rdesc;
	struct xgbe_packet_data *packet = &ring->packet_data;
	unsigned int err, etlt, l34t = 0;

	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);

	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
	rdesc = rdata->rdesc;

	/* Check for data availability */
	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
		return (1);

	rmb();

	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
		/* TODO - Timestamp Context Descriptor */
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    CONTEXT, 1);
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    CONTEXT_NEXT, 0);
		return (0);
	}

	/* Normal Descriptor, be sure Context Descriptor bit is off */
	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);

	/* Indicate if a Context Descriptor is next */
	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    CONTEXT_NEXT, 1);

	/* Get the header length */
	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    FIRST, 1);
		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
		    RX_NORMAL_DESC2, HL);
		if (rdata->rx.hdr_len)
			pdata->ext_stats.rx_split_header_packets++;
	} else
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    FIRST, 0);

	/* Get the RSS hash */
	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    RSS_HASH, 1);

		packet->rss_hash = le32_to_cpu(rdesc->desc1);

		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
		switch (l34t) {
		case RX_DESC3_L34T_IPV4_TCP:
			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
			break;
		case RX_DESC3_L34T_IPV4_UDP:
			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
			break;
		case RX_DESC3_L34T_IPV6_TCP:
			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
			break;
		case RX_DESC3_L34T_IPV6_UDP:
			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
			break;
		default:
			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
			break;
		}
	}

	/* Not all the data has been transferred for this packet */
	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
		/* This is not the last of the data for this packet */
		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
		    LAST, 0);
		return (0);
	}

	/* This is the last of the data for this packet */
	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
	    LAST, 1);

	/* Get the packet length */
	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);

	/* Set checksum done indicator as appropriate */
	/* TODO - add tunneling support */
	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
	    CSUM_DONE, 1);

	/* Check for errors (only valid in last descriptor) */
	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);

	if (!err || !etlt) {
		/* No error if err is 0 or etlt is 0 */
		if (etlt == 0x09) {
			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
			    VLAN_CTAG, 1);
			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
			    RX_NORMAL_DESC0, OVT);
			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
		}
	} else {
		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
		    RX_PACKET_ATTRIBUTES, TNP);

		if ((etlt == 0x05) || (etlt == 0x06)) {
			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
			    __func__, l34t, err, etlt);
			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
			    CSUM_DONE, 0);
			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
			    TNPCSUM_DONE, 0);
			pdata->ext_stats.rx_csum_errors++;
		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
			    __func__, l34t, err, etlt);
			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
			    CSUM_DONE, 0);
			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
			    TNPCSUM_DONE, 0);
			pdata->ext_stats.rx_vxlan_csum_errors++;
		} else {
			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
			    __func__, tnp, l34t, err, etlt);
			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
			    __func__, channel->queue_index,
			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
			    __func__, ring->cur, ring->dirty);
			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
			    rdesc->desc3);
			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
			    FRAME, 1);
		}
	}

	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);

	return (0);
}

static int
xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
{
	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
}

static int
xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
{
	/* Rx and Tx share LD bit, so check TDES3.LD bit */
	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
}

static int
xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
	struct xgbe_prv_data *pdata = channel->pdata;

	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
	    channel->curr_ier);

	switch (int_id) {
	case XGMAC_INT_DMA_CH_SR_TI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_TPS:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_TBU:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_RI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_RBU:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_RPS:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_TI_RI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
		break;
	case XGMAC_INT_DMA_CH_SR_FBE:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
		break;
	case XGMAC_INT_DMA_ALL:
		channel->curr_ier |= channel->saved_ier;
		break;
	default:
		return (-1);
	}

	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);

	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
	    channel->curr_ier);

	return (0);
}

static int
xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
	struct xgbe_prv_data *pdata = channel->pdata;

	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
	    channel->curr_ier);

	switch (int_id) {
	case XGMAC_INT_DMA_CH_SR_TI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_TPS:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_TBU:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_RI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_RBU:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_RPS:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_TI_RI:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
		break;
	case XGMAC_INT_DMA_CH_SR_FBE:
		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
		break;
	case XGMAC_INT_DMA_ALL:
		channel->saved_ier = channel->curr_ier;
		channel->curr_ier = 0;
		break;
	default:
		return (-1);
	}

	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);

	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
	    channel->curr_ier);

	return (0);
}

static int
__xgbe_exit(struct xgbe_prv_data *pdata)
{
	unsigned int count = 2000;

	/* Issue a software reset */
	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
	DELAY(10);

