/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. */ #include "opt_inet.h" #include "opt_ath.h" /* * This is needed for register operations which are performed * by the driver - eg, calls to ath_hal_gettsf32(). * * It's also required for any AH_DEBUG checks in here, eg the * module dependencies. */ #include "opt_ah.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for mp_ncpus */ #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #ifdef INET #include #include #endif #include #include /* XXX for softled */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ATH_TX99_DIAG #include #endif #ifdef ATH_DEBUG_ALQ #include #endif /* * Only enable this if you're working on PS-POLL support. */ #define ATH_SW_PSQ /* * ATH_BCBUF determines the number of vap's that can transmit * beacons and also (currently) the number of vap's that can * have unique mac addresses/bssid. When staggering beacons * 4 is probably a good max as otherwise the beacons become * very closely spaced and there is limited time for cab q traffic * to go out. You can burst beacons instead but that is not good * for stations in power save and at some point you really want * another radio (and channel). * * The limit on the number of mac addresses is tied to our use of * the U/L bit and tracking addresses in a byte; it would be * worthwhile to allow more for applications like proxy sta. */ CTASSERT(ATH_BCBUF <= 8); static struct ieee80211vap *ath_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void ath_vap_delete(struct ieee80211vap *); static int ath_init(struct ath_softc *); static void ath_stop(struct ath_softc *); static int ath_reset_vap(struct ieee80211vap *, u_long); static int ath_transmit(struct ieee80211com *, struct mbuf *); static int ath_media_change(struct ifnet *); static void ath_watchdog(void *); static void ath_parent(struct ieee80211com *); static void ath_fatal_proc(void *, int); static void ath_bmiss_vap(struct ieee80211vap *); static void ath_bmiss_proc(void *, int); static void ath_key_update_begin(struct ieee80211vap *); static void ath_key_update_end(struct ieee80211vap *); static void ath_update_mcast_hw(struct ath_softc *); static void ath_update_mcast(struct ieee80211com *); static void ath_update_promisc(struct ieee80211com *); static void ath_updateslot(struct ieee80211com *); static void ath_bstuck_proc(void *, int); static void ath_reset_proc(void *, int); static int ath_desc_alloc(struct ath_softc *); static void ath_desc_free(struct ath_softc *); static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); static void ath_node_cleanup(struct ieee80211_node *); static void ath_node_free(struct ieee80211_node *); static void ath_node_getsignal(const struct ieee80211_node *, int8_t *, int8_t *); static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); static int ath_tx_setup(struct ath_softc *, int, int); static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); static void ath_tx_cleanup(struct ath_softc *); static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched); static void ath_tx_proc_q0(void *, int); static void ath_tx_proc_q0123(void *, int); static void ath_tx_proc(void *, int); static void ath_txq_sched_tasklet(void *, int); static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); static void ath_scan_start(struct ieee80211com *); static void ath_scan_end(struct ieee80211com *); static void ath_set_channel(struct ieee80211com *); #ifdef ATH_ENABLE_11N static void ath_update_chw(struct ieee80211com *); #endif /* ATH_ENABLE_11N */ static void ath_calibrate(void *); static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void ath_setup_stationkey(struct ieee80211_node *); static void ath_newassoc(struct ieee80211_node *, int); static int ath_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel []); static void ath_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel []); static int ath_getchannels(struct ath_softc *); static int ath_rate_setup(struct ath_softc *, u_int mode); static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); static void ath_announce(struct ath_softc *); static void ath_dfs_tasklet(void *, int); static void ath_node_powersave(struct ieee80211_node *, int); static int ath_node_set_tim(struct ieee80211_node *, int); static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); #ifdef IEEE80211_SUPPORT_TDMA #include #endif SYSCTL_DECL(_hw_ath); /* XXX validate sysctl values */ static int ath_longcalinterval = 30; /* long cals every 30 secs */ SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 0, "long chip calibration interval (secs)"); static int ath_shortcalinterval = 100; /* short cals every 100 ms */ SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 0, "short chip calibration interval (msecs)"); static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 0, "reset chip calibration results (secs)"); static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 0, "ANI calibration (msecs)"); int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 0, "rx buffers allocated"); int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 0, "tx buffers allocated"); int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 0, "tx (mgmt) buffers allocated"); int ath_bstuck_threshold = 4; /* max missed beacons */ SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 0, "max missed beacon xmits before chip reset"); MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); void ath_legacy_attach_comp_func(struct ath_softc *sc) { /* * Special case certain configurations. Note the * CAB queue is handled by these specially so don't * include them when checking the txq setup mask. */ switch (sc->sc_txqsetup &~ (1<sc_cabq->axq_qnum)) { case 0x01: TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); break; case 0x0f: TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); break; default: TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); break; } } /* * Set the target power mode. * * If this is called during a point in time where * the hardware is being programmed elsewhere, it will * simply store it away and update it when all current * uses of the hardware are completed. */ void _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) { ATH_LOCK_ASSERT(sc); sc->sc_target_powerstate = power_state; DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", __func__, file, line, power_state, sc->sc_powersave_refcnt); if (sc->sc_powersave_refcnt == 0 && power_state != sc->sc_cur_powerstate) { sc->sc_cur_powerstate = power_state; ath_hal_setpower(sc->sc_ah, power_state); /* * If the NIC is force-awake, then set the * self-gen frame state appropriately. * * If the nic is in network sleep or full-sleep, * we let the above call leave the self-gen * state as "sleep". */ if (sc->sc_cur_powerstate == HAL_PM_AWAKE && sc->sc_target_selfgen_state != HAL_PM_AWAKE) { ath_hal_setselfgenpower(sc->sc_ah, sc->sc_target_selfgen_state); } } } /* * Set the current self-generated frames state. * * This is separate from the target power mode. The chip may be * awake but the desired state is "sleep", so frames sent to the * destination has PWRMGT=1 in the 802.11 header. The NIC also * needs to know to set PWRMGT=1 in self-generated frames. */ void _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) { ATH_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", __func__, file, line, power_state, sc->sc_target_selfgen_state); sc->sc_target_selfgen_state = power_state; /* * If the NIC is force-awake, then set the power state. * Network-state and full-sleep will already transition it to * mark self-gen frames as sleeping - and we can't * guarantee the NIC is awake to program the self-gen frame * setting anyway. */ if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { ath_hal_setselfgenpower(sc->sc_ah, power_state); } } /* * Set the hardware power mode and take a reference. * * This doesn't update the target power mode in the driver; * it just updates the hardware power state. * * XXX it should only ever force the hardware awake; it should * never be called to set it asleep. */ void _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) { ATH_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", __func__, file, line, power_state, sc->sc_powersave_refcnt); sc->sc_powersave_refcnt++; if (power_state != sc->sc_cur_powerstate) { ath_hal_setpower(sc->sc_ah, power_state); sc->sc_cur_powerstate = power_state; /* * Adjust the self-gen powerstate if appropriate. */ if (sc->sc_cur_powerstate == HAL_PM_AWAKE && sc->sc_target_selfgen_state != HAL_PM_AWAKE) { ath_hal_setselfgenpower(sc->sc_ah, sc->sc_target_selfgen_state); } } } /* * Restore the power save mode to what it once was. * * This will decrement the reference counter and once it hits * zero, it'll restore the powersave state. */ void _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) { ATH_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", __func__, file, line, sc->sc_powersave_refcnt, sc->sc_target_powerstate); if (sc->sc_powersave_refcnt == 0) device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); else sc->sc_powersave_refcnt--; if (sc->sc_powersave_refcnt == 0 && sc->sc_target_powerstate != sc->sc_cur_powerstate) { sc->sc_cur_powerstate = sc->sc_target_powerstate; ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); } /* * Adjust the self-gen powerstate if appropriate. */ if (sc->sc_cur_powerstate == HAL_PM_AWAKE && sc->sc_target_selfgen_state != HAL_PM_AWAKE) { ath_hal_setselfgenpower(sc->sc_ah, sc->sc_target_selfgen_state); } } /* * Configure the initial HAL configuration values based on bus * specific parameters. * * Some PCI IDs and other information may need tweaking. * * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable * if BT antenna diversity isn't enabled. * * So, let's also figure out how to enable BT diversity for AR9485. */ static void ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) { /* XXX TODO: only for PCI devices? */ if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; ah_config->ath_hal_min_gainidx = AH_TRUE; ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; /* XXX low_rssi_thresh */ /* XXX fast_div_bias */ device_printf(sc->sc_dev, "configuring for %s\n", (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? "CUS198" : "CUS230"); } if (sc->sc_pci_devinfo & ATH_PCI_CUS217) device_printf(sc->sc_dev, "CUS217 card detected\n"); if (sc->sc_pci_devinfo & ATH_PCI_CUS252) device_printf(sc->sc_dev, "CUS252 card detected\n"); if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) device_printf(sc->sc_dev, "Bluetooth Antenna Diversity card detected\n"); if (sc->sc_pci_devinfo & ATH_PCI_KILLER) device_printf(sc->sc_dev, "Killer Wireless card detected\n"); #if 0 /* * Some WB335 cards do not support antenna diversity. Since * we use a hardcoded value for AR9565 instead of using the * EEPROM/OTP data, remove the combining feature from * the HW capabilities bitmap. */ if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; } if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); } #endif if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { ah_config->ath_hal_pcie_waen = 0x0040473b; device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); } #if 0 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { ah->config.no_pll_pwrsave = true; device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); } #endif } /* * Attempt to fetch the MAC address from the kernel environment. * * Returns 0, macaddr in macaddr if successful; -1 otherwise. */ static int ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) { char devid_str[32]; int local_mac = 0; char *local_macstr; /* * Fetch from the kenv rather than using hints. * * Hints would be nice but the transition to dynamic * hints/kenv doesn't happen early enough for this * to work reliably (eg on anything embedded.) */ snprintf(devid_str, 32, "hint.%s.