/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. */ #include "opt_inet.h" #include "opt_ath.h" /* * This is needed for register operations which are performed * by the driver - eg, calls to ath_hal_gettsf32(). * * It's also required for any AH_DEBUG checks in here, eg the * module dependencies. */ #include "opt_ah.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for mp_ncpus */ #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #ifdef INET #include #include #endif #include #include /* XXX for softled */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ATH_TX99_DIAG #include #endif #ifdef ATH_DEBUG_ALQ #include #endif #include /* * Calculate the receive filter according to the * operating mode and state: * * o always accept unicast, broadcast, and multicast traffic * o accept PHY error frames when hardware doesn't have MIB support * to count and we need them for ANI (sta mode only until recently) * and we are not scanning (ANI is disabled) * NB: older hal's add rx filter bits out of sight and we need to * blindly preserve them * o probe request frames are accepted only when operating in * hostap, adhoc, mesh, or monitor modes * o enable promiscuous mode * - when in monitor mode * - if interface marked PROMISC (assumes bridge setting is filtered) * o accept beacons: * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when scanning * - when doing s/w beacon miss (e.g. for ap+sta) * - when operating in ap mode in 11g to detect overlapping bss that * require protection * - when operating in mesh mode to detect neighbors * o accept control frames: * - when in monitor mode * XXX HT protection for 11n */ u_int32_t ath_calcrxfilter(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; u_int32_t rfilt; rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; if (!sc->sc_needmib && !sc->sc_scanning) rfilt |= HAL_RX_FILTER_PHYERR; if (ic->ic_opmode != IEEE80211_M_STA) rfilt |= HAL_RX_FILTER_PROBEREQ; /* XXX ic->ic_monvaps != 0? */ if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0) rfilt |= HAL_RX_FILTER_PROM; /* * Only listen to all beacons if we're scanning. * * Otherwise we only really need to hear beacons from * our own BSSID. * * IBSS? software beacon miss? Just receive all beacons. * We need to hear beacons/probe requests from everyone so * we can merge ibss. */ if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) { rfilt |= HAL_RX_FILTER_BEACON; } else if (ic->ic_opmode == IEEE80211_M_STA) { if (sc->sc_do_mybeacon && ! sc->sc_scanning) { rfilt |= HAL_RX_FILTER_MYBEACON; } else { /* scanning, non-mybeacon chips */ rfilt |= HAL_RX_FILTER_BEACON; } } /* * NB: We don't recalculate the rx filter when * ic_protmode changes; otherwise we could do * this only when ic_protmode != NONE. */ if (ic->ic_opmode == IEEE80211_M_HOSTAP && IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) rfilt |= HAL_RX_FILTER_BEACON; /* * Enable hardware PS-POLL RX only for hostap mode; * STA mode sends PS-POLL frames but never * receives them. */ if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 0, NULL) == HAL_OK && ic->ic_opmode == IEEE80211_M_HOSTAP) rfilt |= HAL_RX_FILTER_PSPOLL; if (sc->sc_nmeshvaps) { rfilt |= HAL_RX_FILTER_BEACON; if (sc->sc_hasbmatch) rfilt |= HAL_RX_FILTER_BSSID; else rfilt |= HAL_RX_FILTER_PROM; } if (ic->ic_opmode == IEEE80211_M_MONITOR) rfilt |= HAL_RX_FILTER_CONTROL; /* * Enable RX of compressed BAR frames only when doing * 802.11n. Required for A-MPDU. */ if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) rfilt |= HAL_RX_FILTER_COMPBAR; /* * Enable radar PHY errors if requested by the * DFS module. */ if (sc->sc_dodfs) rfilt |= HAL_RX_FILTER_PHYRADAR; /* * Enable spectral PHY errors if requested by the * spectral module. */ if (sc->sc_dospectral) rfilt |= HAL_RX_FILTER_PHYRADAR; DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n", __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]); return rfilt; } static int ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; int error; struct mbuf *m; struct ath_desc *ds; /* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */ m = bf->bf_m; if (m == NULL) { /* * NB: by assigning a page to the rx dma buffer we * implicitly satisfy the Atheros requirement that * this buffer be cache-line-aligned and sized to be * multiple of the cache line size. Not doing this * causes weird stuff to happen (for the 5210 at least). */ m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF(sc, ATH_DEBUG_ANY, "%s: no