	/* Poll Until Poll Condition */
	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
		DELAY(500);

	if (!count)
		return (-EBUSY);

	return (0);
}

static int
xgbe_exit(struct xgbe_prv_data *pdata)
{
	int ret;

	/* To guard against possible incorrectly generated interrupts,
	 * issue the software reset twice.
	 */
	ret = __xgbe_exit(pdata);
	if (ret) {
		axgbe_error("%s: exit error %d\n", __func__, ret);
		return (ret);
	}

	return (__xgbe_exit(pdata));
}

static int
xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
{
	unsigned int i, count;

	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
		return (0);

	for (i = 0; i < pdata->tx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);

	/* Poll Until Poll Condition */
	for (i = 0; i < pdata->tx_q_count; i++) {
		count = 2000;
		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
							MTL_Q_TQOMR, FTQ))
			DELAY(500);

		if (!count)
			return (-EBUSY);
	}

	return (0);
}

static void
xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
{
	unsigned int sbmr;

	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);

	/* Set enhanced addressing mode */
	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);

	/* Set the System Bus mode */
	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);

	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);

	/* Set descriptor fetching threshold */
	if (pdata->vdata->tx_desc_prefetch)
		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
		    pdata->vdata->tx_desc_prefetch);

	if (pdata->vdata->rx_desc_prefetch)
		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
		    pdata->vdata->rx_desc_prefetch);
}

static void
xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
{
	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
	if (pdata->awarcr)
		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
}

static void
xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Set Tx to weighted round robin scheduling algorithm */
	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);

	/* Set Tx traffic classes to use WRR algorithm with equal weights */
	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
		    MTL_TSA_ETS);
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
	}

	/* Set Rx to strict priority algorithm */
	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
}

static void
xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
    unsigned int queue, unsigned int q_fifo_size)
{
	unsigned int frame_fifo_size;
	unsigned int rfa, rfd;

	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
	    __func__, queue, q_fifo_size, frame_fifo_size);

	/* TODO - add pfc/ets related support */

	/* This path deals with just maximum frame sizes which are
	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
	 * so we can never exceed the maximum allowable RFA/RFD
	 * values.
	 */
	if (q_fifo_size <= 2048) {
		/* rx_rfd to zero to signal no flow control */
		pdata->rx_rfa[queue] = 0;
		pdata->rx_rfd[queue] = 0;
		return;
	}

	if (q_fifo_size <= 4096) {
		/* Between 2048 and 4096 */
		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
		return;
	}

	if (q_fifo_size <= frame_fifo_size) {
		/* Between 4096 and max-frame */
		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
		return;
	}

	if (q_fifo_size <= (frame_fifo_size * 3)) {
		/* Between max-frame and 3 max-frames,
		 * trigger if we get just over a frame of data and
		 * resume when we have just under half a frame left.
		 */
		rfa = q_fifo_size - frame_fifo_size;
		rfd = rfa + (frame_fifo_size / 2);
	} else {
		/* Above 3 max-frames - trigger when just over
		 * 2 frames of space available
		 */
		rfa = frame_fifo_size * 2;
		rfa += XGMAC_FLOW_CONTROL_UNIT;
		rfd = rfa + frame_fifo_size;
	}

	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
}

static void
xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
    unsigned int *fifo)
{
	unsigned int q_fifo_size;
	unsigned int i;

	for (i = 0; i < pdata->rx_q_count; i++) {
		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;

		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
		    __func__, i, fifo[i], q_fifo_size);
		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
	}
}

static void
xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	for (i = 0; i < pdata->rx_q_count; i++) {
		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
		    pdata->rx_rfa[i], pdata->rx_rfd[i]);

		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
				       pdata->rx_rfa[i]);
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
				       pdata->rx_rfd[i]);

		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
	}
}

static unsigned int
xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
{
	/* The configured value may not be the actual amount of fifo RAM */
	return (min_t(unsigned int, pdata->tx_max_fifo_size,
	    pdata->hw_feat.tx_fifo_size));
}

static unsigned int
xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
{
	/* The configured value may not be the actual amount of fifo RAM */
	return (min_t(unsigned int, pdata->rx_max_fifo_size,
	    pdata->hw_feat.rx_fifo_size));
}

static void
xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
    unsigned int *fifo)
{
	unsigned int q_fifo_size;
	unsigned int p_fifo;
	unsigned int i;

	q_fifo_size = fifo_size / queue_count;