%d.macaddr", device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev)); if ((local_macstr = kern_getenv(devid_str)) != NULL) { uint32_t tmpmac[ETHER_ADDR_LEN]; int count; int i; /* Have a MAC address; should use it */ device_printf(sc->sc_dev, "Overriding MAC address from environment: '%s'\n", local_macstr); /* Extract out the MAC address */ count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", &tmpmac[0], &tmpmac[1], &tmpmac[2], &tmpmac[3], &tmpmac[4], &tmpmac[5]); if (count == 6) { /* Valid! */ local_mac = 1; for (i = 0; i < ETHER_ADDR_LEN; i++) macaddr[i] = tmpmac[i]; } /* Done! */ freeenv(local_macstr); local_macstr = NULL; } if (local_mac) return (0); return (-1); } #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) #define HAL_MODE_HT40 \ (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) int ath_attach(u_int16_t devid, struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = NULL; HAL_STATUS status; int error = 0, i; u_int wmodes; int rx_chainmask, tx_chainmask; HAL_OPS_CONFIG ah_config; DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); /* * Configure the initial configuration data. * * This is stuff that may be needed early during attach * rather than done via configuration calls later. */ bzero(&ah_config, sizeof(ah_config)); ath_setup_hal_config(sc, &ah_config); ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &ah_config, &status); if (ah == NULL) { device_printf(sc->sc_dev, "unable to attach hardware; HAL status %u\n", status); error = ENXIO; goto bad; } sc->sc_ah = ah; sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ #ifdef ATH_DEBUG sc->sc_debug = ath_debug; #endif /* * Setup the DMA/EDMA functions based on the current * hardware support. * * This is required before the descriptors are allocated. */ if (ath_hal_hasedma(sc->sc_ah)) { sc->sc_isedma = 1; ath_recv_setup_edma(sc); ath_xmit_setup_edma(sc); } else { ath_recv_setup_legacy(sc); ath_xmit_setup_legacy(sc); } if (ath_hal_hasmybeacon(sc->sc_ah)) { sc->sc_do_mybeacon = 1; } /* * Check if the MAC has multi-rate retry support. * We do this by trying to setup a fake extended * descriptor. MAC's that don't have support will * return false w/o doing anything. MAC's that do * support it will return true w/o doing anything. */ sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); /* * Check if the device has hardware counters for PHY * errors. If so we need to enable the MIB interrupt * so we can act on stat triggers. */ if (ath_hal_hwphycounters(ah)) sc->sc_needmib = 1; /* * Get the hardware key cache size. */ sc->sc_keymax = ath_hal_keycachesize(ah); if (sc->sc_keymax > ATH_KEYMAX) { device_printf(sc->sc_dev, "Warning, using only %u of %u key cache slots\n", ATH_KEYMAX, sc->sc_keymax); sc->sc_keymax = ATH_KEYMAX; } /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < sc->sc_keymax; i++) ath_hal_keyreset(ah, i); /* * Collect the default channel list. */ error = ath_getchannels(sc); if (error != 0) goto bad; /* * Setup rate tables for all potential media types. */ ath_rate_setup(sc, IEEE80211_MODE_11A); ath_rate_setup(sc, IEEE80211_MODE_11B); ath_rate_setup(sc, IEEE80211_MODE_11G); ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); ath_rate_setup(sc, IEEE80211_MODE_11NA); ath_rate_setup(sc, IEEE80211_MODE_11NG); ath_rate_setup(sc, IEEE80211_MODE_HALF); ath_rate_setup(sc, IEEE80211_MODE_QUARTER); /* NB: setup here so ath_rate_update is happy */ ath_setcurmode(sc, IEEE80211_MODE_11A); /* * Allocate TX descriptors and populate the lists. */ error = ath_desc_alloc(sc); if (error != 0) { device_printf(sc->sc_dev, "failed to allocate TX descriptors: %d\n", error); goto bad; } error = ath_txdma_setup(sc); if (error != 0) { device_printf(sc->sc_dev, "failed to allocate TX descriptors: %d\n", error); goto bad; } /* * Allocate RX descriptors and populate the lists. */ error = ath_rxdma_setup(sc); if (error != 0) { device_printf(sc->sc_dev, "failed to allocate RX descriptors: %d\n", error); goto bad; } callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); ATH_TXBUF_LOCK_INIT(sc); sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->sc_dev)); TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that the hal handles resetting * these queues at the needed time. * * XXX PS-Poll */ sc->sc_bhalq = ath_beaconq_setup(sc); if (sc->sc_bhalq == (u_int) -1) { device_printf(sc->sc_dev, "unable to setup a beacon xmit queue!\n"); error = EIO; goto bad2; } sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); if (sc->sc_cabq == NULL) { device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); error = EIO; goto bad2; } /* NB: insure BK queue is the lowest priority h/w queue */ if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { device_printf(sc->sc_dev, "unable to setup xmit queue for %s traffic!\n", ieee80211_wme_acnames[WME_AC_BK]); error = EIO; goto bad2; } if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { /* * Not enough hardware tx queues to properly do WME; * just punt and assign them all to the same h/w queue. * We could do a better job of this if, for example, * we allocate queues when we switch from station to * AP mode. */ if (sc->sc_ac2q[WME_AC_VI] != NULL) ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); if (sc->sc_ac2q[WME_AC_BE] != NULL) ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; } /* * Attach the TX completion function. * * The non-EDMA chips may have some special case optimisations; * this method gives everyone a chance to attach cleanly. */ sc->sc_tx.xmit_attach_comp_func(sc); /* * Setup rate control. Some rate control modules * call back to change the anntena state so expose * the necessary entry points. * XXX maybe belongs in struct ath_ratectrl? */ sc->sc_setdefantenna = ath_setdefantenna; sc->sc_rc = ath_rate_attach(sc); if (sc->sc_rc == NULL) { error = EIO; goto bad2; } /* Attach DFS module */ if (! ath_dfs_attach(sc)) { device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__); error = EIO; goto bad2; } /* Attach spectral module */ if (ath_spectral_attach(sc) < 0) { device_printf(sc->sc_dev, "%s: unable to attach spectral\n", __func__); error = EIO; goto bad2; } /* Attach bluetooth coexistence module */ if (ath_btcoex_attach(sc) < 0) { device_printf(sc->sc_dev, "%s: unable to attach bluetooth coexistence\n", __func__); error = EIO; goto bad2; } /* Attach LNA diversity module */ if (ath_lna_div_attach(sc) < 0) { device_printf(sc->sc_dev, "%s: unable to attach LNA diversity\n", __func__); error = EIO; goto bad2; } /* Start DFS processing tasklet */ TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); /* Configure LED state */ sc->sc_blinking = 0; sc->sc_ledstate = 1; sc->sc_ledon = 0; /* low true */ sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ callout_init(&sc->sc_ledtimer, 1); /* * Don't setup hardware-based blinking. * * Although some NICs may have this configured in the * default reset register values, the user may wish * to alter which pins have which function. * * The reference driver attaches the MAC network LED to GPIO1 and * the MAC power LED to GPIO2. However, the DWA-552 cardbus * NIC has these reversed. */ sc->sc_hardled = (1 == 0); sc->sc_led_net_pin = -1; sc->sc_led_pwr_pin = -1; /* * Auto-enable soft led processing for IBM cards and for * 5211 minipci cards. Users can also manually enable/disable * support with a sysctl. */ sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); ath_led_config(sc); ath_hal_setledstate(ah, HAL_LED_INIT); /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ #ifndef ATH_ENABLE_11N | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif | IEEE80211_C_TXFRAG /* handle tx frags */ #ifdef ATH_ENABLE_DFS | IEEE80211_C_DFS /* Enable radar detection */ #endif | IEEE80211_C_PMGT /* Station side power mgmt */ | IEEE80211_C_SWSLEEP ; /* * Query the hal to figure out h/w crypto support. */ if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; /* * Check if h/w does the MIC and/or whether the * separate key cache entries are required to * handle both tx+rx MIC keys. */ if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; /* * If the h/w supports storing tx+rx MIC keys * in one cache slot automatically enable use. */ if (ath_hal_hastkipsplit(ah) || !ath_hal_settkipsplit(ah, AH_FALSE)) sc->sc_splitmic = 1; /* * If the h/w can do TKIP MIC together with WME then * we use it; otherwise we force the MIC to be done * in software by the net80211 layer. */ if (ath_hal_haswmetkipmic(ah)) sc->sc_wmetkipmic = 1; } sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); /* * Check for multicast key search support. */ if (ath_hal_hasmcastkeysearch(sc->sc_ah) && !ath_hal_getmcastkeysearch(sc->sc_ah)) { ath_hal_setmcastkeysearch(sc->sc_ah, 1); } sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); /* * Mark key cache slots associated with global keys * as in use. If we knew TKIP was not to be used we * could leave the +32, +64, and +32+64 slots free. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { setbit(sc->sc_keymap, i); setbit(sc->sc_keymap, i+64); if (sc->sc_splitmic) { setbit(sc->sc_keymap, i+32); setbit(sc->sc_keymap, i+32+64); } } /* * TPC support can be done either with a global cap or * per-packet support. The latter is not available on * all parts. We're a bit pedantic here as all parts * support a global cap. */ if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) ic->ic_caps |= IEEE80211_C_TXPMGT; /* * Mark WME capability only if we have sufficient * hardware queues to do proper priority scheduling. */ if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) ic->ic_caps |= IEEE80211_C_WME; /* * Check for misc other capabilities. */ if (ath_hal_hasbursting(ah)) ic->ic_caps |= IEEE80211_C_BURST; sc->sc_hasbmask = ath_hal_hasbssidmask(ah); sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ if (ath_hal_get_rx_tsf_prec(ah, &i)) { if (i == 32) { sc->sc_rxtsf32 = 1; } if (bootverbose) device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); } if (ath_hal_get_tx_tsf_prec(ah, &i)) { if (bootverbose) device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); } sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); if (ath_hal_hasfastframes(ah)) ic->ic_caps |= IEEE80211_C_FF; wmodes = ath_hal_getwirelessmodes(ah); if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) ic->ic_caps |= IEEE80211_C_TURBOP; #ifdef IEEE80211_SUPPORT_TDMA if (ath_hal_macversion(ah) > 0x78) { ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ ic->ic_tdma_update = ath_tdma_update; } #endif /* * TODO: enforce that at least this many frames are available * in the txbuf list before allowing data frames (raw or * otherwise) to be transmitted. */ sc->sc_txq_data_minfree = 10; /* * Leave this as default to maintain legacy behaviour. * Shortening the cabq/mcastq may end up causing some * undesirable behaviour. */ sc->sc_txq_mcastq_maxdepth = ath_txbuf; /* * How deep can the node software TX queue get whilst it's asleep. */ sc->sc_txq_node_psq_maxdepth = 16; /* * Default the maximum queue depth for a given node * to 1/4'th the TX buffers, or 64, whichever * is larger. */ sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); /* Enable CABQ by default */ sc->sc_cabq_enable = 1; /* * Allow the TX and RX chainmasks to be overridden by * environment variables and/or device.hints. * * This must be done early - before the hardware is * calibrated or before the 802.11n stream calculation * is done. */ if (resource_int_value(device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev), "rx_chainmask", &rx_chainmask) == 0) { device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", rx_chainmask); (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); } if (resource_int_value(device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev), "tx_chainmask", &tx_chainmask) == 0) { device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", tx_chainmask); (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); } /* * Query the TX/RX chainmask configuration. * * This is only relevant for 11n devices. */ ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); /* * Disable