mbuf/cluster\n", __func__); sc->sc_stats.ast_rx_nombuf++; return ENOMEM; } m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { DPRINTF(sc, ATH_DEBUG_ANY, "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", __func__, error); sc->sc_stats.ast_rx_busdma++; m_freem(m); return error; } KASSERT(bf->bf_nseg == 1, ("multi-segment packet; nseg %u", bf->bf_nseg)); bf->bf_m = m; } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); /* * Setup descriptors. For receive we always terminate * the descriptor list with a self-linked entry so we'll * not get overrun under high load (as can happen with a * 5212 when ANI processing enables PHY error frames). * * To insure the last descriptor is self-linked we create * each descriptor as self-linked and add it to the end. As * each additional descriptor is added the previous self-linked * entry is ``fixed'' naturally. This should be safe even * if DMA is happening. When processing RX interrupts we * never remove/process the last, self-linked, entry on the * descriptor list. This insures the hardware always has * someplace to write a new frame. */ /* * 11N: we can no longer afford to self link the last descriptor. * MAC acknowledges BA status as long as it copies frames to host * buffer (or rx fifo). This can incorrectly acknowledge packets * to a sender if last desc is self-linked. */ ds = bf->bf_desc; if (sc->sc_rxslink) ds->ds_link = bf->bf_daddr; /* link to self */ else ds->ds_link = 0; /* terminate the list */ ds->ds_data = bf->bf_segs[0].ds_addr; ath_hal_setuprxdesc(ah, ds , m->m_len /* buffer size */ , 0 ); if (sc->sc_rxlink != NULL) *sc->sc_rxlink = bf->bf_daddr; sc->sc_rxlink = &ds->ds_link; return 0; } /* * Intercept management frames to collect beacon rssi data * and to do ibss merges. */ void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct ath_softc *sc = vap->iv_ic->ic_softc; uint64_t tsf_beacon_old, tsf_beacon; uint64_t nexttbtt; int64_t tsf_delta; int32_t tsf_delta_bmiss; int32_t tsf_remainder; uint64_t tsf_beacon_target; int tsf_intval; tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32; tsf_beacon_old |= le32dec(ni->ni_tstamp.data); #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) tsf_intval = 1; if (ni->ni_intval > 0) { tsf_intval = TU_TO_TSF(ni->ni_intval); } #undef TU_TO_TSF /* * Call up first so subsequent work can use information * potentially stored in the node (e.g. for ibss merge). */ ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf); switch (subtype) { case IEEE80211_FC0_SUBTYPE_BEACON: /* * Only do the following processing if it's for * the current BSS. * * In scan and IBSS mode we receive all beacons, * which means we need to filter out stuff * that isn't for us or we'll end up constantly * trying to sync / merge to BSSes that aren't * actually us. */ if (IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) { /* update rssi statistics for use by the hal */ /* XXX unlocked check against vap->iv_bss? */ ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32; tsf_beacon |= le32dec(ni->ni_tstamp.data); nexttbtt = ath_hal_getnexttbtt(sc->sc_ah); /* * Let's calculate the delta and remainder, so we can see * if the beacon timer from the AP is varying by more than * a few TU. (Which would be a huge, huge problem.) */ tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old; tsf_delta_bmiss = tsf_delta / tsf_intval; /* * If our delta is greater than half the beacon interval, * let's round the bmiss value up to the next beacon * interval. Ie, we're running really, really early * on the next beacon. */ if (tsf_delta % tsf_intval > (tsf_intval / 2)) tsf_delta_bmiss ++; tsf_beacon_target = tsf_beacon_old + (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval); /* * The remainder using '%' is between 0 .. intval-1. * If we're actually running too fast, then the remainder * will be some large number just under intval-1. * So we need to look at whether we're running * before or after the target beacon interval * and if we are, modify how we do the remainder * calculation. */ if (tsf_beacon < tsf_beacon_target) { tsf_remainder = -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval)); } else { tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval; } DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n", __func__, (unsigned long long) tsf_beacon_old, (unsigned long long) tsf_beacon, (unsigned long long) tsf_beacon_target, (long long) tsf_delta, tsf_delta_bmiss, tsf_remainder); DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n", __func__, (unsigned