	/* Calculate the fifo setting by dividing the queue's fifo size
	 * by the fifo allocation increment (with 0 representing the
	 * base allocation increment so decrement the result by 1).
	 */
	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
	if (p_fifo)
		p_fifo--;

	/* Distribute the fifo equally amongst the queues */
	for (i = 0; i < queue_count; i++)
		fifo[i] = p_fifo;
}

static unsigned int
xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
    unsigned int *fifo)
{
	unsigned int i;

	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));

	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
		return (fifo_size);

	/* Rx queues 9 and up are for specialized packets,
	 * such as PTP or DCB control packets, etc. and
	 * don't require a large fifo
	 */
	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
	}

	return (fifo_size);
}

static void
xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
{
	unsigned int fifo_size;
	unsigned int fifo[XGBE_MAX_QUEUES];
	unsigned int i;

	fifo_size = xgbe_get_tx_fifo_size(pdata);
	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);

	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);

	for (i = 0; i < pdata->tx_q_count; i++) {
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
	}

	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}

static void
xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
{
	unsigned int fifo_size;
	unsigned int fifo[XGBE_MAX_QUEUES];
	unsigned int prio_queues;
	unsigned int i;

	/* TODO - add pfc/ets related support */

	/* Clear any DCB related fifo/queue information */
	fifo_size = xgbe_get_rx_fifo_size(pdata);
	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
	    fifo_size, pdata->rx_q_count, prio_queues);

	/* Assign a minimum fifo to the non-VLAN priority queues */
	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);

	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);

	for (i = 0; i < pdata->rx_q_count; i++) {
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
	}

	xgbe_calculate_flow_control_threshold(pdata, fifo);
	xgbe_config_flow_control_threshold(pdata);

	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}

static void
xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
{
	unsigned int qptc, qptc_extra, queue;
	unsigned int prio_queues;
	unsigned int ppq, ppq_extra, prio;
	unsigned int mask;
	unsigned int i, j, reg, reg_val;

	/* Map the MTL Tx Queues to Traffic Classes
	 *   Note: Tx Queues >= Traffic Classes
	 */
	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;

	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
		for (j = 0; j < qptc; j++) {
			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
			    Q2TCMAP, i);
			pdata->q2tc_map[queue++] = i;
		}

		if (i < qptc_extra) {
			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
			    Q2TCMAP, i);
			pdata->q2tc_map[queue++] = i;
		}
	}

	/* Map the 8 VLAN priority values to available MTL Rx queues */
	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;

	reg = MAC_RQC2R;
	reg_val = 0;
	for (i = 0, prio = 0; i < prio_queues;) {
		mask = 0;
		for (j = 0; j < ppq; j++) {
			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
			mask |= (1 << prio);
			pdata->prio2q_map[prio++] = i;
		}

		if (i < ppq_extra) {
			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
			mask |= (1 << prio);
			pdata->prio2q_map[prio++] = i;
		}

		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));

		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
			continue;

		XGMAC_IOWRITE(pdata, reg, reg_val);
		reg += MAC_RQC2_INC;
		reg_val = 0;
	}

	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
	reg = MTL_RQDCM0R;
	reg_val = 0;
	for (i = 0; i < pdata->rx_q_count;) {
		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));

		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
			continue;

		XGMAC_IOWRITE(pdata, reg, reg_val);

		reg += MTL_RQDCM_INC;
		reg_val = 0;
	}
}

static void
xgbe_config_mac_address(struct xgbe_prv_data *pdata)
{
	xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));

	/* Filtering is done using perfect filtering and hash filtering */
	if (pdata->hw_feat.hash_table_size) {
		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
	}
}

static void
xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
{
	unsigned int val;

	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;

	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
}

static void
xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
{
	xgbe_set_speed(pdata, pdata->phy_speed);
}

static void
xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
{
	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
		xgbe_enable_rx_csum(pdata);
	else
		xgbe_disable_rx_csum(pdata);
}

static void
xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
{
	/* Indicate that VLAN Tx CTAGs come from context descriptors */
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);

	/* Set the current VLAN Hash Table register value */
	xgbe_update_vlan_hash_table(pdata);

	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
		axgbe_printf(1, "Enabling rx vlan filtering\n");
		xgbe_enable_rx_vlan_filtering(pdata);
	} else {
		axgbe_printf(1, "Disabling rx vlan filtering\n");
		xgbe_disable_rx_vlan_filtering(pdata);
	}
	