MRR with protected frames by default. * Only 802.11n series NICs can handle this. */ sc->sc_mrrprot = 0; /* XXX should be a capability */ /* * Query the enterprise mode information the HAL. */ if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, &sc->sc_ent_cfg) == HAL_OK) sc->sc_use_ent = 1; #ifdef ATH_ENABLE_11N /* * Query HT capabilities */ if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { uint32_t rxs, txs; uint32_t ldpc; device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); sc->sc_mrrprot = 1; /* XXX should be a capability */ ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ /* * Enable short-GI for HT20 only if the hardware * advertises support. * Notably, anything earlier than the AR9287 doesn't. */ if ((ath_hal_getcapability(ah, HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && (wmodes & HAL_MODE_HT20)) { device_printf(sc->sc_dev, "[HT] enabling short-GI in 20MHz mode\n"); ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; } if (wmodes & HAL_MODE_HT40) ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 | IEEE80211_HTCAP_SHORTGI40; /* * TX/RX streams need to be taken into account when * negotiating which MCS rates it'll receive and * what MCS rates are available for TX. */ (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); ic->ic_txstream = txs; ic->ic_rxstream = rxs; /* * Setup TX and RX STBC based on what the HAL allows and * the currently configured chainmask set. * Ie - don't enable STBC TX if only one chain is enabled. * STBC RX is fine on a single RX chain; it just won't * provide any real benefit. */ if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, NULL) == HAL_OK) { sc->sc_rx_stbc = 1; device_printf(sc->sc_dev, "[HT] 1 stream STBC receive enabled\n"); ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; } if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, NULL) == HAL_OK) { sc->sc_tx_stbc = 1; device_printf(sc->sc_dev, "[HT] 1 stream STBC transmit enabled\n"); ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; } (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, &sc->sc_rts_aggr_limit); if (sc->sc_rts_aggr_limit != (64 * 1024)) device_printf(sc->sc_dev, "[HT] RTS aggregates limited to %d KiB\n", sc->sc_rts_aggr_limit / 1024); /* * LDPC */ if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) == HAL_OK && (ldpc == 1)) { sc->sc_has_ldpc = 1; device_printf(sc->sc_dev, "[HT] LDPC transmit/receive enabled\n"); ic->ic_htcaps |= IEEE80211_HTCAP_LDPC; } device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs); } #endif /* * Initial aggregation settings. */ sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; sc->sc_delim_min_pad = 0; /* * Check if the hardware requires PCI register serialisation. * Some of the Owl based MACs require this. */ if (mp_ncpus > 1 && ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 0, NULL) == HAL_OK) { sc->sc_ah->ah_config.ah_serialise_reg_war = 1; device_printf(sc->sc_dev, "Enabling register serialisation\n"); } /* * Initialise the deferred completed RX buffer list. */ TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); /* * Indicate we need the 802.11 header padded to a * 32-bit boundary for 4-address and QoS frames. */ ic->ic_flags |= IEEE80211_F_DATAPAD; /* * Query the hal about antenna support. */ sc->sc_defant = ath_hal_getdefantenna(ah); /* * Not all chips have the VEOL support we want to * use with IBSS beacons; check here for it. */ sc->sc_hasveol = ath_hal_hasveol(ah); /* get mac address from kenv first, then hardware */ if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { /* Tell the HAL now about the new MAC */ ath_hal_setmac(ah, ic->ic_macaddr); } else { ath_hal_getmac(ah, ic->ic_macaddr); } if (sc->sc_hasbmask) ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); /* NB: used to size node table key mapping array */ ic->ic_max_keyix = sc->sc_keymax; /* call MI attach routine. */ ieee80211_ifattach(ic); ic->ic_setregdomain = ath_setregdomain; ic->ic_getradiocaps = ath_getradiocaps; sc->sc_opmode = HAL_M_STA; /* override default methods */ ic->ic_ioctl = ath_ioctl; ic->ic_parent = ath_parent; ic->ic_transmit = ath_transmit; ic->ic_newassoc = ath_newassoc; ic->ic_updateslot = ath_updateslot; ic->ic_wme.wme_update = ath_wme_update; ic->ic_vap_create = ath_vap_create; ic->ic_vap_delete = ath_vap_delete; ic->ic_raw_xmit = ath_raw_xmit; ic->ic_update_mcast = ath_update_mcast; ic->ic_update_promisc = ath_update_promisc; ic->ic_node_alloc = ath_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = ath_node_free; sc->sc_node_cleanup = ic->ic_node_cleanup; ic->ic_node_cleanup = ath_node_cleanup; ic->ic_node_getsignal = ath_node_getsignal; ic->ic_scan_start = ath_scan_start; ic->ic_scan_end = ath_scan_end; ic->ic_set_channel = ath_set_channel; #ifdef ATH_ENABLE_11N /* 802.11n specific - but just override anyway */ sc->sc_addba_request = ic->ic_addba_request; sc->sc_addba_response = ic->ic_addba_response; sc->sc_addba_stop = ic->ic_addba_stop; sc->sc_bar_response = ic->ic_bar_response; sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; ic->ic_addba_request = ath_addba_request; ic->ic_addba_response = ath_addba_response; ic->ic_addba_response_timeout = ath_addba_response_timeout; ic->ic_addba_stop = ath_addba_stop; ic->ic_bar_response = ath_bar_response; ic->ic_update_chw = ath_update_chw; #endif /* ATH_ENABLE_11N */ #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT /* * There's one vendor bitmap entry in the RX radiotap * header; make sure that's taken into account. */ ieee80211_radiotap_attachv(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, ATH_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, ATH_RX_RADIOTAP_PRESENT); #else /* * No vendor bitmap/extensions are present. */ ieee80211_radiotap_attach(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), ATH_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), ATH_RX_RADIOTAP_PRESENT); #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ /* * Setup the ALQ logging if required */ #ifdef ATH_DEBUG_ALQ if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); if_ath_alq_setcfg(&sc->sc_alq, sc->sc_ah->ah_macVersion, sc->sc_ah->ah_macRev, sc->sc_ah->ah_phyRev, sc->sc_ah->ah_magic); #endif /* * Setup dynamic sysctl's now that country code and * regdomain are available from the hal. */ ath_sysctlattach(sc); ath_sysctl_stats_attach(sc); ath_sysctl_hal_attach(sc); if (bootverbose) ieee80211_announce(ic); ath_announce(sc); /* * Put it to sleep for now. */ ATH_LOCK(sc); ath_power_setpower(sc, HAL_PM_FULL_SLEEP); ATH_UNLOCK(sc); return 0; bad2: ath_tx_cleanup(sc); ath_desc_free(sc); ath_txdma_teardown(sc); ath_rxdma_teardown(sc); bad: if (ah) ath_hal_detach(ah); sc->sc_invalid = 1; return error; } int ath_detach(struct ath_softc *sc) { /* * NB: the order of these is important: * o stop the chip so no more interrupts will fire * o call the 802.11 layer before detaching the hal to * insure callbacks into the driver to delete global * key cache entries can be handled * o free the taskqueue which drains any pending tasks * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * Other than that, it's straightforward... */ /* * XXX Wake the hardware up first. ath_stop() will still * wake it up first, but I'd rather do it here just to * ensure it's awake. */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ath_power_setpower(sc, HAL_PM_AWAKE); /* * Stop things cleanly. */ ath_stop(sc); ATH_UNLOCK(sc); ieee80211_ifdetach(&sc->sc_ic); taskqueue_free(sc->sc_tq); #ifdef ATH_TX99_DIAG if (sc->sc_tx99 != NULL) sc->sc_tx99->detach(sc->sc_tx99); #endif ath_rate_detach(sc->sc_rc); #ifdef ATH_DEBUG_ALQ if_ath_alq_tidyup(&sc->sc_alq); #endif ath_lna_div_detach(sc); ath_btcoex_detach(sc); ath_spectral_detach(sc); ath_dfs_detach(sc); ath_desc_free(sc); ath_txdma_teardown(sc); ath_rxdma_teardown(sc); ath_tx_cleanup(sc); ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ return 0; } /* * MAC address handling for multiple BSS on the same radio. * The first vap uses the MAC address from the EEPROM. For * subsequent vap's we set the U/L bit (bit 1) in the MAC * address and use the next six bits as an index. */ static void assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) { int i; if (clone && sc->sc_hasbmask) { /* NB: we only do this if h/w supports multiple bssid */ for (i = 0; i < 8; i++) if ((sc->sc_bssidmask & (1<sc_bssidmask |= 1<sc_hwbssidmask[0] &= ~mac[0]; if (i == 0) sc->sc_nbssid0++; } static void reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) { int i = mac[0] >> 2; uint8_t mask; if (i != 0 || --sc->sc_nbssid0 == 0) { sc->sc_bssidmask &= ~(1<sc_bssidmask & (1<sc_hwbssidmask[0] |= mask; } } /* * Assign a beacon xmit slot. We try to space out * assignments so when beacons are staggered the * traffic coming out of the cab q has maximal time * to go out before the next beacon is scheduled. */ static int assign_bslot(struct ath_softc *sc) { u_int slot, free; free = 0; for (slot = 0; slot < ATH_BCBUF; slot++) if (sc->sc_bslot[slot] == NULL) { if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) return slot; free = slot; /* NB: keep looking for a double slot */ } return free; } static struct ieee80211vap * ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac0[IEEE80211_ADDR_LEN]) { struct ath_softc *sc = ic->ic_softc; struct ath_vap *avp; struct ieee80211vap *vap; uint8_t mac[IEEE80211_ADDR_LEN]; int needbeacon, error; enum ieee80211_opmode ic_opmode; avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); needbeacon = 0; IEEE80211_ADDR_COPY(mac, mac0); ATH_LOCK(sc); ic_opmode = opmode; /* default to opmode of new vap */ switch (opmode) { case IEEE80211_M_STA: if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ device_printf(sc->sc_dev, "only 1 sta vap supported\n"); goto bad; } if (sc->sc_nvaps) { /* * With multiple vaps we must fall back * to s/w beacon miss handling. */ flags |= IEEE80211_CLONE_NOBEACONS; } if (flags & IEEE80211_CLONE_NOBEACONS) { /* * Station mode w/o beacons are implemented w/ AP mode. */ ic_opmode = IEEE80211_M_HOSTAP; } break; case IEEE80211_M_IBSS: if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ device_printf(sc->sc_dev, "only 1 ibss vap supported\n"); goto bad; } needbeacon = 1; break; case IEEE80211_M_AHDEMO: #ifdef IEEE80211_SUPPORT_TDMA if (flags & IEEE80211_CLONE_TDMA) { if (sc->sc_nvaps != 0) { device_printf(sc->sc_dev, "only 1 tdma vap supported\n"); goto bad; } needbeacon = 1; flags |= IEEE80211_CLONE_NOBEACONS; } /* fall thru... */ #endif case IEEE80211_M_MONITOR: if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { /* * Adopt existing mode. Adding a monitor or ahdemo * vap to an existing configuration is of dubious * value but should be ok. */ /* XXX not right for monitor mode */ ic_opmode = ic->ic_opmode; } break; case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: needbeacon = 1; break; case IEEE80211_M_WDS: if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { device_printf(sc->sc_dev, "wds not supported in sta mode\n"); goto bad; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; if (sc->sc_nvaps == 0) ic_opmode = IEEE80211_M_HOSTAP; else ic_opmode = ic->ic_opmode; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); goto bad; } /* * Check that a beacon buffer is available; the code below assumes it. */ if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { device_printf(sc->sc_dev, "no beacon buffer available\n"); goto bad; } /* STA, AHDEMO? */ if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); } vap = &avp->av_vap; /* XXX can't hold mutex across if_alloc */ ATH_UNLOCK(sc); error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); ATH_LOCK(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: error %d creating vap\n", __func__, error); goto bad2; } /* h/w crypto support */ vap->iv_key_alloc = ath_key_alloc; vap->iv_key_delete = ath_key_delete; vap->iv_key_set = ath_key_set; vap->iv_key_update_begin = ath_key_update_begin; vap->iv_key_update_end = ath_key_update_end; /* override