long long) tsf_beacon, (unsigned long long) nexttbtt, (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval); /* We only do syncbeacon on STA VAPs; not on IBSS */ if (vap->iv_opmode == IEEE80211_M_STA && sc->sc_syncbeacon && ni == vap->iv_bss && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) { DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=1; syncing\n", __func__); /* * Resync beacon timers using the tsf of the beacon * frame we just received. */ ath_beacon_config(sc, vap); sc->sc_syncbeacon = 0; } } /* fall thru... */ case IEEE80211_FC0_SUBTYPE_PROBE_RESP: if (vap->iv_opmode == IEEE80211_M_IBSS && vap->iv_state == IEEE80211_S_RUN && ieee80211_ibss_merge_check(ni)) { uint32_t rstamp = sc->sc_lastrs->rs_tstamp; uint64_t tsf = ath_extend_tsf(sc, rstamp, ath_hal_gettsf64(sc->sc_ah)); /* * Handle ibss merge as needed; check the tsf on the * frame before attempting the merge. The 802.11 spec * says the station should change it's bssid to match * the oldest station with the same ssid, where oldest * is determined by the tsf. Note that hardware * reconfiguration happens through callback to * ath_newstate as the state machine will go from * RUN -> RUN when this happens. */ if (le64toh(ni->ni_tstamp.tsf) >= tsf) { DPRINTF(sc, ATH_DEBUG_STATE, "ibss merge, rstamp %u tsf %ju " "tstamp %ju\n", rstamp, (uintmax_t)tsf, (uintmax_t)ni->ni_tstamp.tsf); (void) ieee80211_ibss_merge(ni); } } break; } } #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT static void ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m, const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) { /* Fill in the extension bitmap */ sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER); /* Fill in the vendor header */ sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f; sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03; sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00; /* XXX what should this be? */ sc->sc_rx_th.wr_vh.vh_sub_ns = 0; sc->sc_rx_th.wr_vh.vh_skip_len = htole16(sizeof(struct ath_radiotap_vendor_hdr)); /* General version info */ sc->sc_rx_th.wr_v.vh_version = 1; sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask; /* rssi */ sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0]; sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1]; sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2]; sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0]; sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1]; sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2]; /* evm */ sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0; sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1; sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2; /* These are only populated from the AR9300 or later */ sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3; sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4; /* direction */ sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX; /* RX rate */ sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate; /* RX flags */ sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags; if (rs->rs_isaggr) sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR; if (rs->rs_moreaggr) sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR; /* phyerr info */ if (rs->rs_status & HAL_RXERR_PHY) { sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr; sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR; } else { sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff; } sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status; sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi; } #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ static void ath_rx_tap(struct ath_softc *sc, struct mbuf *m, const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) { #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) const HAL_RATE_TABLE *rt; uint8_t rix; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); rix = rt->rateCodeToIndex[rs->rs_rate]; sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; #ifdef AH_SUPPORT_AR5416 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; if (rs->rs_status & HAL_RXERR_PHY) { /* * PHY error - make sure the channel flags * reflect the actual channel configuration, * not the received frame. */ if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan)) sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan)) sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan)) sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; } else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ struct ieee80211com *ic = &sc->sc_ic; if ((rs->rs_flags & HAL_RX_2040) == 0) sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; else sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; if ((rs->rs_flags & HAL_RX_GI) == 0) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; } #endif sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); if (rs->rs_status & HAL_RXERR_CRC) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX propagate other error flags from descriptor */ sc->sc_rx_th.wr_antnoise = nf; sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; sc->sc_rx_th.wr_antenna = rs->rs_antenna; #undef CHAN_HT #undef CHAN_HT20 #undef CHAN_HT40U #undef CHAN_HT40D } static void ath_handle_micerror(struct ieee80211com *ic, struct ieee80211_frame *wh, int keyix) { struct ieee80211_node *ni; /* XXX recheck MIC to deal w/ chips that lie */ /* XXX discard MIC errors on !data frames */ ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); if (ni != NULL) { ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); ieee80211_free_node(ni); } } /* * Process a single packet. * * The mbuf must already be synced, unmapped and removed from bf->bf_m * by this stage. * * The mbuf must be consumed by this routine - either passed up the * net80211 stack, put on the holding queue, or freed. */ int ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status, uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf, struct mbuf *m) { uint64_t rstamp; int len, type; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; int is_good = 0; struct ath_rx_edma *re = &sc->sc_rxedma[qtype]; /* * Calculate the correct 64 bit TSF given * the TSF64 register value and rs_tstamp. */ rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); /* These aren't specifically errors */ #ifdef AH_SUPPORT_AR5416 if (rs->rs_flags & HAL_RX_GI) sc->sc_stats.ast_rx_halfgi++; if (rs->rs_flags & HAL_RX_2040) sc->sc_stats.ast_rx_2040++; if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) sc->sc_stats.ast_rx_pre_crc_err++; if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) sc->sc_stats.ast_rx_post_crc_err++; if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) sc->sc_stats.ast_rx_decrypt_busy_err++; if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) sc->sc_stats.ast_rx_hi_rx_chain++; if (rs->rs_flags & HAL_RX_STBC) sc->sc_stats.ast_rx_stbc++; #endif /* AH_SUPPORT_AR5416 */ if (rs->rs_status != 0) { if (rs->rs_status & HAL_RXERR_CRC) sc->sc_stats.ast_rx_crcerr++; if (rs->rs_status & HAL_RXERR_FIFO) sc->sc_stats.ast_rx_fifoerr++; if (rs->rs_status & HAL_RXERR_PHY) { sc->sc_stats.ast_rx_phyerr++; /* Process DFS radar events */ if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { /* Now pass it to the radar processing code */ ath_dfs_process_phy_err(sc, m, rstamp, rs); } /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ if (rs->rs_phyerr < 64) sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; goto rx_error; /* NB: don't count in ierrors */ } if (rs->rs_status & HAL_RXERR_DECRYPT) { /* * Decrypt error. If the error occurred * because there was no hardware key, then * let the frame through so the upper layers * can process it. This is necessary for 5210 * parts which have no way to setup a ``clear'' * key cache entry. * * XXX do key cache faulting */ if (rs->rs_keyix == HAL_RXKEYIX_INVALID) goto rx_accept; sc->sc_stats.ast_rx_badcrypt++; } /* * Similar as above - if the failure was a keymiss * just punt it up to the upper layers for now. */ if (rs->rs_status & HAL_RXERR_KEYMISS) { sc->sc_stats.ast_rx_keymiss++; goto rx_accept; } if (rs->rs_status & HAL_RXERR_MIC) { sc->sc_stats.ast_rx_badmic++; /* * Do minimal work required to hand off * the 802.11 header for notification. */ /* XXX frag's and qos frames */ len = rs->rs_datalen; if (len >= sizeof (struct ieee80211_frame)) { ath_handle_micerror(ic, mtod(m, struct ieee80211_frame *), sc->sc_splitmic ? rs->rs_keyix-32 : rs->rs_keyix); } } counter_u64_add(ic->ic_ierrors, 1); rx_error: /* * Cleanup any pending partial frame. */ if (re->m_rxpending != NULL) { m_freem(re->m_rxpending); re->m_rxpending = NULL; } /* * When a tap is present pass error frames * that have been requested. By default we * pass decrypt+mic errors but others may be * interesting (e.g. crc). */ if (ieee80211_radiotap_active(ic) && (rs->rs_status & sc->sc_monpass)) { /* NB: bpf needs the mbuf