	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
		axgbe_printf(1, "Enabling rx vlan stripping\n");
		xgbe_enable_rx_vlan_stripping(pdata);
	} else {
		axgbe_printf(1, "Disabling rx vlan stripping\n");
		xgbe_disable_rx_vlan_stripping(pdata);
	}
}

static uint64_t
xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
{
	bool read_hi;
	uint64_t val;

	if (pdata->vdata->mmc_64bit) {
		switch (reg_lo) {
		/* These registers are always 32 bit */
		case MMC_RXRUNTERROR:
		case MMC_RXJABBERERROR:
		case MMC_RXUNDERSIZE_G:
		case MMC_RXOVERSIZE_G:
		case MMC_RXWATCHDOGERROR:
			read_hi = false;
			break;

		default:
			read_hi = true;
		}
	} else {
		switch (reg_lo) {
		/* These registers are always 64 bit */
		case MMC_TXOCTETCOUNT_GB_LO:
		case MMC_TXOCTETCOUNT_G_LO:
		case MMC_RXOCTETCOUNT_GB_LO:
		case MMC_RXOCTETCOUNT_G_LO:
			read_hi = true;
			break;

		default:
			read_hi = false;
		}
	}

	val = XGMAC_IOREAD(pdata, reg_lo);

	if (read_hi)
		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);

	return (val);
}

static void
xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
{
	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
		stats->txoctetcount_gb +=
		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
		stats->txframecount_gb +=
		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
		stats->txbroadcastframes_g +=
		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
		stats->txmulticastframes_g +=
		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
		stats->tx64octets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
		stats->tx65to127octets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
		stats->tx128to255octets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
		stats->tx256to511octets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
		stats->tx512to1023octets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
		stats->tx1024tomaxoctets_gb +=
		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
		stats->txunicastframes_gb +=
		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
		stats->txmulticastframes_gb +=
		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
		stats->txbroadcastframes_g +=
		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
		stats->txunderflowerror +=
		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
		stats->txoctetcount_g +=
		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
		stats->txframecount_g +=
		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
		stats->txpauseframes +=
		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
		stats->txvlanframes_g +=
		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
}

static void
xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
{
	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
		stats->rxframecount_gb +=
		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
		stats->rxoctetcount_gb +=
		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
		stats->rxoctetcount_g +=
		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
		stats->rxbroadcastframes_g +=
		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
		stats->rxmulticastframes_g +=
		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
		stats->rxcrcerror +=
		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
		stats->rxrunterror +=
		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
		stats->rxjabbererror +=
		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
		stats->rxundersize_g +=
		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
		stats->rxoversize_g +=
		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
		stats->rx64octets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
		stats->rx65to127octets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
		stats->rx128to255octets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
		stats->rx256to511octets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
		stats->rx512to1023octets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
		stats->rx1024tomaxoctets_gb +=
		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
		stats->rxunicastframes_g +=
		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
		stats->rxlengtherror +=
		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
		stats->rxoutofrangetype +=
		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
		stats->rxpauseframes +=
		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
		stats->rxfifooverflow +=
		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
		stats->rxvlanframes_gb +=
		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);

	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
		stats->rxwatchdogerror +=
		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
}

static void
xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
{
	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;

	/* Freeze counters */
	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);

	stats->txoctetcount_gb +=
	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);

	stats->txframecount_gb +=
	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);

	stats->txbroadcastframes_g +=
	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);

	stats->txmulticastframes_g +=
	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);

	stats->tx64octets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);

	stats->tx65to127octets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);

	stats->tx128to255octets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);

	stats->tx256to511octets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);

	stats->tx512to1023octets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);

	stats->tx1024tomaxoctets_gb +=
	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);

	stats->txunicastframes_gb +=
	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);

	stats->txmulticastframes_gb +=
	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);

	stats->txbroadcastframes_gb +=
	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);

	stats->txunderflowerror +=
	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);

	stats->txoctetcount_g +=
	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);

	stats->txframecount_g +=
	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);

	stats->txpauseframes +=
	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);

	stats->txvlanframes_g +=
	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);

	stats->rxframecount_gb +=
	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);

	stats->rxoctetcount_gb +=
	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);

	stats->rxoctetcount_g +=
	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);

	stats->rxbroadcastframes_g +=
	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);

	stats->rxmulticastframes_g +=
	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);

	stats->rxcrcerror +=
	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);

	stats->rxrunterror +=
	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);

	stats->rxjabbererror +=
	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);

	stats->rxundersize_g +=
	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);

	stats->rxoversize_g +=
	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);

	stats->rx64octets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);

	stats->rx65to127octets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);

	stats->rx128to255octets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);

	stats->rx256to511octets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);

	stats->rx512to1023octets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);

	stats->rx1024tomaxoctets_gb +=
	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);

	stats->rxunicastframes_g +=
	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);

	stats->rxlengtherror +=
	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);

	stats->rxoutofrangetype +=
	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);

	stats->rxpauseframes +=
	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);

	stats->rxfifooverflow +=
	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);

	stats->rxvlanframes_gb +=
	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);

	stats->rxwatchdogerror +=
	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);

