/*
* AMD 10Gb Ethernet driver
*
* Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include
#include "xgbe.h"
#include "xgbe-common.h"
#include
static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
{
return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
}
static unsigned int
xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
{
unsigned long rate;
unsigned int ret;
rate = pdata->sysclk_rate;
/*
* Convert the input usec value to the watchdog timer value. Each
* watchdog timer value is equivalent to 256 clock cycles.
* Calculate the required value as:
* ( usec * ( system_clock_mhz / 10^6 ) / 256
*/
ret = (usec * (rate / 1000000)) / 256;
return (ret);
}
static unsigned int
xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
{
unsigned long rate;
unsigned int ret;
rate = pdata->sysclk_rate;
/*
* Convert the input watchdog timer value to the usec value. Each
* watchdog timer value is equivalent to 256 clock cycles.
* Calculate the required value as:
* ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
*/
ret = (riwt * 256) / (rate / 1000000);
return (ret);
}
static int
xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
{
unsigned int pblx8, pbl;
unsigned int i;
pblx8 = DMA_PBL_X8_DISABLE;
pbl = pdata->pbl;
if (pdata->pbl > 32) {
pblx8 = DMA_PBL_X8_ENABLE;
pbl >>= 3;
}
for (i = 0; i < pdata->channel_count; i++) {
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
pblx8);
if (pdata->channel[i]->tx_ring)
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
PBL, pbl);
if (pdata->channel[i]->rx_ring)
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
PBL, pbl);
}
return (0);
}
static int
xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
pdata->tx_osp_mode);
}
return (0);
}
static int
xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
return (0);
}
static int
xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
return (0);
}
static int
xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
return (0);
}
static int
xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
{
unsigned int i;
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
return (0);
}
static int
xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
pdata->rx_riwt);
}
return (0);
}
static int
xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
{
return (0);
}
static void
xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
pdata->rx_buf_size);
}
}
static void
xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
}
}
static void
xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
pdata->sph_enable, sph_enable_flag);
if (pdata->sph_enable && sph_enable_flag)
axgbe_printf(0, "SPH Enabled\n");
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
if (pdata->sph_enable && sph_enable_flag) {
/* Enable split header feature */
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
} else {
/* Disable split header feature */
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
}
/* per-channel confirmation of SPH being disabled/enabled */
int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
(val ? "enabled" : "disabled"), i);
}
if (pdata->sph_enable && sph_enable_flag)
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
}
static int
xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
unsigned int index, unsigned int val)
{
unsigned int wait;
int ret = 0;
mtx_lock(&pdata->rss_mutex);
if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
ret = -EBUSY;
goto unlock;
}
XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
wait = 1000;
while (wait--) {
if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
goto unlock;
DELAY(1000);
}
ret = -EBUSY;
unlock:
mtx_unlock(&pdata->rss_mutex);
return (ret);
}
static int
xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
{
unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
unsigned int *key = (unsigned int *)&pdata->rss_key;
int ret;
while (key_regs--) {
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
key_regs, *key++);
if (ret)
return (ret);
}
return (0);
}
static int
xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
pdata->rss_table[i]);
if (ret)
return (ret);
}
return (0);
}
static int
xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
{
memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
return (xgbe_write_rss_hash_key(pdata));
}
static int
xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
return (xgbe_write_rss_lookup_table(pdata));
}
static int
xgbe_enable_rss(struct xgbe_prv_data *pdata)
{
int ret;
if (!pdata->hw_feat.rss)
return (-EOPNOTSUPP);
/* Program the hash key */
ret = xgbe_write_rss_hash_key(pdata);
if (ret)
return (ret);
/* Program the lookup table */
ret = xgbe_write_rss_lookup_table(pdata);
if (ret)
return (ret);
/* Set the RSS options */
XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
/* Enable RSS */
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
axgbe_printf(0, "RSS Enabled\n");
return (0);
}
static int
xgbe_disable_rss(struct xgbe_prv_data *pdata)
{
if (!pdata->hw_feat.rss)
return (-EOPNOTSUPP);
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
axgbe_printf(0, "RSS Disabled\n");
return (0);
}
static void
xgbe_config_rss(struct xgbe_prv_data *pdata)
{
int ret;
if (!pdata->hw_feat.rss)
return;
/* Check if the interface has RSS capability */
if (pdata->enable_rss)
ret = xgbe_enable_rss(pdata);
else
ret = xgbe_disable_rss(pdata);
if (ret)
axgbe_error("error configuring RSS, RSS disabled\n");
}
static int
xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
{
unsigned int max_q_count, q_count;
unsigned int reg, reg_val;
unsigned int i;
/* Clear MTL flow control */
for (i = 0; i < pdata->rx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
/* Clear MAC flow control */
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
reg = MAC_Q0TFCR;
for (i = 0; i < q_count; i++) {
reg_val = XGMAC_IOREAD(pdata, reg);
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_QTFCR_INC;
}
return (0);
}
static int
xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
{
unsigned int max_q_count, q_count;
unsigned int reg, reg_val;
unsigned int i;
/* Set MTL flow control */
for (i = 0; i < pdata->rx_q_count; i++) {
unsigned int ehfc = 0;
if (pdata->rx_rfd[i]) {
/* Flow control thresholds are established */
/* TODO - enable pfc/ets support */
ehfc = 1;
}
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
axgbe_printf(1, "flow control %s for RXq%u\n",
ehfc ? "enabled" : "disabled", i);
}
/* Set MAC flow control */
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
reg = MAC_Q0TFCR;
for (i = 0; i < q_count; i++) {
reg_val = XGMAC_IOREAD(pdata, reg);
/* Enable transmit flow control */
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
/* Set pause time */
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_QTFCR_INC;
}
return (0);
}
static int
xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
return (0);
}
static int
xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
return (0);
}
static int
xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
{
if (pdata->tx_pause)
xgbe_enable_tx_flow_control(pdata);
else
xgbe_disable_tx_flow_control(pdata);
return (0);
}
static int
xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
{