length setup */ len = rs->rs_datalen; m->m_pkthdr.len = m->m_len = len; ath_rx_tap(sc, m, rs, rstamp, nf); #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT ath_rx_tap_vendor(sc, m, rs, rstamp, nf); #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ ieee80211_radiotap_rx_all(ic, m); } /* XXX pass MIC errors up for s/w reclaculation */ m_freem(m); m = NULL; goto rx_next; } rx_accept: len = rs->rs_datalen; m->m_len = len; if (rs->rs_more) { /* * Frame spans multiple descriptors; save * it for the next completed descriptor, it * will be used to construct a jumbogram. */ if (re->m_rxpending != NULL) { /* NB: max frame size is currently 2 clusters */ sc->sc_stats.ast_rx_toobig++; m_freem(re->m_rxpending); } m->m_pkthdr.len = len; re->m_rxpending = m; m = NULL; goto rx_next; } else if (re->m_rxpending != NULL) { /* * This is the second part of a jumbogram, * chain it to the first mbuf, adjust the * frame length, and clear the rxpending state. */ re->m_rxpending->m_next = m; re->m_rxpending->m_pkthdr.len += len; m = re->m_rxpending; re->m_rxpending = NULL; } else { /* * Normal single-descriptor receive; setup packet length. */ m->m_pkthdr.len = len; } /* * Validate rs->rs_antenna. * * Some users w/ AR9285 NICs have reported crashes * here because rs_antenna field is bogusly large. * Let's enforce the maximum antenna limit of 8 * (and it shouldn't be hard coded, but that's a * separate problem) and if there's an issue, print * out an error and adjust rs_antenna to something * sensible. * * This code should be removed once the actual * root cause of the issue has been identified. * For example, it may be that the rs_antenna * field is only valid for the lsat frame of * an aggregate and it just happens that it is * "mostly" right. (This is a general statement - * the majority of the statistics are only valid * for the last frame in an aggregate. */ if (rs->rs_antenna > 7) { device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", __func__, rs->rs_antenna); #ifdef ATH_DEBUG ath_printrxbuf(sc, bf, 0, status == HAL_OK); #endif /* ATH_DEBUG */ rs->rs_antenna = 0; /* XXX better than nothing */ } /* * If this is an AR9285/AR9485, then the receive and LNA * configuration is stored in RSSI[2] / EXTRSSI[2]. * We can extract this out to build a much better * receive antenna profile. * * Yes, this just blurts over the above RX antenna field * for now. It's fine, the AR9285 doesn't really use * that. * * Later on we should store away the fine grained LNA * information and keep separate counters just for * that. It'll help when debugging the AR9285/AR9485 * combined diversity code. */ if (sc->sc_rx_lnamixer) { rs->rs_antenna = 0; /* Bits 0:1 - the LNA configuration used */ rs->rs_antenna |= ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED) >> HAL_RX_LNA_CFG_USED_S); /* Bit 2 - the external RX antenna switch */ if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG) rs->rs_antenna |= 0x4; } sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; /* * Populate the rx status block. When there are bpf * listeners we do the additional work to provide * complete status. Otherwise we fill in only the * material required by ieee80211_input. Note that * noise setting is filled in above. */ if (ieee80211_radiotap_active(ic)) { ath_rx_tap(sc, m, rs, rstamp, nf); #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT ath_rx_tap_vendor(sc, m, rs, rstamp, nf); #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ } /* * From this point on we assume the frame is at least * as large as ieee80211_frame_min; verify that. */ if (len < IEEE80211_MIN_LEN) { if (!ieee80211_radiotap_active(ic)) { DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", __func__, len); sc->sc_stats.ast_rx_tooshort++; } else { /* NB: in particular this captures ack's */ ieee80211_radiotap_rx_all(ic, m); } m_freem(m); m = NULL; goto rx_next; } if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { const HAL_RATE_TABLE *rt = sc->sc_currates; uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); } m_adj(m, -IEEE80211_CRC_LEN); /* * Locate the node for sender, track state, and then * pass the (referenced) node up to the 802.11 layer * for its use. */ ni = ieee80211_find_rxnode_withkey(ic, mtod(m, const struct ieee80211_frame_min *), rs->rs_keyix == HAL_RXKEYIX_INVALID ? IEEE80211_KEYIX_NONE : rs->rs_keyix); sc->sc_lastrs = rs; #ifdef AH_SUPPORT_AR5416 if (rs->rs_isaggr) sc->sc_stats.ast_rx_agg++; #endif /* AH_SUPPORT_AR5416 */ if (ni != NULL) { /* * Only