	/* Un-freeze counters */
	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
}

static void
xgbe_config_mmc(struct xgbe_prv_data *pdata)
{
	/* Set counters to reset on read */
	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);

	/* Reset the counters */
	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
}

static void
xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
	unsigned int tx_status;
	unsigned long tx_timeout;

	/* The Tx engine cannot be stopped if it is actively processing
	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
	 * wait forever though...
	 */
	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
	while (ticks < tx_timeout) {
		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
			break;

		DELAY(500);
	}

	if (ticks >= tx_timeout)
		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
		    queue);
}

static void
xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
	unsigned int tx_dsr, tx_pos, tx_qidx;
	unsigned int tx_status;
	unsigned long tx_timeout;

	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
		return (xgbe_txq_prepare_tx_stop(pdata, queue));

	/* Calculate the status register to read and the position within */
	if (queue < DMA_DSRX_FIRST_QUEUE) {
		tx_dsr = DMA_DSR0;
		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
	} else {
		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;

		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
			 DMA_DSRX_TPS_START;
	}

	/* The Tx engine cannot be stopped if it is actively processing
	 * descriptors. Wait for the Tx engine to enter the stopped or
	 * suspended state.  Don't wait forever though...
	 */
	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
	while (ticks < tx_timeout) {
		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
		if ((tx_status == DMA_TPS_STOPPED) ||
		    (tx_status == DMA_TPS_SUSPENDED))
			break;

		DELAY(500);
	}

	if (ticks >= tx_timeout)
		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
		    queue);
}

static void
xgbe_enable_tx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Enable each Tx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
	}

	/* Enable each Tx queue */
	for (i = 0; i < pdata->tx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
		    MTL_Q_ENABLED);

	/* Enable MAC Tx */
	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}

static void
xgbe_disable_tx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Prepare for Tx DMA channel stop */
	for (i = 0; i < pdata->tx_q_count; i++)
		xgbe_prepare_tx_stop(pdata, i);

	/* Disable MAC Tx */
	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);

	/* Disable each Tx queue */
	for (i = 0; i < pdata->tx_q_count; i++)
		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);

	/* Disable each Tx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
	}
}

static void
xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
	unsigned int rx_status;
	unsigned long rx_timeout;

	/* The Rx engine cannot be stopped if it is actively processing
	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
	 * wait forever though...
	 */
	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
	while (ticks < rx_timeout) {
		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
			break;

		DELAY(500);
	}

	if (ticks >= rx_timeout)
		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
		    queue);
}

static void
xgbe_enable_rx(struct xgbe_prv_data *pdata)
{
	unsigned int reg_val, i;

	/* Enable each Rx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
	}

	/* Enable each Rx queue */
	reg_val = 0;
	for (i = 0; i < pdata->rx_q_count; i++)
		reg_val |= (0x02 << (i << 1));
	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);

	/* Enable MAC Rx */
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
}

static void
xgbe_disable_rx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Disable MAC Rx */
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);

	/* Prepare for Rx DMA channel stop */
	for (i = 0; i < pdata->rx_q_count; i++)
		xgbe_prepare_rx_stop(pdata, i);

	/* Disable each Rx queue */
	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);

	/* Disable each Rx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
	}
}

static void
xgbe_powerup_tx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Enable each Tx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
	}

	/* Enable MAC Tx */
	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}

static void
xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Prepare for Tx DMA channel stop */
	for (i = 0; i < pdata->tx_q_count; i++)
		xgbe_prepare_tx_stop(pdata, i);

	/* Disable MAC Tx */
	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);

	/* Disable each Tx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->tx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
	}
}

static void
xgbe_powerup_rx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Enable each Rx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
	}
}

static void
xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
{
	unsigned int i;

	/* Disable each Rx DMA channel */
	for (i = 0; i < pdata->channel_count; i++) {
		if (!pdata->channel[i]->rx_ring)
			break;