if (pdata->rx_pause)
xgbe_enable_rx_flow_control(pdata);
else
xgbe_disable_rx_flow_control(pdata);
return (0);
}
static void
xgbe_config_flow_control(struct xgbe_prv_data *pdata)
{
xgbe_config_tx_flow_control(pdata);
xgbe_config_rx_flow_control(pdata);
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
}
static void
xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i, ver;
/* Set the interrupt mode if supported */
if (pdata->channel_irq_mode)
XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
pdata->channel_irq_mode);
ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
/* Clear all the interrupts which are set */
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
/* Clear all interrupt enable bits */
channel->curr_ier = 0;
/* Enable following interrupts
* NIE - Normal Interrupt Summary Enable
* AIE - Abnormal Interrupt Summary Enable
* FBEE - Fatal Bus Error Enable
*/
if (ver < 0x21) {
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
} else {
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
}
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
if (channel->tx_ring) {
/* Enable the following Tx interrupts
* TIE - Transmit Interrupt Enable (unless using
* per channel interrupts in edge triggered
* mode)
*/
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(channel->curr_ier,
DMA_CH_IER, TIE, 1);
}
if (channel->rx_ring) {
/* Enable following Rx interrupts
* RBUE - Receive Buffer Unavailable Enable
* RIE - Receive Interrupt Enable (unless using
* per channel interrupts in edge triggered
* mode)
*/
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(channel->curr_ier,
DMA_CH_IER, RIE, 1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
}
}
static void
xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
{
unsigned int mtl_q_isr;
unsigned int q_count, i;
q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
for (i = 0; i < q_count; i++) {
/* Clear all the interrupts which are set */
mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
/* No MTL interrupts to be enabled */
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
}
}
static void
xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
{
unsigned int mac_ier = 0;
/* Enable Timestamp interrupt */
XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
/* Enable all counter interrupts */
XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
/* Enable MDIO single command completion interrupt */
XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
}
static int
xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
{
unsigned int ss;
switch (speed) {
case SPEED_1000:
ss = 0x03;
break;
case SPEED_2500:
ss = 0x02;
break;
case SPEED_10000:
ss = 0x00;
break;
default:
return (-EINVAL);
}
if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
return (0);
}
static int
xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
/* Put the VLAN tag in the Rx descriptor */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
/* Don't check the VLAN type */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
/* Check only C-TAG (0x8100) packets */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
/* Enable VLAN tag stripping */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
axgbe_printf(0, "VLAN Stripping Enabled\n");
return (0);
}
static int
xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
axgbe_printf(0, "VLAN Stripping Disabled\n");
return (0);
}
static int
xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
/* Enable VLAN filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
/* Enable VLAN Hash Table filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
/* Disable VLAN tag inverse matching */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
/* Only filter on the lower 12-bits of the VLAN tag */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
/* In order for the VLAN Hash Table filtering to be effective,
* the VLAN tag identifier in the VLAN Tag Register must not
* be zero. Set the VLAN tag identifier to "1" to enable the
* VLAN Hash Table filtering. This implies that a VLAN tag of
* 1 will always pass filtering.
*/
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
axgbe_printf(0, "VLAN filtering Enabled\n");
return (0);
}
static int
xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
{
/* Disable VLAN filtering */
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
axgbe_printf(0, "VLAN filtering Disabled\n");
return (0);
}
static uint32_t
xgbe_vid_crc32_le(__le16 vid_le)
{
uint32_t crc = ~0;
uint32_t temp = 0;
unsigned char *data = (unsigned char *)&vid_le;
unsigned char data_byte = 0;
int i, bits;
bits = get_bitmask_order(VLAN_VID_MASK);
for (i = 0; i < bits; i++) {
if ((i % 8) == 0)
data_byte = data[i / 8];
temp = ((crc & 1) ^ data_byte) & 1;
crc >>= 1;
data_byte >>= 1;
if (temp)
crc ^= CRC32_POLY_LE;
}
return (crc);
}
static int
xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
{
uint32_t crc;
size_t vid;
uint16_t vlan_hash_table = 0;
__le16 vid_le = 0;
axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
XGMAC_IOREAD(pdata, MAC_VLANHTR));
/* Generate the VLAN Hash Table value */
bit_foreach(pdata->active_vlans, VLAN_NVID, vid) {
/* Get the CRC32 value of the VLAN ID */
vid_le = cpu_to_le16(vid);
crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
vlan_hash_table |= (1 << crc);
axgbe_printf(1, "%s: vid 0x%lx vid_le 0x%x crc 0x%x "
"vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
vlan_hash_table);
}
/* Set the VLAN Hash Table filtering register */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
XGMAC_IOREAD(pdata, MAC_VLANHTR));
return (0);
}
static int
xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
unsigned int val = enable ? 1 : 0;
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
return (0);
axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
/* Hardware will still perform VLAN filtering in promiscuous mode */
if (enable) {
axgbe_printf(1, "Disabling rx vlan filtering\n");
xgbe_disable_rx_vlan_filtering(pdata);
} else {
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
axgbe_printf(1, "Enabling rx vlan filtering\n");
xgbe_enable_rx_vlan_filtering(pdata);
}
}
return (0);
}
static int
xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
{
unsigned int val = enable ? 1 : 0;
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
return (0);
axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
return (0);
}
static void
xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
{
unsigned int mac_addr_hi, mac_addr_lo;
uint8_t *mac_addr;
mac_addr_lo = 0;
mac_addr_hi = 0;
if (addr) {
mac_addr = (uint8_t *)&mac_addr_lo;
mac_addr[0] = addr[0];
mac_addr[1] = addr[1];
mac_addr[2] = addr[2];
mac_addr[3] = addr[3];
mac_addr = (uint8_t *)&mac_addr_hi;
mac_addr[0] = addr[4];
mac_addr[1] = addr[5];
axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
}
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
*mac_reg += MAC_MACA_INC;
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
*mac_reg += MAC_MACA_INC;
}
static void
xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
{
unsigned int mac_reg;
unsigned int addn_macs;
mac_reg = MAC_MACA1HR;
addn_macs = pdata->hw_feat.addn_mac;
xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
addn_macs--;
/* Clear remaining additional MAC address entries */
while (addn_macs--)
xgbe_set_mac_reg(pdata, NULL, &mac_reg);
}
static int
xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
{
/* TODO - add support to set mac hash table */
xgbe_set_mac_addn_addrs(pdata);
return (0);
}
static int
xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
{
unsigned int mac_addr_hi, mac_addr_lo;
mac_addr_hi = (addr[5] << 8) | (addr[4] << 0);
mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
(addr[1] << 8) | (addr[0] << 0);
XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
return (0);
}
static int
xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
{
unsigned int pr_mode, am_mode;
pr_mode = ((if_getflags(pdata->netdev) & IFF_PPROMISC) != 0);
am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
xgbe_set_promiscuous_mode(pdata, pr_mode);
xgbe_set_all_multicast_mode(pdata, am_mode);
xgbe_add_mac_addresses(pdata);
return (0);
}
static int
xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 15)
return (-EINVAL);
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg &= ~(1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return (0);
}
static int
xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 15)
return (-EINVAL);
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg |= (1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return (0);
}
static int
xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
unsigned long flags;
unsigned int mmd_address, index, offset;
int mmd_data;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 16-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 1 bit and reading 16 bits of data.
*/
mmd_address <<= 1;
index = mmd_address & ~pdata->xpcs_window_mask;
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
mmd_data = XPCS16_IOREAD(pdata, offset);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
return (mmd_data);
}
static void
xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
unsigned long flags;
unsigned int mmd_address, index, offset;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 16-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 1 bit and writing 16 bits of data.
*/
mmd_address <<= 1;
index = mmd_address & ~pdata->xpcs_window_mask;
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
XPCS16_IOWRITE(pdata, offset, mmd_data);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}
static int
xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
unsigned long flags;
unsigned int mmd_address;
int mmd_data;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying APB3
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 32-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 2 bits and reading 32 bits of data.
*/
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
return (mmd_data);
}
static void
xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
unsigned int mmd_address;
unsigned long flags;
if (mmd_reg & MII_ADDR_C45)
mmd_address = mmd_reg & ~MII_ADDR_C45;
else
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
/* The PCS registers are accessed using mmio. The underlying APB3
* management interface uses indirect addressing to access the MMD
* register sets. This requires accessing of the PCS register in two
* phases, an address phase and a data phase.
*
* The mmio interface is based on 32-bit offsets and values. All
* register offsets must therefore be adjusted by left shifting the
* offset 2 bits and writing 32 bits of data.
*/
spin_lock_irqsave(&pdata->xpcs_lock, flags);
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
}
static int
xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
{
switch (pdata->vdata->xpcs_access) {
case XGBE_XPCS_ACCESS_V1:
return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
case XGBE_XPCS_ACCESS_V2:
default:
return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
}
}
static void
xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
int mmd_data)
{
switch (pdata->vdata->xpcs_access) {
case XGBE_XPCS_ACCESS_V1:
return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
case XGBE_XPCS_ACCESS_V2:
default:
return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
}
}
static unsigned int
xgbe_create_mdio_sca(int port, int reg)
{
unsigned int mdio_sca, da;
da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
mdio_sca = 0;
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
return (mdio_sca);
}
static int
xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
uint16_t val)
{
unsigned int mdio_sca, mdio_sccd;
mtx_lock_spin(&pdata->mdio_mutex);
mdio_sca = xgbe_create_mdio_sca(addr, reg);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
EWOULDBLOCK) {
axgbe_error("%s: MDIO write error\n", __func__);
mtx_unlock_spin(&pdata->mdio_mutex);
return (-ETIMEDOUT);
}
mtx_unlock_spin(&pdata->mdio_mutex);
return (0);
}
static int
xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
{
unsigned int mdio_sca, mdio_sccd;
mtx_lock_spin(&pdata->mdio_mutex);
mdio_sca = xgbe_create_mdio_sca(addr, reg);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
EWOULDBLOCK) {
axgbe_error("%s: MDIO read error\n", __func__);
mtx_unlock_spin(&pdata->mdio_mutex);
return (-ETIMEDOUT);
}
mtx_unlock_spin(&pdata->mdio_mutex);
return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
}
static int
xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
enum xgbe_mdio_mode mode)
{
unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
switch (mode) {
case XGBE_MDIO_MODE_CL22:
if (port > XGMAC_MAX_C22_PORT)
return (-EINVAL);
reg_val |= (1 << port);
break;
case XGBE_MDIO_MODE_CL45:
break;
default:
return (-EINVAL);
}
XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
return (0);
}
static int
xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
{
return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
}
static int
xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
axgbe_printf(0, "Receive checksum offload Disabled\n");
return (0);
}
static int
xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
axgbe_printf(0, "Receive checksum offload Enabled\n");
return (0);
}
static void
xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
{
struct xgbe_ring_desc *rdesc = rdata->rdesc;
/* Reset the Tx descriptor
* Set buffer 1 (lo) address to zero
* Set buffer 1 (hi) address to zero
* Reset all other control bits (IC, TTSE, B2L & B1L)
* Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
*/
rdesc->desc0 = 0;
rdesc->desc1 = 0;
rdesc->desc2 = 0;
rdesc->desc3 = 0;
wmb();
}
static void
xgbe_tx_desc_init(struct xgbe_channel *channel)
{
struct xgbe_ring *ring = channel->tx_ring;
struct xgbe_ring_data *rdata;
int i;
int start_index = ring->cur;
/* Initialze all descriptors */
for (i = 0; i < ring->rdesc_count; i++) {
rdata = XGBE_GET_DESC_DATA(ring, i);
/* Initialize Tx descriptor */
xgbe_tx_desc_reset(rdata);
}
/* Update the total number of Tx descriptors */
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
/* Update the starting address of descriptor ring */
rdata = XGBE_GET_DESC_DATA(ring, start_index);
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
upper_32_bits(rdata->rdata_paddr));