punt packets for ampdu reorder processing for * 11n nodes; net80211 enforces that M_AMPDU is only * set for 11n nodes. */ if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; /* * Sending station is known, dispatch directly. */ type = ieee80211_input(ni, m, rs->rs_rssi, nf); ieee80211_free_node(ni); m = NULL; /* * Arrange to update the last rx timestamp only for * frames from our ap when operating in station mode. * This assumes the rx key is always setup when * associated. */ if (ic->ic_opmode == IEEE80211_M_STA && rs->rs_keyix != HAL_RXKEYIX_INVALID) is_good = 1; } else { type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); m = NULL; } /* * At this point we have passed the frame up the stack; thus * the mbuf is no longer ours. */ /* * Track rx rssi and do any rx antenna management. */ ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); if (sc->sc_diversity) { /* * When using fast diversity, change the default rx * antenna if diversity chooses the other antenna 3 * times in a row. */ if (sc->sc_defant != rs->rs_antenna) { if (++sc->sc_rxotherant >= 3) ath_setdefantenna(sc, rs->rs_antenna); } else sc->sc_rxotherant = 0; } /* Handle slow diversity if enabled */ if (sc->sc_dolnadiv) { ath_lna_rx_comb_scan(sc, rs, ticks, hz); } if (sc->sc_softled) { /* * Blink for any data frame. Otherwise do a * heartbeat-style blink when idle. The latter * is mainly for station mode where we depend on * periodic beacon frames to trigger the poll event. */ if (type == IEEE80211_FC0_TYPE_DATA) { const HAL_RATE_TABLE *rt = sc->sc_currates; ath_led_event(sc, rt->rateCodeToIndex[rs->rs_rate]); } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) ath_led_event(sc, 0); } rx_next: /* * Debugging - complain if we didn't NULL the mbuf pointer * here. */ if (m != NULL) { device_printf(sc->sc_dev, "%s: mbuf %p should've been freed!\n", __func__, m); } return (is_good); } #define ATH_RX_MAX 128 /* * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like * the EDMA code does. * * XXX TODO: then, do all of the RX list management stuff inside * ATH_RX_LOCK() so we don't end up potentially racing. The EDMA * code is doing it right. */ static void ath_rx_proc(struct ath_softc *sc, int resched) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) struct ath_buf *bf; struct ath_hal *ah = sc->sc_ah; #ifdef IEEE80211_SUPPORT_SUPERG struct ieee80211com *ic = &sc->sc_ic; #endif struct ath_desc *ds; struct ath_rx_status *rs; struct mbuf *m; int ngood; HAL_STATUS status; int16_t nf; u_int64_t tsf; int npkts = 0; int kickpcu = 0; int ret; /* XXX we must not hold the ATH_LOCK here */ ATH_UNLOCK_ASSERT(sc); ATH_PCU_UNLOCK_ASSERT(sc); ATH_PCU_LOCK(sc); sc->sc_rxproc_cnt++; kickpcu = sc->sc_kickpcu; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); ngood = 0; nf = ath_hal_getchannoise(ah, sc->sc_curchan); sc->sc_stats.ast_rx_noise = nf; tsf = ath_hal_gettsf64(ah); do { /* * Don't process too many packets at a time; give the * TX thread time to also run - otherwise the TX * latency can jump by quite a bit, causing throughput * degredation. */ if (!kickpcu && npkts >= ATH_RX_MAX) break; bf = TAILQ_FIRST(&sc->sc_rxbuf); if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ device_printf(sc->sc_dev, "%s: no buffer!\n", __func__); break; } else if (bf == NULL) { /* * End of List: * this can happen for non-self-linked RX chains */ sc->sc_stats.ast_rx_hitqueueend++; break; } m = bf->bf_m; if (m == NULL) { /* NB: shouldn't happen */ /* * If mbuf allocation failed previously there * will be no mbuf; try again to re-populate it. */ /* XXX make debug msg */ device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__); TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); goto rx_proc_next; } ds = bf->bf_desc; if (ds->ds_link == bf->bf_daddr) { /* NB: never process the self-linked entry at the end */ sc->sc_stats.ast_rx_hitqueueend++; break; } /* XXX sync descriptor memory */ /* * Must provide the virtual address of the current * descriptor, the physical address, and the virtual * address of the next descriptor in the h/w chain. * This allows the HAL to look ahead to see if the * hardware is done with a descriptor by checking the * done bit in the following descriptor and the address * of the current descriptor the DMA engine is working * on. All this is necessary because of our use of * a self-linked list to avoid rx overruns. */ rs = &bf->bf_status.ds_rxstat; status = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_RECV_DESC) ath_printrxbuf(sc, bf, 