various methods */ avp->av_recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = ath_recv_mgmt; vap->iv_reset = ath_reset_vap; vap->iv_update_beacon = ath_beacon_update; avp->av_newstate = vap->iv_newstate; vap->iv_newstate = ath_newstate; avp->av_bmiss = vap->iv_bmiss; vap->iv_bmiss = ath_bmiss_vap; avp->av_node_ps = vap->iv_node_ps; vap->iv_node_ps = ath_node_powersave; avp->av_set_tim = vap->iv_set_tim; vap->iv_set_tim = ath_node_set_tim; avp->av_recv_pspoll = vap->iv_recv_pspoll; vap->iv_recv_pspoll = ath_node_recv_pspoll; /* Set default parameters */ /* * Anything earlier than some AR9300 series MACs don't * support a smaller MPDU density. */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; /* * All NICs can handle the maximum size, however * AR5416 based MACs can only TX aggregates w/ RTS * protection when the total aggregate size is <= 8k. * However, for now that's enforced by the TX path. */ vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; avp->av_bslot = -1; if (needbeacon) { /* * Allocate beacon state and setup the q for buffered * multicast frames. We know a beacon buffer is * available because we checked above. */ avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { /* * Assign the vap to a beacon xmit slot. As above * this cannot fail to find a free one. */ avp->av_bslot = assign_bslot(sc); KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, ("beacon slot %u not empty", avp->av_bslot)); sc->sc_bslot[avp->av_bslot] = vap; sc->sc_nbcnvaps++; } if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { /* * Multple vaps are to transmit beacons and we * have h/w support for TSF adjusting; enable * use of staggered beacons. */ sc->sc_stagbeacons = 1; } ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); } ic->ic_opmode = ic_opmode; if (opmode != IEEE80211_M_WDS) { sc->sc_nvaps++; if (opmode == IEEE80211_M_STA) sc->sc_nstavaps++; if (opmode == IEEE80211_M_MBSS) sc->sc_nmeshvaps++; } switch (ic_opmode) { case IEEE80211_M_IBSS: sc->sc_opmode = HAL_M_IBSS; break; case IEEE80211_M_STA: sc->sc_opmode = HAL_M_STA; break; case IEEE80211_M_AHDEMO: #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { sc->sc_tdma = 1; /* NB: disable tsf adjust */ sc->sc_stagbeacons = 0; } /* * NB: adhoc demo mode is a pseudo mode; to the hal it's * just ap mode. */ /* fall thru... */ #endif case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: sc->sc_opmode = HAL_M_HOSTAP; break; case IEEE80211_M_MONITOR: sc->sc_opmode = HAL_M_MONITOR; break; default: /* XXX should not happen */ break; } if (sc->sc_hastsfadd) { /* * Configure whether or not TSF adjust should be done. */ ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); } if (flags & IEEE80211_CLONE_NOBEACONS) { /* * Enable s/w beacon miss handling. */ sc->sc_swbmiss = 1; } ATH_UNLOCK(sc); /* complete setup */ ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, mac); return vap; bad2: reclaim_address(sc, mac); ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); bad: free(avp, M_80211_VAP); ATH_UNLOCK(sc); return NULL; } static void ath_vap_delete(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; struct ath_vap *avp = ATH_VAP(vap); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); if (sc->sc_running) { /* * Quiesce the hardware while we remove the vap. In * particular we need to reclaim all references to * the vap state by any frames pending on the tx queues. */ ath_hal_intrset(ah, 0); /* disable interrupts */ /* XXX Do all frames from all vaps/nodes need draining here? */ ath_stoprecv(sc, 1); /* stop recv side */ ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ } /* .. leave the hardware awake for now. */ ieee80211_vap_detach(vap); /* * XXX Danger Will Robinson! Danger! * * Because ieee80211_vap_detach() can queue a frame (the station * diassociate message?) after we've drained the TXQ and * flushed the software TXQ, we will end up with a frame queued * to a node whose vap is about to be freed. * * To work around this, flush the hardware/software again. * This may be racy - the ath task may be running and the packet * may be being scheduled between sw->hw txq. Tsk. * * TODO: figure out why a new node gets allocated somewhere around * here (after the ath_tx_swq() call; and after an ath_stop() * call!) */ ath_draintxq(sc, ATH_RESET_DEFAULT); ATH_LOCK(sc); /* * Reclaim beacon state. Note this must be done before * the vap instance is reclaimed as we may have a reference * to it in the buffer for the beacon frame. */ if (avp->av_bcbuf != NULL) { if (avp->av_bslot != -1) { sc->sc_bslot[avp->av_bslot] = NULL; sc->sc_nbcnvaps--; } ath_beacon_return(sc, avp->av_bcbuf); avp->av_bcbuf = NULL; if (sc->sc_nbcnvaps == 0) { sc->sc_stagbeacons = 0; if (sc->sc_hastsfadd) ath_hal_settsfadjust(sc->sc_ah, 0); } /* * Reclaim any pending mcast frames for the vap. */ ath_tx_draintxq(sc, &avp->av_mcastq); } /* * Update bookkeeping. */ if (vap->iv_opmode == IEEE80211_M_STA) { sc->sc_nstavaps--; if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) sc->sc_swbmiss = 0; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { reclaim_address(sc, vap->iv_myaddr); ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); if (vap->iv_opmode == IEEE80211_M_MBSS) sc->sc_nmeshvaps--; } if (vap->iv_opmode != IEEE80211_M_WDS) sc->sc_nvaps--; #ifdef IEEE80211_SUPPORT_TDMA /* TDMA operation ceases when the last vap is destroyed */ if (sc->sc_tdma && sc->sc_nvaps == 0) { sc->sc_tdma = 0; sc->sc_swbmiss = 0; } #endif free(avp, M_80211_VAP); if (sc->sc_running) { /* * Restart rx+tx machines if still running (RUNNING will * be reset if we just destroyed the last vap). */ if (ath_startrecv(sc) != 0) device_printf(sc->sc_dev, "%s: unable to restart recv logic\n", __func__); if (sc->sc_beacons) { /* restart beacons */ #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma) ath_tdma_config(sc, NULL); else #endif ath_beacon_config(sc, NULL); } ath_hal_intrset(ah, sc->sc_imask); } /* Ok, let the hardware asleep. */ ath_power_restore_power_state(sc); ATH_UNLOCK(sc); } void ath_suspend(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; sc->sc_resume_up = ic->ic_nrunning != 0; ieee80211_suspend_all(ic); /* * NB: don't worry about putting the chip in low power * mode; pci will power off our socket on suspend and * CardBus detaches the device. * * XXX TODO: well, that's great, except for non-cardbus * devices! */ /* * XXX This doesn't wait until all pending taskqueue * items and parallel transmit/receive/other threads * are running! */ ath_hal_intrset(sc->sc_ah, 0); taskqueue_block(sc->sc_tq); ATH_LOCK(sc); callout_stop(&sc->sc_cal_ch); ATH_UNLOCK(sc); /* * XXX ensure sc_invalid is 1 */ /* Disable the PCIe PHY, complete with workarounds */ ath_hal_enablepcie(sc->sc_ah, 1, 1); } /* * Reset the key cache since some parts do not reset the * contents on resume. First we clear all entries, then * re-load keys that the 802.11 layer assumes are setup * in h/w. */ static void ath_reset_keycache(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; int i; ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); for (i = 0; i < sc->sc_keymax; i++) ath_hal_keyreset(ah, i); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ieee80211_crypto_reload_keys(ic); } /* * Fetch the current chainmask configuration based on the current * operating channel and options. */ static void ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) { /* * Set TX chainmask to the currently configured chainmask; * the TX chainmask depends upon the current operating mode. */ sc->sc_cur_rxchainmask = sc->sc_rxchainmask; if (IEEE80211_IS_CHAN_HT(chan)) { sc->sc_cur_txchainmask = sc->sc_txchainmask; } else { sc->sc_cur_txchainmask = 1; } DPRINTF(sc, ATH_DEBUG_RESET, "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", __func__, sc->sc_cur_txchainmask, sc->sc_cur_rxchainmask); } void ath_resume(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; ath_hal_enablepcie(ah, 0, 0); /* * Must reset the chip before we reload the * keycache as we were powered down on suspend. */ ath_update_chainmasks(sc, sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, sc->sc_cur_rxchainmask); /* Ensure we set the current power state to on */ ATH_LOCK(sc); ath_power_setselfgen(sc, HAL_PM_AWAKE); ath_power_set_power_state(sc, HAL_PM_AWAKE); ath_power_setpower(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ath_hal_reset(ah, sc->sc_opmode, sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, AH_FALSE, HAL_RESET_NORMAL, &status); ath_reset_keycache(sc); ATH_RX_LOCK(sc); sc->sc_rx_stopped = 1; sc->sc_rx_resetted = 1; ATH_RX_UNLOCK(sc); /* Let DFS at it in case it's a DFS channel */ ath_dfs_radar_enable(sc, ic->ic_curchan); /* Let spectral at in case spectral is enabled */ ath_spectral_enable(sc, ic->ic_curchan); /* * Let bluetooth coexistence at in case it's needed for this channel */ ath_btcoex_enable(sc, ic->ic_curchan); /* * If we're doing TDMA, enforce the TXOP limitation for chips that * support it. */ if (sc->sc_hasenforcetxop && sc->sc_tdma) ath_hal_setenforcetxop(sc->sc_ah, 1); else ath_hal_setenforcetxop(sc->sc_ah, 0); /* Restore the LED configuration */ ath_led_config(sc); ath_hal_setledstate(ah, HAL_LED_INIT); if (sc->sc_resume_up) ieee80211_resume_all(ic); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); /* XXX beacons ? */ } void ath_shutdown(struct ath_softc *sc) { ATH_LOCK(sc); ath_stop(sc); ATH_UNLOCK(sc); /* NB: no point powering down chip as we're about to reboot */ } /* * Interrupt handler. Most of the actual processing is deferred. */ void ath_intr(void *arg) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; HAL_INT status = 0; uint32_t txqs; /* * If we're inside a reset path, just print a warning and * clear the ISR. The reset routine will finish it for us. */ ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt) { HAL_INT status; ath_hal_getisr(ah, &status); /* clear ISR */ ath_hal_intrset(ah, 0); /* disable further intr's */ DPRINTF(sc, ATH_DEBUG_ANY, "%s: in reset, ignoring: status=0x%x\n", __func__, status); ATH_PCU_UNLOCK(sc); return; } if (sc->sc_invalid) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); ATH_PCU_UNLOCK(sc); return; } if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ ATH_PCU_UNLOCK(sc); return; } ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { HAL_INT status; DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", __func__, sc->sc_ic.ic_nrunning, sc->sc_running); ath_hal_getisr(ah, &status); /* clear ISR */ ath_hal_intrset(ah, 0); /* disable further intr's */ ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); return; } /* * Figure out the reason(s) for the interrupt. Note * that the hal returns a pseudo-ISR that may include * bits we haven't explicitly enabled so we mask the * value to insure we only process bits we requested. */ ath_hal_getisr(ah, &status); /* NB: clears ISR too */ DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); #ifdef ATH_DEBUG_ALQ if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, ah->ah_syncstate); #endif /* ATH_DEBUG_ALQ */ #ifdef ATH_KTR_INTR_DEBUG ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", ah->ah_intrstate[0], ah->ah_intrstate[1], ah->ah_intrstate[2], ah->ah_intrstate[3], ah->ah_intrstate[6]); #endif /* Squirrel away SYNC interrupt debugging */ if (ah->ah_syncstate != 0) { int i; for (i = 0; i < 32; i++) if (ah->ah_syncstate & (i << i)) sc->sc_intr_stats.sync_intr[i]++; } status &= sc->sc_imask; /* discard unasked for bits */ /* Short-circuit un-handled interrupts */ if (status == 0x0) { ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); return; } /* * Take a note that we're inside the interrupt handler, so * the reset routines know to wait. */ sc->sc_intr_cnt++; ATH_PCU_UNLOCK(sc); /* * Handle the interrupt. We won't run concurrent with the reset * or channel change routines as they'll wait for sc_intr_cnt * to be 0 before continuing. */ if (status & HAL_INT_FATAL) { sc->sc_stats.ast_hardware++; ath_hal_intrset(ah, 