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
lower_32_bits(rdata->rdata_paddr));
}
static void
xgbe_rx_desc_init(struct xgbe_channel *channel)
{
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
unsigned int start_index = ring->cur;
/*
* Just set desc_count and the starting address of the desc list
* here. Rest will be done as part of the txrx path.
*/
/* Update the total number of Rx descriptors */
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
/* Update the starting address of descriptor ring */
rdata = XGBE_GET_DESC_DATA(ring, start_index);
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
upper_32_bits(rdata->rdata_paddr));
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
lower_32_bits(rdata->rdata_paddr));
}
static int
xgbe_dev_read(struct xgbe_channel *channel)
{
struct xgbe_prv_data *pdata = channel->pdata;
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
struct xgbe_packet_data *packet = &ring->packet_data;
unsigned int err, etlt, l34t = 0;
axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
rdesc = rdata->rdesc;
/* Check for data availability */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
return (1);
rmb();
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
/* TODO - Timestamp Context Descriptor */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT, 1);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT_NEXT, 0);
return (0);
}
/* Normal Descriptor, be sure Context Descriptor bit is off */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
/* Indicate if a Context Descriptor is next */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CONTEXT_NEXT, 1);
/* Get the header length */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
FIRST, 1);
rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
RX_NORMAL_DESC2, HL);
if (rdata->rx.hdr_len)
pdata->ext_stats.rx_split_header_packets++;
} else
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
FIRST, 0);
/* Get the RSS hash */
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
RSS_HASH, 1);
packet->rss_hash = le32_to_cpu(rdesc->desc1);
l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
switch (l34t) {
case RX_DESC3_L34T_IPV4_TCP:
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
break;
case RX_DESC3_L34T_IPV4_UDP:
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
break;
case RX_DESC3_L34T_IPV6_TCP:
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
break;
case RX_DESC3_L34T_IPV6_UDP:
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
break;
default:
packet->rss_hash_type = M_HASHTYPE_OPAQUE;
break;
}
}
/* Not all the data has been transferred for this packet */
if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
/* This is not the last of the data for this packet */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST, 0);
return (0);
}
/* This is the last of the data for this packet */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST, 1);
/* Get the packet length */
rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
/* Set checksum done indicator as appropriate */
/* TODO - add tunneling support */
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 1);
/* Check for errors (only valid in last descriptor) */
err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
if (!err || !etlt) {
/* No error if err is 0 or etlt is 0 */
if (etlt == 0x09 &&
(if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
VLAN_CTAG, 1);
packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
RX_NORMAL_DESC0, OVT);
axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
}
} else {
unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, TNP);
if ((etlt == 0x05) || (etlt == 0x06)) {
axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
__func__, l34t, err, etlt);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 0);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
TNPCSUM_DONE, 0);
pdata->ext_stats.rx_csum_errors++;
} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
axgbe_printf(1, "%s: err2 l34t %d err 0x%x etlt 0x%x\n",
__func__, l34t, err, etlt);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
CSUM_DONE, 0);
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
TNPCSUM_DONE, 0);
pdata->ext_stats.rx_vxlan_csum_errors++;
} else {
axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
__func__, tnp, l34t, err, etlt);
axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
__func__, channel->queue_index,
XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
axgbe_printf(1, "%s: ring cur %d dirty %d\n",
__func__, ring->cur, ring->dirty);
axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
__func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
rdesc->desc3);
XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
FRAME, 1);
}
}
axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
return (0);
}
static int
xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
{
/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
}
static int
xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
{
/* Rx and Tx share LD bit, so check TDES3.LD bit */
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
}
static int
xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
struct xgbe_prv_data *pdata = channel->pdata;
axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
channel->curr_ier);
switch (int_id) {
case XGMAC_INT_DMA_CH_SR_TI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
break;
case XGMAC_INT_DMA_CH_SR_RPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
break;
case XGMAC_INT_DMA_CH_SR_TI_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
break;
case XGMAC_INT_DMA_CH_SR_FBE:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
break;
case XGMAC_INT_DMA_ALL:
channel->curr_ier |= channel->saved_ier;
break;
default:
return (-1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
channel->curr_ier);
return (0);
}
static int
xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
{
struct xgbe_prv_data *pdata = channel->pdata;
axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
channel->curr_ier);
switch (int_id) {
case XGMAC_INT_DMA_CH_SR_TI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RBU:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
break;
case XGMAC_INT_DMA_CH_SR_RPS:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
break;
case XGMAC_INT_DMA_CH_SR_TI_RI:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
break;
case XGMAC_INT_DMA_CH_SR_FBE:
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
break;
case XGMAC_INT_DMA_ALL:
channel->saved_ier = channel->curr_ier;
channel->curr_ier = 0;
break;
default:
return (-1);
}
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
channel->curr_ier);
return (0);
}
static int
__xgbe_exit(struct xgbe_prv_data *pdata)
{
unsigned int count = 2000;
/* Issue a software reset */
XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
DELAY(10);
/* Poll Until Poll Condition */
while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
DELAY(500);
if (!count)
return (-EBUSY);
return (0);
}
static int
xgbe_exit(struct xgbe_prv_data *pdata)
{
int ret;
/* To guard against possible incorrectly generated interrupts,
* issue the software reset twice.