0, status == HAL_OK); #endif #ifdef ATH_DEBUG_ALQ if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS)) if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS, sc->sc_rx_statuslen, (char *) ds); #endif /* ATH_DEBUG_ALQ */ if (status == HAL_EINPROGRESS) break; TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); npkts++; /* * Process a single frame. */ bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); bf->bf_m = NULL; if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m)) ngood++; rx_proc_next: /* * If there's a holding buffer, insert that onto * the RX list; the hardware is now definitely not pointing * to it now. */ ret = 0; if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) { TAILQ_INSERT_TAIL(&sc->sc_rxbuf, sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf, bf_list); ret = ath_rxbuf_init(sc, sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf); } /* * Next, throw our buffer into the holding entry. The hardware * may use the descriptor to read the link pointer before * DMAing the next descriptor in to write out a packet. */ sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf; } while (ret == 0); /* rx signal state monitoring */ ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); if (ngood) sc->sc_lastrx = tsf; ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); /* Queue DFS tasklet if needed */ if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); /* * Now that all the RX frames were handled that * need to be handled, kick the PCU if there's * been an RXEOL condition. */ if (resched && kickpcu) { ATH_PCU_LOCK(sc); ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu"); device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", __func__, npkts); /* * Go through the process of fully tearing down * the RX buffers and reinitialising them. * * There's a hardware bug that causes the RX FIFO * to get confused under certain conditions and * constantly write over the same frame, leading * the RX driver code here to get heavily confused. */ /* * XXX Has RX DMA stopped enough here to just call * ath_startrecv()? * XXX Do we need to use the holding buffer to restart * RX DMA by appending entries to the final * descriptor? Quite likely. */ #if 1 ath_startrecv(sc); #else /* * Disabled for now - it'd be nice to be able to do * this in order to limit the amount of CPU time spent * reinitialising the RX side (and thus minimise RX * drops) however there's a hardware issue that * causes things to get too far out of whack. */ /* * XXX can we hold the PCU lock here? * Are there any net80211 buffer calls involved? */ bf = TAILQ_FIRST(&sc->sc_rxbuf); ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP); ath_hal_rxena(ah); /* enable recv descriptors */ ath_mode_init(sc); /* set filters, etc. */ ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ #endif ath_hal_intrset(ah, sc->sc_imask); sc->sc_kickpcu = 0; ATH_PCU_UNLOCK(sc); } #ifdef IEEE80211_SUPPORT_SUPERG if (resched) ieee80211_ff_age_all(ic, 100); #endif /* * Put the hardware to sleep again if we're done with it. */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); /* * If we hit the maximum number of frames in this round, * reschedule for another immediate pass. This gives * the TX and TX completion routines time to run, which * will reduce latency. */ if (npkts >= ATH_RX_MAX) sc->sc_rx.recv_sched(sc, resched); ATH_PCU_LOCK(sc); sc->sc_rxproc_cnt--; ATH_PCU_UNLOCK(sc); } #undef PA2DESC #undef ATH_RX_MAX /* * Only run the RX proc if it's not already running. * Since this may get run as part of the reset/flush path, * the task can't clash with an existing, running tasklet. */ static void ath_legacy_rx_tasklet(void *arg, int npending) { struct ath_softc *sc = arg; ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending); DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt > 0) { device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n", __func__); ATH_PCU_UNLOCK(sc); return; } ATH_PCU_UNLOCK(sc); ath_rx_proc(sc, 1); } static void ath_legacy_flushrecv(struct ath_softc *sc) { ath_rx_proc(sc, 0); } static void ath_legacy_flush_rxpending(struct ath_softc *sc) { /* XXX ATH_RX_LOCK_ASSERT(sc); */ if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) { m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending); sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL; } if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) { m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending); sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL; } } static