0); /* disable intr's until reset */ taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); } else { if (status & HAL_INT_SWBA) { /* * Software beacon alert--time to send a beacon. * Handle beacon transmission directly; deferring * this is too slow to meet timing constraints * under load. */ #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma) { if (sc->sc_tdmaswba == 0) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); ath_tdma_beacon_send(sc, vap); sc->sc_tdmaswba = vap->iv_tdma->tdma_bintval; } else sc->sc_tdmaswba--; } else #endif { ath_beacon_proc(sc, 0); #ifdef IEEE80211_SUPPORT_SUPERG /* * Schedule the rx taskq in case there's no * traffic so any frames held on the staging * queue are aged and potentially flushed. */ sc->sc_rx.recv_sched(sc, 1); #endif } } if (status & HAL_INT_RXEOL) { int imask; ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); if (! sc->sc_isedma) { ATH_PCU_LOCK(sc); /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work at * least on older hardware revs. */ sc->sc_stats.ast_rxeol++; /* * Disable RXEOL/RXORN - prevent an interrupt * storm until the PCU logic can be reset. * In case the interface is reset some other * way before "sc_kickpcu" is called, don't * modify sc_imask - that way if it is reset * by a call to ath_reset() somehow, the * interrupt mask will be correctly reprogrammed. */ imask = sc->sc_imask; imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); ath_hal_intrset(ah, imask); /* * Only blank sc_rxlink if we've not yet kicked * the PCU. * * This isn't entirely correct - the correct solution * would be to have a PCU lock and engage that for * the duration of the PCU fiddling; which would include * running the RX process. Otherwise we could end up * messing up the RX descriptor chain and making the * RX desc list much shorter. */ if (! sc->sc_kickpcu) sc->sc_rxlink = NULL; sc->sc_kickpcu = 1; ATH_PCU_UNLOCK(sc); } /* * Enqueue an RX proc to handle whatever * is in the RX queue. * This will then kick the PCU if required. */ sc->sc_rx.recv_sched(sc, 1); } if (status & HAL_INT_TXURN) { sc->sc_stats.ast_txurn++; /* bump tx trigger level */ ath_hal_updatetxtriglevel(ah, AH_TRUE); } /* * Handle both the legacy and RX EDMA interrupt bits. * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. */ if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { sc->sc_stats.ast_rx_intr++; sc->sc_rx.recv_sched(sc, 1); } if (status & HAL_INT_TX) { sc->sc_stats.ast_tx_intr++; /* * Grab all the currently set bits in the HAL txq bitmap * and blank them. This is the only place we should be * doing this. */ if (! sc->sc_isedma) { ATH_PCU_LOCK(sc); txqs = 0xffffffff; ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", txqs, sc->sc_txq_active, sc->sc_txq_active | txqs); sc->sc_txq_active |= txqs; ATH_PCU_UNLOCK(sc); } taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); } if (status & HAL_INT_BMISS) { sc->sc_stats.ast_bmiss++; taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); } if (status & HAL_INT_GTT) sc->sc_stats.ast_tx_timeout++; if (status & HAL_INT_CST) sc->sc_stats.ast_tx_cst++; if (status & HAL_INT_MIB) { sc->sc_stats.ast_mib++; ATH_PCU_LOCK(sc); /* * Disable interrupts until we service the MIB * interrupt; otherwise it will continue to fire. */ ath_hal_intrset(ah, 0); /* * Let the hal handle the event. We assume it will * clear whatever condition caused the interrupt. */ ath_hal_mibevent(ah, &sc->sc_halstats); /* * Don't reset the interrupt if we've just * kicked the PCU, or we may get a nested * RXEOL before the rxproc has had a chance * to run. */ if (sc->sc_kickpcu == 0) ath_hal_intrset(ah, sc->sc_imask); ATH_PCU_UNLOCK(sc); } if (status & HAL_INT_RXORN) { /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); sc->sc_stats.ast_rxorn++; } if (status & HAL_INT_TSFOOR) { device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); sc->sc_syncbeacon = 1; } if (status & HAL_INT_MCI) { ath_btcoex_mci_intr(sc); } } ATH_PCU_LOCK(sc); sc->sc_intr_cnt--; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); } static void ath_fatal_proc(void *arg, int pending) { struct ath_softc *sc = arg; u_int32_t *state; u_int32_t len; void *sp; if (sc->sc_invalid) return; device_printf(sc->sc_dev, "hardware error; resetting\n"); /* * Fatal errors are unrecoverable. Typically these * are caused by DMA errors. Collect h/w state from * the hal so we can diagnose what's going on. */ if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); state = sp; device_printf(sc->sc_dev, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], state[1] , state[2], state[3], state[4], state[5]); } ath_reset(sc, ATH_RESET_NOLOSS); } static void ath_bmiss_vap(struct ieee80211vap *vap) { struct ath_softc *sc = vap->iv_ic->ic_softc; /* * Workaround phantom bmiss interrupts by sanity-checking * the time of our last rx'd frame. If it is within the * beacon miss interval then ignore the interrupt. If it's * truly a bmiss we'll get another interrupt soon and that'll * be dispatched up for processing. Note this applies only * for h/w beacon miss events. */ /* * XXX TODO: Just read the TSF during the interrupt path; * that way we don't have to wake up again just to read it * again. */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { u_int64_t lastrx = sc->sc_lastrx; u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); /* XXX should take a locked ref to iv_bss */ u_int bmisstimeout = vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", __func__, (unsigned long long) tsf, (unsigned long long)(tsf - lastrx), (unsigned long long) lastrx, bmisstimeout); if (tsf - lastrx <= bmisstimeout) { sc->sc_stats.ast_bmiss_phantom++; ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); return; } } /* * There's no need to keep the hardware awake during the call * to av_bmiss(). */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); /* * Attempt to force a beacon resync. */ sc->sc_syncbeacon = 1; ATH_VAP(vap)->av_bmiss(vap); } /* XXX this needs a force wakeup! */ int ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) { uint32_t rsize; void *sp; if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) return 0; KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); *hangs = *(uint32_t *)sp; return 1; } static void ath_bmiss_proc(void *arg, int pending) { struct ath_softc *sc = arg; uint32_t hangs; DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ath_beacon_miss(sc); /* * Do a reset upon any becaon miss event. * * It may be a non-recognised RX clear hang which needs a reset * to clear. */ if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { ath_reset(sc, ATH_RESET_NOLOSS); device_printf(sc->sc_dev, "bb hang detected (0x%x), resetting\n", hangs); } else { ath_reset(sc, ATH_RESET_NOLOSS); ieee80211_beacon_miss(&sc->sc_ic); } /* Force a beacon resync, in case they've drifted */ sc->sc_syncbeacon = 1; ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); } /* * Handle TKIP MIC setup to deal hardware that doesn't do MIC * calcs together with WME. If necessary disable the crypto * hardware and mark the 802.11 state so keys will be setup * with the MIC work done in software. */ static void ath_settkipmic(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { if (ic->ic_flags & IEEE80211_F_WME) { ath_hal_settkipmic(sc->sc_ah, AH_FALSE); ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; } else { ath_hal_settkipmic(sc->sc_ah, AH_TRUE); ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; } } } static int ath_init(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; ATH_LOCK_ASSERT(sc); /* * Force the sleep state awake. */ ath_power_setselfgen(sc, HAL_PM_AWAKE); ath_power_set_power_state(sc, HAL_PM_AWAKE); ath_power_setpower(sc, HAL_PM_AWAKE); /* * Stop anything previously setup. This is safe * whether this is the first time through or not. */ ath_stop(sc); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ ath_settkipmic(sc); ath_update_chainmasks(sc, ic->ic_curchan); ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, sc->sc_cur_rxchainmask); if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, HAL_RESET_NORMAL, &status)) { device_printf(sc->sc_dev, "unable to reset hardware; hal status %u\n", status); return (ENODEV); } ATH_RX_LOCK(sc); sc->sc_rx_stopped = 1; sc->sc_rx_resetted = 1; ATH_RX_UNLOCK(sc); ath_chan_change(sc, ic->ic_curchan); /* Let DFS at it in case it's a DFS channel */ ath_dfs_radar_enable(sc, ic->ic_curchan); /* Let spectral at in case spectral is enabled */ ath_spectral_enable(sc, ic->ic_curchan); /* * Let bluetooth coexistence at in case it's needed for this channel */ ath_btcoex_enable(sc, ic->ic_curchan); /* * If we're doing TDMA, enforce the TXOP limitation for chips that * support it. */ if (sc->sc_hasenforcetxop && sc->sc_tdma) ath_hal_setenforcetxop(sc->sc_ah, 1); else ath_hal_setenforcetxop(sc->sc_ah, 0); /* * Likewise this is set during reset so update * state cached in the driver. */ sc->sc_diversity = ath_hal_getdiversity(ah); sc->sc_lastlongcal = ticks; sc->sc_resetcal = 1; sc->sc_lastcalreset = 0; sc->sc_lastani = ticks; sc->sc_lastshortcal = ticks; sc->sc_doresetcal = AH_FALSE; /* * Beacon timers were cleared here; give ath_newstate() * a hint that the beacon timers should be poked when * things transition to the RUN state. */ sc->sc_beacons = 0; /* * Setup the hardware after reset: the key cache * is filled as needed and the receive engine is * set going. Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ if (ath_startrecv(sc) != 0) { device_printf(sc->sc_dev, "unable to start recv logic\n"); ath_power_restore_power_state(sc); return (ENODEV); } /* * Enable interrupts. */ sc->sc_imask = HAL_INT_RX | HAL_INT_TX | HAL_INT_RXORN | HAL_INT_TXURN | HAL_INT_FATAL | HAL_INT_GLOBAL; /* * Enable RX EDMA bits. Note these overlap with * HAL_INT_RX and HAL_INT_RXDESC respectively. */ if (sc->sc_isedma) sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); /* * If we're an EDMA NIC, we don't care about RXEOL. * Writing a new descriptor in will simply restart * RX DMA. */ if (! sc->sc_isedma) sc->sc_imask |= HAL_INT_RXEOL; /* * Enable MCI interrupt for MCI devices. */ if (sc->sc_btcoex_mci) sc->sc_imask |= HAL_INT_MCI; /* * Enable MIB interrupts when there are hardware phy counters. * Note we only do this (at the moment) for station mode. */ if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) sc->sc_imask |= HAL_INT_MIB; /* * XXX add capability for this. * * If we're in STA mode (and maybe IBSS?) then register for * TSFOOR interrupts. */ if (ic->ic_opmode == IEEE80211_M_STA) sc->sc_imask |= HAL_INT_TSFOOR; /* Enable global TX timeout and carrier sense timeout if available */ if (ath_hal_gtxto_supported(ah)) sc->sc_imask |= HAL_INT_GTT; DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", __func__, sc->sc_imask); sc->sc_running = 1; callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); ath_hal_intrset(ah, sc->sc_imask); ath_power_restore_power_state(sc); return (0); } static void ath_stop(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; ATH_LOCK_ASSERT(sc); /* * Wake the hardware up before fiddling with it. */ ath_power_set_power_state(sc, HAL_PM_AWAKE); if (sc->sc_running) { /* * Shutdown the hardware and driver: * reset 802.11 state machine * turn off timers * disable interrupts * turn off the radio * clear transmit machinery * clear receive machinery * drain and release tx queues * reclaim beacon resources * power down hardware * * Note that some of this work is not possible if the * hardware is gone (invalid). */ #ifdef ATH_TX99_DIAG if (sc->sc_tx99 != NULL) sc->sc_tx99->stop(sc->sc_tx99); #endif callout_stop(&sc->sc_wd_ch); sc->sc_wd_timer = 0; sc->sc_running = 0; if (!sc->sc_invalid) { if (sc->sc_softled) { callout_stop(&sc->sc_ledtimer); ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); sc->sc_blinking = 0; } ath_hal_intrset(ah, 0); } /* XXX we should stop RX regardless of whether it's valid */ if (!sc->sc_invalid) { ath_stoprecv(sc, 