*/
ret = __xgbe_exit(pdata);
if (ret) {
axgbe_error("%s: exit error %d\n", __func__, ret);
return (ret);
}
return (__xgbe_exit(pdata));
}
static int
xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
{
unsigned int i, count;
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
return (0);
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
/* Poll Until Poll Condition */
for (i = 0; i < pdata->tx_q_count; i++) {
count = 2000;
while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
MTL_Q_TQOMR, FTQ))
DELAY(500);
if (!count)
return (-EBUSY);
}
return (0);
}
static void
xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
{
unsigned int sbmr;
sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
/* Set enhanced addressing mode */
XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
/* Set the System Bus mode */
XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
/* Set descriptor fetching threshold */
if (pdata->vdata->tx_desc_prefetch)
XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
pdata->vdata->tx_desc_prefetch);
if (pdata->vdata->rx_desc_prefetch)
XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
pdata->vdata->rx_desc_prefetch);
}
static void
xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
{
XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
if (pdata->awarcr)
XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
}
static void
xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Set Tx to weighted round robin scheduling algorithm */
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
/* Set Tx traffic classes to use WRR algorithm with equal weights */
for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
MTL_TSA_ETS);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
}
/* Set Rx to strict priority algorithm */
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
}
static void
xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
unsigned int queue, unsigned int q_fifo_size)
{
unsigned int frame_fifo_size;
unsigned int rfa, rfd;
frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
__func__, queue, q_fifo_size, frame_fifo_size);
/* TODO - add pfc/ets related support */
/* This path deals with just maximum frame sizes which are
* limited to a jumbo frame of 9,000 (plus headers, etc.)
* so we can never exceed the maximum allowable RFA/RFD
* values.
*/
if (q_fifo_size <= 2048) {
/* rx_rfd to zero to signal no flow control */
pdata->rx_rfa[queue] = 0;
pdata->rx_rfd[queue] = 0;
return;
}
if (q_fifo_size <= 4096) {
/* Between 2048 and 4096 */
pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */
pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */
return;
}
if (q_fifo_size <= frame_fifo_size) {
/* Between 4096 and max-frame */
pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */
pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */
return;
}
if (q_fifo_size <= (frame_fifo_size * 3)) {
/* Between max-frame and 3 max-frames,
* trigger if we get just over a frame of data and
* resume when we have just under half a frame left.
*/
rfa = q_fifo_size - frame_fifo_size;
rfd = rfa + (frame_fifo_size / 2);
} else {
/* Above 3 max-frames - trigger when just over
* 2 frames of space available
*/
rfa = frame_fifo_size * 2;
rfa += XGMAC_FLOW_CONTROL_UNIT;
rfd = rfa + frame_fifo_size;
}
pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
}
static void
xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
unsigned int *fifo)
{
unsigned int q_fifo_size;
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++) {
q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
__func__, i, fifo[i], q_fifo_size);
xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
}
}
static void
xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->rx_q_count; i++) {
axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
pdata->rx_rfa[i], pdata->rx_rfd[i]);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
pdata->rx_rfa[i]);
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
pdata->rx_rfd[i]);
axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
}
}
static unsigned int
xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
{
/* The configured value may not be the actual amount of fifo RAM */
return (min_t(unsigned int, pdata->tx_max_fifo_size,
pdata->hw_feat.tx_fifo_size));
}
static unsigned int
xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
{
/* The configured value may not be the actual amount of fifo RAM */
return (min_t(unsigned int, pdata->rx_max_fifo_size,
pdata->hw_feat.rx_fifo_size));
}
static void
xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
unsigned int *fifo)
{
unsigned int q_fifo_size;
unsigned int p_fifo;
unsigned int i;
q_fifo_size = fifo_size / queue_count;
/* Calculate the fifo setting by dividing the queue's fifo size
* by the fifo allocation increment (with 0 representing the
* base allocation increment so decrement the result by 1).