int ath_legacy_flush_rxholdbf(struct ath_softc *sc) { struct ath_buf *bf; /* XXX ATH_RX_LOCK_ASSERT(sc); */ /* * If there are RX holding buffers, free them here and return * them to the list. * * XXX should just verify that bf->bf_m is NULL, as it must * be at this point! */ bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf; if (bf != NULL) { if (bf->bf_m != NULL) m_freem(bf->bf_m); bf->bf_m = NULL; TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); (void) ath_rxbuf_init(sc, bf); } sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL; bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf; if (bf != NULL) { if (bf->bf_m != NULL) m_freem(bf->bf_m); bf->bf_m = NULL; TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); (void) ath_rxbuf_init(sc, bf); } sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL; return (0); } /* * Disable the receive h/w in preparation for a reset. */ static void ath_legacy_stoprecv(struct ath_softc *sc, int dodelay) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) struct ath_hal *ah = sc->sc_ah; ATH_RX_LOCK(sc); ath_hal_stoppcurecv(ah); /* disable PCU */ ath_hal_setrxfilter(ah, 0); /* clear recv filter */ ath_hal_stopdmarecv(ah); /* disable DMA engine */ /* * TODO: see if this particular DELAY() is required; it may be * masking some missing FIFO flush or DMA sync. */ #if 0 if (dodelay) #endif DELAY(3000); /* 3ms is long enough for 1 frame */ #ifdef ATH_DEBUG if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { struct ath_buf *bf; u_int ix; device_printf(sc->sc_dev, "%s: rx queue %p, link %p\n", __func__, (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP), sc->sc_rxlink); ix = 0; TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { struct ath_desc *ds = bf->bf_desc; struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) ath_printrxbuf(sc, bf, ix, status == HAL_OK); ix++; } } #endif (void) ath_legacy_flush_rxpending(sc); (void) ath_legacy_flush_rxholdbf(sc); sc->sc_rxlink = NULL; /* just in case */ ATH_RX_UNLOCK(sc); #undef PA2DESC } /* * XXX TODO: something was calling startrecv without calling * stoprecv. Let's figure out what/why. It was showing up * as a mbuf leak (rxpending) and ath_buf leak (holdbf.) */ /* * Enable the receive h/w following a reset. */ static int ath_legacy_startrecv(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; ATH_RX_LOCK(sc); /* * XXX should verify these are already all NULL! */ sc->sc_rxlink = NULL; (void) ath_legacy_flush_rxpending(sc); (void) ath_legacy_flush_rxholdbf(sc); /* * Re-chain all of the buffers in the RX buffer list. */ TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { int error = ath_rxbuf_init(sc, bf); if (error != 0) { DPRINTF(sc, ATH_DEBUG_RECV, "%s: ath_rxbuf_init failed %d\n", __func__, error); return error; } } bf = TAILQ_FIRST(&sc->sc_rxbuf); ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP); ath_hal_rxena(ah); /* enable recv descriptors */ ath_mode_init(sc); /* set filters, etc. */ ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ ATH_RX_UNLOCK(sc); return 0; } static int ath_legacy_dma_rxsetup(struct ath_softc *sc) { int error; error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, "rx", sizeof(struct ath_desc), ath_rxbuf, 1); if (error != 0) return (error); return (0); } static int ath_legacy_dma_rxteardown(struct ath_softc *sc) { if (sc->sc_rxdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); return (0); } static void ath_legacy_recv_sched(struct ath_softc *sc, int dosched) { taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); } static void ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q, int dosched) { taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); } void ath_recv_setup_legacy(struct ath_softc *sc) { /* Sensible legacy defaults */ /* * XXX this should be changed to properly support the * exact RX descriptor size for each HAL. */ sc->sc_rx_statuslen = sizeof(struct ath_desc); sc->sc_rx.recv_start = ath_legacy_startrecv; sc->sc_rx.recv_stop = ath_legacy_stoprecv; sc->sc_rx.recv_flush = ath_legacy_flushrecv; sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet; sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init; sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup; sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown; sc->sc_rx.recv_sched = ath_legacy_recv_sched; sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue; }