1); ath_hal_phydisable(ah); } else sc->sc_rxlink = NULL; ath_draintxq(sc, ATH_RESET_DEFAULT); ath_beacon_free(sc); /* XXX not needed */ } /* And now, restore the current power state */ ath_power_restore_power_state(sc); } /* * Wait until all pending TX/RX has completed. * * This waits until all existing transmit, receive and interrupts * have completed. It's assumed that the caller has first * grabbed the reset lock so it doesn't try to do overlapping * chip resets. */ #define MAX_TXRX_ITERATIONS 100 static void ath_txrx_stop_locked(struct ath_softc *sc) { int i = MAX_TXRX_ITERATIONS; ATH_UNLOCK_ASSERT(sc); ATH_PCU_LOCK_ASSERT(sc); /* * Sleep until all the pending operations have completed. * * The caller must ensure that reset has been incremented * or the pending operations may continue being queued. */ while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || sc->sc_txstart_cnt || sc->sc_intr_cnt) { if (i <= 0) break; msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", msecs_to_ticks(10)); i--; } if (i <= 0) device_printf(sc->sc_dev, "%s: didn't finish after %d iterations\n", __func__, MAX_TXRX_ITERATIONS); } #undef MAX_TXRX_ITERATIONS #if 0 static void ath_txrx_stop(struct ath_softc *sc) { ATH_UNLOCK_ASSERT(sc); ATH_PCU_UNLOCK_ASSERT(sc); ATH_PCU_LOCK(sc); ath_txrx_stop_locked(sc); ATH_PCU_UNLOCK(sc); } #endif static void ath_txrx_start(struct ath_softc *sc) { taskqueue_unblock(sc->sc_tq); } /* * Grab the reset lock, and wait around until no one else * is trying to do anything with it. * * This is totally horrible but we can't hold this lock for * long enough to do TX/RX or we end up with net80211/ip stack * LORs and eventual deadlock. * * "dowait" signals whether to spin, waiting for the reset * lock count to reach 0. This should (for now) only be used * during the reset path, as the rest of the code may not * be locking-reentrant enough to behave correctly. * * Another, cleaner way should be found to serialise all of * these operations. */ #define MAX_RESET_ITERATIONS 25 static int ath_reset_grablock(struct ath_softc *sc, int dowait) { int w = 0; int i = MAX_RESET_ITERATIONS; ATH_PCU_LOCK_ASSERT(sc); do { if (sc->sc_inreset_cnt == 0) { w = 1; break; } if (dowait == 0) { w = 0; break; } ATH_PCU_UNLOCK(sc); /* * 1 tick is likely not enough time for long calibrations * to complete. So we should wait quite a while. */ pause("ath_reset_grablock", msecs_to_ticks(100)); i--; ATH_PCU_LOCK(sc); } while (i > 0); /* * We always increment the refcounter, regardless * of whether we succeeded to get it in an exclusive * way. */ sc->sc_inreset_cnt++; if (i <= 0) device_printf(sc->sc_dev, "%s: didn't finish after %d iterations\n", __func__, MAX_RESET_ITERATIONS); if (w == 0) device_printf(sc->sc_dev, "%s: warning, recursive reset path!\n", __func__); return w; } #undef MAX_RESET_ITERATIONS /* * Reset the hardware w/o losing operational state. This is * basically a more efficient way of doing ath_stop, ath_init, * followed by state transitions to the current 802.11 * operational state. Used to recover from various errors and * to reset or reload hardware state. */ int ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; int i; DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ ATH_PCU_UNLOCK_ASSERT(sc); ATH_UNLOCK_ASSERT(sc); /* Try to (stop any further TX/RX from occurring */ taskqueue_block(sc->sc_tq); /* * Wake the hardware up. */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_PCU_LOCK(sc); /* * Grab the reset lock before TX/RX is stopped. * * This is needed to ensure that when the TX/RX actually does finish, * no further TX/RX/reset runs in parallel with this. */ if (ath_reset_grablock(sc, 1) == 0) { device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", __func__); } /* disable interrupts */ ath_hal_intrset(ah, 0); /* * Now, ensure that any in progress TX/RX completes before we * continue. */ ath_txrx_stop_locked(sc); ATH_PCU_UNLOCK(sc); /* * Regardless of whether we're doing a no-loss flush or * not, stop the PCU and handle what's in the RX queue. * That way frames aren't dropped which shouldn't be. */ ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); ath_rx_flush(sc); /* * Should now wait for pending TX/RX to complete * and block future ones from occurring. This needs to be * done before the TX queue is drained. */ ath_draintxq(sc, reset_type); /* stop xmit side */ ath_settkipmic(sc); /* configure TKIP MIC handling */ /* NB: indicate channel change so we do a full reset */ ath_update_chainmasks(sc, ic->ic_curchan); ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, sc->sc_cur_rxchainmask); if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, HAL_RESET_NORMAL, &status)) device_printf(sc->sc_dev, "%s: unable to reset hardware; hal status %u\n", __func__, status); sc->sc_diversity = ath_hal_getdiversity(ah); ATH_RX_LOCK(sc); sc->sc_rx_stopped = 1; sc->sc_rx_resetted = 1; ATH_RX_UNLOCK(sc); /* Let DFS at it in case it's a DFS channel */ ath_dfs_radar_enable(sc, ic->ic_curchan); /* Let spectral at in case spectral is enabled */ ath_spectral_enable(sc, ic->ic_curchan); /* * Let bluetooth coexistence at in case it's needed for this channel */ ath_btcoex_enable(sc, ic->ic_curchan); /* * If we're doing TDMA, enforce the TXOP limitation for chips that * support it. */ if (sc->sc_hasenforcetxop && sc->sc_tdma) ath_hal_setenforcetxop(sc->sc_ah, 1); else ath_hal_setenforcetxop(sc->sc_ah, 0); if (ath_startrecv(sc) != 0) /* restart recv */ device_printf(sc->sc_dev, "%s: unable to start recv logic\n", __func__); /* * We may be doing a reset in response to an ioctl * that changes the channel so update any state that * might change as a result. */ ath_chan_change(sc, ic->ic_curchan); if (sc->sc_beacons) { /* restart beacons */ #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma) ath_tdma_config(sc, NULL); else #endif ath_beacon_config(sc, NULL); } /* * Release the reset lock and re-enable interrupts here. * If an interrupt was being processed in ath_intr(), * it would disable interrupts at this point. So we have * to atomically enable interrupts and decrement the * reset counter - this way ath_intr() doesn't end up * disabling interrupts without a corresponding enable * in the rest or channel change path. * * Grab the TX reference in case we need to transmit. * That way a parallel transmit doesn't. */ ATH_PCU_LOCK(sc); sc->sc_inreset_cnt--; sc->sc_txstart_cnt++; /* XXX only do this if sc_inreset_cnt == 0? */ ath_hal_intrset(ah, sc->sc_imask); ATH_PCU_UNLOCK(sc); /* * TX and RX can be started here. If it were started with * sc_inreset_cnt > 0, the TX and RX path would abort. * Thus if this is a nested call through the reset or * channel change code, TX completion will occur but * RX completion and ath_start / ath_tx_start will not * run. */ /* Restart TX/RX as needed */ ath_txrx_start(sc); /* XXX TODO: we need to hold the tx refcount here! */ /* Restart TX completion and pending TX */ if (reset_type == ATH_RESET_NOLOSS) { for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { ATH_TXQ_LOCK(&sc->sc_txq[i]); ath_txq_restart_dma(sc, &sc->sc_txq[i]); ATH_TXQ_UNLOCK(&sc->sc_txq[i]); ATH_TX_LOCK(sc); ath_txq_sched(sc, &sc->sc_txq[i]); ATH_TX_UNLOCK(sc); } } } ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); /* Handle any frames in the TX queue */ /* * XXX should this be done by the caller, rather than * ath_reset() ? */ ath_tx_kick(sc); /* restart xmit */ return 0; } static int ath_reset_vap(struct ieee80211vap *vap, u_long cmd) { struct ieee80211com *ic = vap->iv_ic; struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; switch (cmd) { case IEEE80211_IOC_TXPOWER: /* * If per-packet TPC is enabled, then we have nothing * to do; otherwise we need to force the global limit. * All this can happen directly; no need to reset. */ if (!ath_hal_gettpc(ah)) ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); return 0; } /* XXX? Full or NOLOSS? */ return ath_reset(sc, ATH_RESET_FULL); } struct ath_buf * _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) { struct ath_buf *bf; ATH_TXBUF_LOCK_ASSERT(sc); if (btype == ATH_BUFTYPE_MGMT) bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); else bf = TAILQ_FIRST(&sc->sc_txbuf); if (bf == NULL) { sc->sc_stats.ast_tx_getnobuf++; } else { if (bf->bf_flags & ATH_BUF_BUSY) { sc->sc_stats.ast_tx_getbusybuf++; bf = NULL; } } if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { if (btype == ATH_BUFTYPE_MGMT) TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); else { TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); sc->sc_txbuf_cnt--; /* * This shuldn't happen; however just to be * safe print a warning and fudge the txbuf * count. */ if (sc->sc_txbuf_cnt < 0) { device_printf(sc->sc_dev, "%s: sc_txbuf_cnt < 0?\n", __func__); sc->sc_txbuf_cnt = 0; } } } else bf = NULL; if (bf == NULL) { /* XXX should check which list, mgmt or otherwise */ DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, TAILQ_FIRST(&sc->sc_txbuf) == NULL ? "out of xmit buffers" : "xmit buffer busy"); return NULL; } /* XXX TODO: should do this at buffer list initialisation */ /* XXX (then, ensure the buffer has the right flag set) */ bf->bf_flags = 0; if (btype == ATH_BUFTYPE_MGMT) bf->bf_flags |= ATH_BUF_MGMT; else bf->bf_flags &= (~ATH_BUF_MGMT); /* Valid bf here; clear some basic fields */ bf->bf_next = NULL; /* XXX just to be sure */ bf->bf_last = NULL; /* XXX again, just to be sure */ bf->bf_comp = NULL; /* XXX again, just to be sure */ bzero(&bf->bf_state, sizeof(bf->bf_state)); /* * Track the descriptor ID only if doing EDMA */ if (sc->sc_isedma) { bf->bf_descid = sc->sc_txbuf_descid; sc->sc_txbuf_descid++; } return bf; } /* * When retrying a software frame, buffers marked ATH_BUF_BUSY * can't be thrown back on the queue as they could still be * in use by the hardware. * * This duplicates the buffer, or returns NULL. * * The descriptor is also copied but the link pointers and * the DMA segments aren't copied; this frame should thus * be again passed through the descriptor setup/chain routines * so the link is correct. * * The caller must free the buffer using ath_freebuf(). */ struct ath_buf * ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) { struct ath_buf *tbf; tbf = ath_getbuf(sc, (bf->bf_flags & ATH_BUF_MGMT) ? ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); if (tbf == NULL) return NULL; /* XXX failure? Why? */ /* Copy basics */ tbf->bf_next = NULL; tbf->bf_nseg = bf->bf_nseg; tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; tbf->bf_status = bf->bf_status; tbf->bf_m = bf->bf_m; tbf->bf_node = bf->bf_node; KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); /* will be setup by the chain/setup function */ tbf->bf_lastds = NULL; /* for now, last == self */ tbf->bf_last = tbf; tbf->bf_comp = bf->bf_comp; /* NOTE: DMA segments will be setup by the setup/chain functions */ /* The caller has to re-init the descriptor + links */ /* * Free the DMA mapping here, before we NULL the mbuf. * We must only call bus_dmamap_unload() once per mbuf chain * or behaviour is undefined. */ if (bf->bf_m != NULL) { /* * XXX is this POSTWRITE call required? */ bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); } bf->bf_m = NULL; bf->bf_node = NULL; /* Copy state */ memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); return tbf; } struct ath_buf * ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) { struct ath_buf *bf; ATH_TXBUF_LOCK(sc); bf = _ath_getbuf_locked(sc, btype); /* * If a mgmt buffer was requested but we're out of those, * try requesting a normal one. */ if (bf == NULL && btype == ATH_BUFTYPE_MGMT) bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); ATH_TXBUF_UNLOCK(sc); if (bf == NULL) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); sc->sc_stats.ast_tx_qstop++; } return bf; } /* * Transmit a single frame. * * net80211 will free the node reference if the transmit * fails, so don't free the node reference here. */ static int ath_transmit(struct ieee80211com *ic, struct mbuf *m) { struct ath_softc *sc = ic->ic_softc; struct ieee80211_node *ni; struct mbuf *next; struct ath_buf *bf; ath_bufhead frags; int retval = 0; /* * Tell the reset path that we're currently transmitting. */ ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt > 0) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: sc_inreset_cnt > 0; bailing\n", __func__); ATH_PCU_UNLOCK(sc); sc->sc_stats.ast_tx_qstop++; ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); return (ENOBUFS); /* XXX should be EINVAL or? */ } sc->sc_txstart_cnt++; ATH_PCU_UNLOCK(sc); /* Wake the hardware up already */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); /* * Grab the TX lock - it's ok to do this here; we haven't * yet started transmitting. */ ATH_TX_LOCK(sc); /* * Node reference, if there's one. */ ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; /* * Enforce how deep a node queue can get. * * XXX it would be nicer if we kept an mbuf queue per * node and only whacked them into ath_bufs when we * are ready to schedule some traffic from them. * .. that may come later. * * XXX we should also track the per-node hardware queue * depth so it is easy to limit the _SUM_ of the swq and * hwq frames. Since we only schedule two HWQ frames * at a time, this should be OK for now. */ if ((!