*/
p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
if (p_fifo)
p_fifo--;
/* Distribute the fifo equally amongst the queues */
for (i = 0; i < queue_count; i++)
fifo[i] = p_fifo;
}
static unsigned int
xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
unsigned int *fifo)
{
unsigned int i;
MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
if (queue_count <= IEEE_8021QAZ_MAX_TCS)
return (fifo_size);
/* Rx queues 9 and up are for specialized packets,
* such as PTP or DCB control packets, etc. and
* don't require a large fifo
*/
for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
fifo_size -= XGMAC_FIFO_MIN_ALLOC;
}
return (fifo_size);
}
static void
xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
{
unsigned int fifo_size;
unsigned int fifo[XGBE_MAX_QUEUES];
unsigned int i;
fifo_size = xgbe_get_tx_fifo_size(pdata);
axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
for (i = 0; i < pdata->tx_q_count; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
}
axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}
static void
xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
{
unsigned int fifo_size;
unsigned int fifo[XGBE_MAX_QUEUES];
unsigned int prio_queues;
unsigned int i;
/* TODO - add pfc/ets related support */
/* Clear any DCB related fifo/queue information */
fifo_size = xgbe_get_rx_fifo_size(pdata);
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
fifo_size, pdata->rx_q_count, prio_queues);
/* Assign a minimum fifo to the non-VLAN priority queues */
fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
for (i = 0; i < pdata->rx_q_count; i++) {
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
}
xgbe_calculate_flow_control_threshold(pdata, fifo);
xgbe_config_flow_control_threshold(pdata);
axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
}
static void
xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
{
unsigned int qptc, qptc_extra, queue;
unsigned int prio_queues;
unsigned int ppq, ppq_extra, prio;
unsigned int mask;
unsigned int i, j, reg, reg_val;
/* Map the MTL Tx Queues to Traffic Classes
* Note: Tx Queues >= Traffic Classes
*/
qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
for (j = 0; j < qptc; j++) {
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
Q2TCMAP, i);
pdata->q2tc_map[queue++] = i;
}
if (i < qptc_extra) {
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
Q2TCMAP, i);
pdata->q2tc_map[queue++] = i;
}
}
/* Map the 8 VLAN priority values to available MTL Rx queues */
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
reg = MAC_RQC2R;
reg_val = 0;
for (i = 0, prio = 0; i < prio_queues;) {
mask = 0;
for (j = 0; j < ppq; j++) {
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
mask |= (1 << prio);
pdata->prio2q_map[prio++] = i;
}
if (i < ppq_extra) {
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
mask |= (1 << prio);
pdata->prio2q_map[prio++] = i;
}
reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
continue;
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MAC_RQC2_INC;
reg_val = 0;
}
/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
reg = MTL_RQDCM0R;
reg_val = 0;
for (i = 0; i < pdata->rx_q_count;) {
reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
continue;
XGMAC_IOWRITE(pdata, reg, reg_val);
reg += MTL_RQDCM_INC;
reg_val = 0;
}
}
static void
xgbe_config_mac_address(struct xgbe_prv_data *pdata)
{
xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
/*
* Promisc mode does not work as intended. Multicast traffic
* is triggering the filter, so enable Receive All.
*/
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1);
/* Filtering is done using perfect filtering and hash filtering */
if (pdata->hw_feat.hash_table_size) {
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
}
}
static void
xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
{
unsigned int val;
val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
}
static void
xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
{
xgbe_set_speed(pdata, pdata->phy_speed);
}
static void
xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
{
if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
xgbe_enable_rx_csum(pdata);
else
xgbe_disable_rx_csum(pdata);
}
static void
xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
{
/* Indicate that VLAN Tx CTAGs come from context descriptors */
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
/* Set the current VLAN Hash Table register value */
xgbe_update_vlan_hash_table(pdata);
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
axgbe_printf(1, "Enabling rx vlan filtering\n");
xgbe_enable_rx_vlan_filtering(pdata);
} else {
axgbe_printf(1, "Disabling rx vlan filtering\n");
xgbe_disable_rx_vlan_filtering(pdata);
}
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
axgbe_printf(1, "Enabling rx vlan stripping\n");
xgbe_enable_rx_vlan_stripping(pdata);
} else {
axgbe_printf(1, "Disabling rx vlan stripping\n");
xgbe_disable_rx_vlan_stripping(pdata);
}
}
static uint64_t
xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
{
bool read_hi;
uint64_t val;
if (pdata->vdata->mmc_64bit) {
switch (reg_lo) {
/* These registers are always 32 bit */
case MMC_RXRUNTERROR:
case MMC_RXJABBERERROR:
case MMC_RXUNDERSIZE_G:
case MMC_RXOVERSIZE_G:
case MMC_RXWATCHDOGERROR:
read_hi = false;
break;
default:
read_hi = true;
}
} else {
switch (reg_lo) {
/* These registers are always 64 bit */
case MMC_TXOCTETCOUNT_GB_LO:
case MMC_TXOCTETCOUNT_G_LO:
case MMC_RXOCTETCOUNT_GB_LO:
case MMC_RXOCTETCOUNT_G_LO:
read_hi = true;
break;
default:
read_hi = false;
}
}
val = XGMAC_IOREAD(pdata, reg_lo);
if (read_hi)
val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
return (val);
}
static void
xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
stats->txoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
stats->txframecount_gb +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
stats->txmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
stats->tx64octets_gb +=
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
stats->tx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
stats->tx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
stats->tx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
stats->tx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
stats->tx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
stats->txunicastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
stats->txmulticastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
stats->txunderflowerror +=
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
stats->txoctetcount_g +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
stats->txframecount_g +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
stats->txpauseframes +=
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
stats->txvlanframes_g +=
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
}
static void
xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
stats->rxframecount_gb +=
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
stats->rxoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
stats->rxoctetcount_g +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
stats->rxbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
stats->rxmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
stats->rxcrcerror +=
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