		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
	}
}

static int
xgbe_init(struct xgbe_prv_data *pdata)
{
	struct xgbe_desc_if *desc_if = &pdata->desc_if;
	int ret;

	/* Flush Tx queues */
	ret = xgbe_flush_tx_queues(pdata);
	if (ret) {
		axgbe_error("error flushing TX queues\n");
		return (ret);
	}

	/*
	 * Initialize DMA related features
	 */
	xgbe_config_dma_bus(pdata);
	xgbe_config_dma_cache(pdata);
	xgbe_config_osp_mode(pdata);
	xgbe_config_pbl_val(pdata);
	xgbe_config_rx_coalesce(pdata);
	xgbe_config_tx_coalesce(pdata);
	xgbe_config_rx_buffer_size(pdata);
	xgbe_config_tso_mode(pdata);
	xgbe_config_sph_mode(pdata);
	xgbe_config_rss(pdata);
	desc_if->wrapper_tx_desc_init(pdata);
	desc_if->wrapper_rx_desc_init(pdata);
	xgbe_enable_dma_interrupts(pdata);

	/*
	 * Initialize MTL related features
	 */
	xgbe_config_mtl_mode(pdata);
	xgbe_config_queue_mapping(pdata);
	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
	xgbe_config_tx_fifo_size(pdata);
	xgbe_config_rx_fifo_size(pdata);
	/*TODO: Error Packet and undersized good Packet forwarding enable
		(FEP and FUP)
	 */
	xgbe_enable_mtl_interrupts(pdata);

	/*
	 * Initialize MAC related features
	 */
	xgbe_config_mac_address(pdata);
	xgbe_config_rx_mode(pdata);
	xgbe_config_jumbo_enable(pdata);
	xgbe_config_flow_control(pdata);
	xgbe_config_mac_speed(pdata);
	xgbe_config_checksum_offload(pdata);
	xgbe_config_vlan_support(pdata);
	xgbe_config_mmc(pdata);
	xgbe_enable_mac_interrupts(pdata);

	return (0);
}

void
xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
{

	hw_if->tx_complete = xgbe_tx_complete;

	hw_if->set_mac_address = xgbe_set_mac_address;
	hw_if->config_rx_mode = xgbe_config_rx_mode;

	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
	hw_if->disable_rx_csum = xgbe_disable_rx_csum;

	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;

	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
	hw_if->write_mmd_regs = xgbe_write_mmd_regs;

	hw_if->set_speed = xgbe_set_speed;

	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;

	hw_if->set_gpio = xgbe_set_gpio;
	hw_if->clr_gpio = xgbe_clr_gpio;

	hw_if->enable_tx = xgbe_enable_tx;
	hw_if->disable_tx = xgbe_disable_tx;
	hw_if->enable_rx = xgbe_enable_rx;
	hw_if->disable_rx = xgbe_disable_rx;

	hw_if->powerup_tx = xgbe_powerup_tx;
	hw_if->powerdown_tx = xgbe_powerdown_tx;
	hw_if->powerup_rx = xgbe_powerup_rx;
	hw_if->powerdown_rx = xgbe_powerdown_rx;

	hw_if->dev_read = xgbe_dev_read;
	hw_if->enable_int = xgbe_enable_int;
	hw_if->disable_int = xgbe_disable_int;
	hw_if->init = xgbe_init;
	hw_if->exit = xgbe_exit;

	/* Descriptor related Sequences have to be initialized here */
	hw_if->tx_desc_init = xgbe_tx_desc_init;
	hw_if->rx_desc_init = xgbe_rx_desc_init;
	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
	hw_if->is_last_desc = xgbe_is_last_desc;
	hw_if->is_context_desc = xgbe_is_context_desc;

	/* For FLOW ctrl */
	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;

	/* For RX coalescing */
	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
	hw_if->riwt_to_usec = xgbe_riwt_to_usec;

	/* For RX and TX threshold config */
	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
	hw_if->config_tx_threshold = xgbe_config_tx_threshold;

	/* For RX and TX Store and Forward Mode config */
	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
	hw_if->config_tsf_mode = xgbe_config_tsf_mode;

	/* For TX DMA Operating on Second Frame config */
	hw_if->config_osp_mode = xgbe_config_osp_mode;

	/* For MMC statistics support */
	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
	hw_if->read_mmc_stats = xgbe_read_mmc_stats;

	/* For Receive Side Scaling */
	hw_if->enable_rss = xgbe_enable_rss;
	hw_if->disable_rss = xgbe_disable_rss;
	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
}