(m->m_flags & M_EAPOL)) && (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { sc->sc_stats.ast_tx_nodeq_overflow++; retval = ENOBUFS; goto finish; } /* * Check how many TX buffers are available. * * If this is for non-EAPOL traffic, just leave some * space free in order for buffer cloning and raw * frame transmission to occur. * * If it's for EAPOL traffic, ignore this for now. * Management traffic will be sent via the raw transmit * method which bypasses this check. * * This is needed to ensure that EAPOL frames during * (re) keying have a chance to go out. * * See kern/138379 for more information. */ if ((!(m->m_flags & M_EAPOL)) && (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { sc->sc_stats.ast_tx_nobuf++; retval = ENOBUFS; goto finish; } /* * Grab a TX buffer and associated resources. * * If it's an EAPOL frame, allocate a MGMT ath_buf. * That way even with temporary buffer exhaustion due to * the data path doesn't leave us without the ability * to transmit management frames. * * Otherwise allocate a normal buffer. */ if (m->m_flags & M_EAPOL) bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); else bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); if (bf == NULL) { /* * If we failed to allocate a buffer, fail. * * We shouldn't fail normally, due to the check * above. */ sc->sc_stats.ast_tx_nobuf++; retval = ENOBUFS; goto finish; } /* * At this point we have a buffer; so we need to free it * if we hit any error conditions. */ /* * Check for fragmentation. If this frame * has been broken up verify we have enough * buffers to send all the fragments so all * go out or none... */ TAILQ_INIT(&frags); if ((m->m_flags & M_FRAG) && !ath_txfrag_setup(sc, &frags, m, ni)) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of txfrag buffers\n", __func__); sc->sc_stats.ast_tx_nofrag++; if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); /* * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, * we shouldn't free it but return back. */ ieee80211_free_mbuf(m); m = NULL; goto bad; } /* * At this point if we have any TX fragments, then we will * have bumped the node reference once for each of those. */ /* * XXX Is there anything actually _enforcing_ that the * fragments are being transmitted in one hit, rather than * being interleaved with other transmissions on that * hardware queue? * * The ATH TX output lock is the only thing serialising this * right now. */ /* * Calculate the "next fragment" length field in ath_buf * in order to let the transmit path know enough about * what to next write to the hardware. */ if (m->m_flags & M_FRAG) { struct ath_buf *fbf = bf; struct ath_buf *n_fbf = NULL; struct mbuf *fm = m->m_nextpkt; /* * We need to walk the list of fragments and set * the next size to the following buffer. * However, the first buffer isn't in the frag * list, so we have to do some gymnastics here. */ TAILQ_FOREACH(n_fbf, &frags, bf_list) { fbf->bf_nextfraglen = fm->m_pkthdr.len; fbf = n_fbf; fm = fm->m_nextpkt; } } nextfrag: /* * Pass the frame to the h/w for transmission. * Fragmented frames have each frag chained together * with m_nextpkt. We know there are sufficient ath_buf's * to send all the frags because of work done by * ath_txfrag_setup. We leave m_nextpkt set while * calling ath_tx_start so it can use it to extend the * the tx duration to cover the subsequent frag and * so it can reclaim all the mbufs in case of an error; * ath_tx_start clears m_nextpkt once it commits to * handing the frame to the hardware. * * Note: if this fails, then the mbufs are freed but * not the node reference. * * So, we now have to free the node reference ourselves here * and return OK up to the stack. */ next = m->m_nextpkt; if (ath_tx_start(sc, ni, bf, m)) { bad: if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); reclaim: bf->bf_m = NULL; bf->bf_node = NULL; ATH_TXBUF_LOCK(sc); ath_returnbuf_head(sc, bf); /* * Free the rest of the node references and * buffers for the fragment list. */ ath_txfrag_cleanup(sc, &frags, ni); ATH_TXBUF_UNLOCK(sc); /* * XXX: And free the node/return OK; ath_tx_start() may have * modified the buffer. We currently have no way to * signify that the mbuf was freed but there was an error. */ ieee80211_free_node(ni); retval = 0; goto finish; } /* * Check here if the node is in power save state. */ ath_tx_update_tim(sc, ni, 1); if (next != NULL) { /* * Beware of state changing between frags. * XXX check sta power-save state? */ if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: flush fragmented packet, state %s\n", __func__, ieee80211_state_name[ni->ni_vap->iv_state]); /* XXX dmamap */ ieee80211_free_mbuf(next); goto reclaim; } m = next; bf = TAILQ_FIRST(&frags); KASSERT(bf != NULL, ("no buf for txfrag")); TAILQ_REMOVE(&frags, bf, bf_list); goto nextfrag; } /* * Bump watchdog timer. */ sc->sc_wd_timer = 5; finish: ATH_TX_UNLOCK(sc); /* * Finished transmitting! */ ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); /* Sleep the hardware if required */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); return (retval); } static int ath_media_change(struct ifnet *ifp) { int error = ieee80211_media_change(ifp); /* NB: only the fixed rate can change and that doesn't need a reset */ return (error == ENETRESET ? 0 : error); } /* * Block/unblock tx+rx processing while a key change is done. * We assume the caller serializes key management operations * so we only need to worry about synchronization with other * uses that originate in the driver. */ static void ath_key_update_begin(struct ieee80211vap *vap) { struct ath_softc *sc = vap->iv_ic->ic_softc; DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); taskqueue_block(sc->sc_tq); } static void ath_key_update_end(struct ieee80211vap *vap) { struct ath_softc *sc = vap->iv_ic->ic_softc; DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); taskqueue_unblock(sc->sc_tq); } static void ath_update_promisc(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; u_int32_t rfilt; /* configure rx filter */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); rfilt = ath_calcrxfilter(sc); ath_hal_setrxfilter(sc->sc_ah, rfilt); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); } /* * Driver-internal mcast update call. * * Assumes the hardware is already awake. */ static void ath_update_mcast_hw(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; u_int32_t mfilt[2]; /* calculate and install multicast filter */ if (ic->ic_allmulti == 0) { struct ieee80211vap *vap; struct ifnet *ifp; struct ifmultiaddr *ifma; /* * Merge multicast addresses to form the hardware filter. */ mfilt[0] = mfilt[1] = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { caddr_t dl; uint32_t val; uint8_t pos; /* calculate XOR of eight 6bit values */ dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); val = le32dec(dl + 0); pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; val = le32dec(dl + 3); pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; pos &= 0x3f; mfilt[pos / 32] |= (1 << (pos % 32)); } if_maddr_runlock(ifp); } } else mfilt[0] = mfilt[1] = ~0; ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", __func__, mfilt[0], mfilt[1]); } /* * Called from the net80211 layer - force the hardware * awake before operating. */ static void ath_update_mcast(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ath_update_mcast_hw(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); } void ath_mode_init(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; u_int32_t rfilt; /* configure rx filter */ rfilt = ath_calcrxfilter(sc); ath_hal_setrxfilter(ah, rfilt); /* configure operational mode */ ath_hal_setopmode(ah); /* handle any link-level address change */ ath_hal_setmac(ah, ic->ic_macaddr); /* calculate and install multicast filter */ ath_update_mcast_hw(sc); } /* * Set the slot time based on the current setting. */ void ath_setslottime(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; u_int usec; if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) usec = 13; else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) usec = 21; else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { /* honor short/long slot time only in 11g */ /* XXX shouldn't honor on pure g or turbo g channel */ if (ic->ic_flags & IEEE80211_F_SHSLOT) usec = HAL_SLOT_TIME_9; else usec = HAL_SLOT_TIME_20; } else usec = HAL_SLOT_TIME_9; DPRINTF(sc, ATH_DEBUG_RESET, "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); /* Wake up the hardware first before updating the slot time */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ath_hal_setslottime(ah, usec); ath_power_restore_power_state(sc); sc->sc_updateslot = OK; ATH_UNLOCK(sc); } /* * Callback from the 802.11 layer to update the * slot time based on the current setting. */ static void ath_updateslot(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; /* * When not coordinating the BSS, change the hardware * immediately. For other operation we defer the change * until beacon updates have propagated to the stations. * * XXX sc_updateslot isn't changed behind a lock? */ if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_MBSS) sc->sc_updateslot = UPDATE; else ath_setslottime(sc); } /* * Append the contents of src to dst; both queues * are assumed to be locked. */ void ath_txqmove(struct ath_txq *dst, struct ath_txq *src) { ATH_TXQ_LOCK_ASSERT(src); ATH_TXQ_LOCK_ASSERT(dst); TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); dst->axq_link = src->axq_link; src->axq_link = NULL; dst->axq_depth += src->axq_depth; dst->axq_aggr_depth += src->axq_aggr_depth; src->axq_depth = 0; src->axq_aggr_depth = 0; } /* * Reset the hardware, with no loss. * * This can't be used for a general case reset. */ static void ath_reset_proc(void *arg, int pending) { struct ath_softc *sc = arg; #if 0 device_printf(sc->sc_dev, "%s: resetting\n", __func__); #endif ath_reset(sc, ATH_RESET_NOLOSS); } /* * Reset the hardware after detecting beacons have stopped. */ static void ath_bstuck_proc(void *arg, int pending) { struct ath_softc *sc = arg; uint32_t hangs = 0; if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); #ifdef ATH_DEBUG_ALQ if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); #endif device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", sc->sc_bmisscount); sc->sc_stats.ast_bstuck++; /* * This assumes that there's no simultaneous channel mode change * occurring. */ ath_reset(sc, ATH_RESET_NOLOSS); } static int ath_desc_alloc(struct ath_softc *sc) { int error; error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); if (error != 0) { return error; } sc->sc_txbuf_cnt = ath_txbuf; error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, ATH_TXDESC); if (error != 0) { ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); return error; } /* * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the * flag doesn't have to be set in ath_getbuf_locked(). */ error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); if (error != 0) { ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt); return error; } return 0; } static void ath_desc_free(struct ath_softc *sc) { if (sc->sc_bdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); if (sc->sc_txdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); if (sc->sc_txdma_mgmt.