stats->rxrunterror +=
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
stats->rxjabbererror +=
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
stats->rxundersize_g +=
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
stats->rxoversize_g +=
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
stats->rx64octets_gb +=
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
stats->rx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
stats->rx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
stats->rx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
stats->rx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
stats->rx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
stats->rxunicastframes_g +=
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
stats->rxlengtherror +=
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
stats->rxoutofrangetype +=
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
stats->rxpauseframes +=
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
stats->rxfifooverflow +=
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
stats->rxvlanframes_gb +=
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
stats->rxwatchdogerror +=
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
}
static void
xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
/* Freeze counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
stats->txoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
stats->txframecount_gb +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
stats->txbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
stats->txmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
stats->tx64octets_gb +=
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
stats->tx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
stats->tx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
stats->tx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
stats->tx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
stats->tx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
stats->txunicastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
stats->txmulticastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
stats->txbroadcastframes_gb +=
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
stats->txunderflowerror +=
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
stats->txoctetcount_g +=
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
stats->txframecount_g +=
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
stats->txpauseframes +=
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
stats->txvlanframes_g +=
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
stats->rxframecount_gb +=
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
stats->rxoctetcount_gb +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
stats->rxoctetcount_g +=
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
stats->rxbroadcastframes_g +=
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
stats->rxmulticastframes_g +=
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
stats->rxcrcerror +=
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
stats->rxrunterror +=
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
stats->rxjabbererror +=
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
stats->rxundersize_g +=
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
stats->rxoversize_g +=
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
stats->rx64octets_gb +=
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
stats->rx65to127octets_gb +=
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
stats->rx128to255octets_gb +=
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
stats->rx256to511octets_gb +=
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
stats->rx512to1023octets_gb +=
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
stats->rx1024tomaxoctets_gb +=
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
stats->rxunicastframes_g +=
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
stats->rxlengtherror +=
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
stats->rxoutofrangetype +=
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
stats->rxpauseframes +=
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
stats->rxfifooverflow +=
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
stats->rxvlanframes_gb +=
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
stats->rxwatchdogerror +=
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
/* Un-freeze counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
}
static void
xgbe_config_mmc(struct xgbe_prv_data *pdata)
{
/* Set counters to reset on read */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
/* Reset the counters */
XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
}
static void
xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int tx_status;
unsigned long tx_timeout;
/* The Tx engine cannot be stopped if it is actively processing
* packets. Wait for the Tx queue to empty the Tx fifo. Don't
* wait forever though...
*/
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < tx_timeout) {
tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
(XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
break;
DELAY(500);
}
if (ticks >= tx_timeout)
axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
queue);
}
static void
xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int tx_dsr, tx_pos, tx_qidx;
unsigned int tx_status;
unsigned long tx_timeout;
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
return (xgbe_txq_prepare_tx_stop(pdata, queue));
/* Calculate the status register to read and the position within */
if (queue < DMA_DSRX_FIRST_QUEUE) {
tx_dsr = DMA_DSR0;
tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
} else {
tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
DMA_DSRX_TPS_START;
}
/* The Tx engine cannot be stopped if it is actively processing
* descriptors. Wait for the Tx engine to enter the stopped or
* suspended state. Don't wait forever though...
*/
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < tx_timeout) {
tx_status = XGMAC_IOREAD(pdata, tx_dsr);
tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
if ((tx_status == DMA_TPS_STOPPED) ||
(tx_status == DMA_TPS_SUSPENDED))
break;
DELAY(500);
}
if (ticks >= tx_timeout)
axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
queue);
}
static void
xgbe_enable_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
}
/* Enable each Tx queue */
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
MTL_Q_ENABLED);
/* Enable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}
static void
xgbe_disable_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Prepare for Tx DMA channel stop */
for (i = 0; i < pdata->tx_q_count; i++)
xgbe_prepare_tx_stop(pdata, i);
/* Disable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
/* Disable each Tx queue */
for (i = 0; i < pdata->tx_q_count; i++)
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
/* Disable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
}
}
static void
xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
{
unsigned int rx_status;
unsigned long rx_timeout;
/* The Rx engine cannot be stopped if it is actively processing
* packets. Wait for the Rx queue to empty the Rx fifo. Don't
* wait forever though...
*/
rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
while (ticks < rx_timeout) {
rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
(XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
break;
DELAY(500);
}
if (ticks >= rx_timeout)
axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
queue);
}
static void
xgbe_enable_rx(struct xgbe_prv_data *pdata)
{
unsigned int reg_val, i;
/* Enable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
}
/* Enable each Rx queue */
reg_val = 0;
for (i = 0; i < pdata->rx_q_count; i++)
reg_val |= (0x02 << (i << 1));
XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
/* Enable MAC Rx */
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
}
static void
xgbe_disable_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Disable MAC Rx */
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
/* Prepare for Rx DMA channel stop */
for (i = 0; i < pdata->rx_q_count; i++)
xgbe_prepare_rx_stop(pdata, i);
/* Disable each Rx queue */
XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
/* Disable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
}
}
static void
xgbe_powerup_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
}
/* Enable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
}
static void
xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Prepare for Tx DMA channel stop */
for (i = 0; i < pdata->tx_q_count; i++)
xgbe_prepare_tx_stop(pdata, i);
/* Disable MAC Tx */
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
/* Disable each Tx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->tx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
}
}
static void
xgbe_powerup_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Enable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
}
}
static void
xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
{
unsigned int i;
/* Disable each Rx DMA channel */
for (i = 0; i < pdata->channel_count; i++) {
if (!pdata->channel[i]->rx_ring)
break;
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
}
}
static int
xgbe_init(struct xgbe_prv_data *pdata)
{
struct xgbe_desc_if *desc_if = &pdata->desc_if;
int ret;
/* Flush Tx queues */
ret = xgbe_flush_tx_queues(pdata);
if (ret) {
axgbe_error("error flushing TX queues\n");
return (ret);
}
/*
* Initialize DMA related features
*/
xgbe_config_dma_bus(pdata);
xgbe_config_dma_cache(pdata);
xgbe_config_osp_mode(pdata);
xgbe_config_pbl_val(pdata);
xgbe_config_rx_coalesce(pdata);
xgbe_config_tx_coalesce(pdata);
xgbe_config_rx_buffer_size(pdata);
xgbe_config_tso_mode(pdata);
xgbe_config_sph_mode(pdata);
xgbe_config_rss(pdata);
desc_if->wrapper_tx_desc_init(pdata);
desc_if->wrapper_rx_desc_init(pdata);
xgbe_enable_dma_interrupts(pdata);
/*
* Initialize MTL related features
*/
xgbe_config_mtl_mode(pdata);
xgbe_config_queue_mapping(pdata);
xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
xgbe_config_tx_fifo_size(pdata);
xgbe_config_rx_fifo_size(pdata);
/*TODO: Error Packet and undersized good Packet forwarding enable
(FEP and FUP)
*/
xgbe_enable_mtl_interrupts(pdata);
/*
* Initialize MAC related features
*/
xgbe_config_mac_address(pdata);
xgbe_config_rx_mode(pdata);
xgbe_config_jumbo_enable(pdata);
xgbe_config_flow_control(pdata);
xgbe_config_mac_speed(pdata);
xgbe_config_checksum_offload(pdata);
xgbe_config_vlan_support(pdata);
xgbe_config_mmc(pdata);
xgbe_enable_mac_interrupts(pdata);
return (0);
}
void
xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
{
hw_if->tx_complete = xgbe_tx_complete;
hw_if->set_mac_address = xgbe_set_mac_address;
hw_if->config_rx_mode = xgbe_config_rx_mode;
hw_if->enable_rx_csum = xgbe_enable_rx_csum;
hw_if->disable_rx_csum = xgbe_disable_rx_csum;
hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
hw_if->read_mmd_regs = xgbe_read_mmd_regs;
hw_if->write_mmd_regs = xgbe_write_mmd_regs;
hw_if->set_speed = xgbe_set_speed;
hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
hw_if->set_gpio = xgbe_set_gpio;
hw_if->clr_gpio = xgbe_clr_gpio;
hw_if->enable_tx = xgbe_enable_tx;
hw_if->disable_tx = xgbe_disable_tx;
hw_if->enable_rx = xgbe_enable_rx;
hw_if->disable_rx = xgbe_disable_rx;
hw_if->powerup_tx = xgbe_powerup_tx;
hw_if->powerdown_tx = xgbe_powerdown_tx;
hw_if->powerup_rx = xgbe_powerup_rx;
hw_if->powerdown_rx = xgbe_powerdown_rx;
hw_if->dev_read = xgbe_dev_read;
hw_if->enable_int = xgbe_enable_int;
hw_if->disable_int = xgbe_disable_int;
hw_if->init = xgbe_init;
hw_if->exit = xgbe_exit;
/* Descriptor related Sequences have to be initialized here */
hw_if->tx_desc_init = xgbe_tx_desc_init;
hw_if->rx_desc_init = xgbe_rx_desc_init;
hw_if->tx_desc_reset = xgbe_tx_desc_reset;
hw_if->is_last_desc = xgbe_is_last_desc;
hw_if->is_context_desc = xgbe_is_context_desc;
/* For FLOW ctrl */
hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
/* For RX coalescing */
hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
hw_if->usec_to_riwt = xgbe_usec_to_riwt;
hw_if->riwt_to_usec = xgbe_riwt_to_usec;
/* For RX and TX threshold config */
hw_if->config_rx_threshold = xgbe_config_rx_threshold;
hw_if->config_tx_threshold = xgbe_config_tx_threshold;
/* For RX and TX Store and Forward Mode config */
hw_if->config_rsf_mode = xgbe_config_rsf_mode;
hw_if->config_tsf_mode = xgbe_config_tsf_mode;
/* For TX DMA Operating on Second Frame config */
hw_if->config_osp_mode = xgbe_config_osp_mode;
/* For MMC statistics support */
hw_if->tx_mmc_int = xgbe_tx_mmc_int;
hw_if->rx_mmc_int = xgbe_rx_mmc_int;
hw_if->read_mmc_stats = xgbe_read_mmc_stats;
/* For Receive Side Scaling */
hw_if->enable_rss = xgbe_enable_rss;
hw_if->disable_rss = xgbe_disable_rss;
hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
}