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt); } static struct ieee80211_node * ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = vap->iv_ic; struct ath_softc *sc = ic->ic_softc; const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; struct ath_node *an; an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); if (an == NULL) { /* XXX stat+msg */ return NULL; } ath_rate_node_init(sc, an); /* Setup the mutex - there's no associd yet so set the name to NULL */ snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", device_get_nameunit(sc->sc_dev), an); mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); /* XXX setup ath_tid */ ath_tx_tid_init(sc, an); DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); return &an->an_node; } static void ath_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, ni->ni_macaddr, ":", ATH_NODE(ni)); /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ ath_tx_node_flush(sc, ATH_NODE(ni)); ath_rate_node_cleanup(sc, ATH_NODE(ni)); sc->sc_node_cleanup(ni); } static void ath_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, ni->ni_macaddr, ":", ATH_NODE(ni)); mtx_destroy(&ATH_NODE(ni)->an_mtx); sc->sc_node_free(ni); } static void ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) { struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; *rssi = ic->ic_node_getrssi(ni); if (ni->ni_chan != IEEE80211_CHAN_ANYC) *noise = ath_hal_getchannoise(ah, ni->ni_chan); else *noise = -95; /* nominally correct */ } /* * Set the default antenna. */ void ath_setdefantenna(struct ath_softc *sc, u_int antenna) { struct ath_hal *ah = sc->sc_ah; /* XXX block beacon interrupts */ ath_hal_setdefantenna(ah, antenna); if (sc->sc_defant != antenna) sc->sc_stats.ast_ant_defswitch++; sc->sc_defant = antenna; sc->sc_rxotherant = 0; } static void ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) { txq->axq_qnum = qnum; txq->axq_ac = 0; txq->axq_depth = 0; txq->axq_aggr_depth = 0; txq->axq_intrcnt = 0; txq->axq_link = NULL; txq->axq_softc = sc; TAILQ_INIT(&txq->axq_q); TAILQ_INIT(&txq->axq_tidq); TAILQ_INIT(&txq->fifo.axq_q); ATH_TXQ_LOCK_INIT(sc, txq); } /* * Setup a h/w transmit queue. */ static struct ath_txq * ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) { struct ath_hal *ah = sc->sc_ah; HAL_TXQ_INFO qi; int qnum; memset(&qi, 0, sizeof(qi)); qi.tqi_subtype = subtype; qi.tqi_aifs = HAL_TXQ_USEDEFAULT; qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. */ if (sc->sc_isedma) qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXOKINT_ENABLE; else qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; qnum = ath_hal_setuptxqueue(ah, qtype, &qi); if (qnum == -1) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return NULL; } if (qnum >= nitems(sc->sc_txq)) { device_printf(sc->sc_dev, "hal qnum %u out of range, max %zu!\n", qnum, nitems(sc->sc_txq)); ath_hal_releasetxqueue(ah, qnum); return NULL; } if (!ATH_TXQ_SETUP(sc, qnum)) { ath_txq_init(sc, &sc->sc_txq[qnum], qnum); sc->sc_txqsetup |= 1<sc_txq[qnum]; } /* * Setup a hardware data transmit queue for the specified * access control. The hal may not support all requested * queues in which case it will return a reference to a * previously setup queue. We record the mapping from ac's * to h/w queues for use by ath_tx_start and also track * the set of h/w queues being used to optimize work in the * transmit interrupt handler and related routines. */ static int ath_tx_setup(struct ath_softc *sc, int ac, int haltype) { struct ath_txq *txq; if (ac >= nitems(sc->sc_ac2q)) { device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", ac, nitems(sc->sc_ac2q)); return 0; } txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); if (txq != NULL) { txq->axq_ac = ac; sc->sc_ac2q[ac] = txq; return 1; } else return 0; } /* * Update WME parameters for a transmit queue. */ static int ath_txq_update(struct ath_softc *sc, int ac) { #define ATH_EXPONENT_TO_VALUE(v) ((1<sc_ic; struct ath_txq *txq = sc->sc_ac2q[ac]; struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; struct ath_hal *ah = sc->sc_ah; HAL_TXQ_INFO qi; ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma) { /* * AIFS is zero so there's no pre-transmit wait. The * burst time defines the slot duration and is configured * through net80211. The QCU is setup to not do post-xmit * back off, lockout all lower-priority QCU's, and fire * off the DMA beacon alert timer which is setup based * on the slot configuration. */ qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE | HAL_TXQ_TXERRINT_ENABLE | HAL_TXQ_TXURNINT_ENABLE | HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_DBA_GATED | HAL_TXQ_BACKOFF_DISABLE | HAL_TXQ_ARB_LOCKOUT_GLOBAL ; qi.tqi_aifs = 0; /* XXX +dbaprep? */ qi.tqi_readyTime = sc->sc_tdmaslotlen; qi.tqi_burstTime = qi.tqi_readyTime; } else { #endif /* * XXX shouldn't this just use the default flags * used in the previous queue setup? */ qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE | HAL_TXQ_TXERRINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE | HAL_TXQ_TXURNINT_ENABLE | HAL_TXQ_TXEOLINT_ENABLE ; qi.tqi_aifs = wmep->wmep_aifsn; qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); qi.tqi_readyTime = 0; qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); #ifdef IEEE80211_SUPPORT_TDMA } #endif DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", __func__, txq->axq_qnum, qi.tqi_qflags, qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { device_printf(sc->sc_dev, "unable to update hardware queue " "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); return 0; } else { ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ return 1; } #undef ATH_EXPONENT_TO_VALUE } /* * Callback from the 802.11 layer to update WME parameters. */ int ath_wme_update(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; return !ath_txq_update(sc, WME_AC_BE) || !ath_txq_update(sc, WME_AC_BK) || !ath_txq_update(sc, WME_AC_VI) || !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; } /* * Reclaim resources for a setup queue. */ static void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) { ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); sc->sc_txqsetup &= ~(1<axq_qnum); ATH_TXQ_LOCK_DESTROY(txq); } /* * Reclaim all tx queue resources. */ static void ath_tx_cleanup(struct ath_softc *sc) { int i; ATH_TXBUF_LOCK_DESTROY(sc); for (i = 0; i < HAL_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->sc_txq[i]); } /* * Return h/w rate index for an IEEE rate (w/o basic rate bit) * using the current rates in sc_rixmap. */ int ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) { int rix = sc->sc_rixmap[rate]; /* NB: return lowest rix for invalid rate */ return (rix == 0xff ? 0 : rix); } static void ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ieee80211com *ic = &sc->sc_ic; int sr, lr, pri; if (ts->ts_status == 0) { u_int8_t txant = ts->ts_antenna; sc->sc_stats.ast_ant_tx[txant]++; sc->sc_ant_tx[txant]++; if (ts->ts_finaltsi != 0) sc->sc_stats.ast_tx_altrate++; pri = M_WME_GETAC(bf->bf_m); if (pri >= WME_AC_VO) ic->ic_wme.wme_hipri_traffic++; if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ni->ni_inact = ni->ni_inact_reload; } else { if (ts->ts_status & HAL_TXERR_XRETRY) sc->sc_stats.ast_tx_xretries++; if (ts->ts_status & HAL_TXERR_FIFO) sc->sc_stats.ast_tx_fifoerr++; if (ts->ts_status & HAL_TXERR_FILT) sc->sc_stats.ast_tx_filtered++; if (ts->ts_status & HAL_TXERR_XTXOP) sc->sc_stats.ast_tx_xtxop++; if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) sc->sc_stats.ast_tx_timerexpired++; if (bf->bf_m->m_flags & M_FF) sc->sc_stats.ast_ff_txerr++; } /* XXX when is this valid? */ if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) sc->sc_stats.ast_tx_desccfgerr++; /* * This can be valid for successful frame transmission! * If there's a TX FIFO underrun during aggregate transmission, * the MAC will pad the rest of the aggregate with delimiters. * If a BA is returned, the frame is marked as "OK" and it's up * to the TX completion code to notice which frames weren't * successfully transmitted. */ if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) sc->sc_stats.ast_tx_data_underrun++; if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) sc->sc_stats.ast_tx_delim_underrun++; sr = ts->ts_shortretry; lr = ts->ts_longretry; sc->sc_stats.ast_tx_shortretry += sr; sc->sc_stats.ast_tx_longretry += lr; } /* * The default completion. If fail is 1, this means * "please don't retry the frame, and just return -1 status * to the net80211 stack. */ void ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) { struct ath_tx_status *ts = &bf->bf_status.ds_txstat; int st; if (fail == 1) st = -1; else st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? ts->ts_status : HAL_TXERR_XRETRY; #if 0 if (bf->bf_state.bfs_dobaw) device_printf(sc->sc_dev, "%s: bf %p: seqno %d: dobaw should've been cleared!\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno)); #endif if (bf->bf_next != NULL) device_printf(sc->sc_dev, "%s: bf %p: seqno %d: bf_next not NULL!\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno)); /* * Check if the node software queue is empty; if so * then clear the TIM. * * This needs to be done before the buffer is freed as * otherwise the node reference will have been released * and the node may not actually exist any longer. * * XXX I don't like this belonging here, but it's cleaner * to do it here right now then all the other places * where ath_tx_default_comp() is called. * * XXX TODO: during drain, ensure that the callback is * being called so we get a chance to update the TIM. */ if (bf->bf_node) { ATH_TX_LOCK(sc); ath_tx_update_tim(sc, bf->bf_node, 0); ATH_TX_UNLOCK(sc); } /* * Do any tx complete callback. Note this must * be done before releasing the node reference. * This will free the mbuf, release the net80211 * node and recycle the ath_buf. */ ath_tx_freebuf(sc, bf, st); } /* * Update rate control with the given completion status. */ void ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, int nframes, int nbad) { struct ath_node *an; /* Only for unicast frames */ if (ni == NULL) return; an = ATH_NODE(ni); ATH_NODE_UNLOCK_ASSERT(an); if ((ts->ts_status & HAL_TXERR_FILT) == 0) { ATH_NODE_LOCK(an); ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); ATH_NODE_UNLOCK(an); } } /* * Process the completion of the given buffer. * * This calls the rate control update and then the buffer completion. * This will either free the buffer or requeue it. In any case, the * bf pointer should be treated as invalid after this function is called. */ void ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, struct ath_tx_status *ts, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; ATH_TX_UNLOCK_ASSERT(sc); ATH_TXQ_UNLOCK_ASSERT(txq); /* If unicast frame, update general statistics */ if (ni != NULL) { /* update statistics */ ath_tx_update_stats(sc, ts, bf); } /* * Call the completion handler. * The completion handler is responsible for * calling the rate control code. * * Frames with no completion handler get the * rate control code called here. */ if (bf->bf_comp == NULL) { if ((ts->ts_status & HAL_TXERR_FILT) == 0 && (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { /* * XXX assume this isn't an aggregate * frame. */ ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, ts, bf->bf_state.bfs_pktlen, 1, (ts->ts_status == 0 ? 0 : 1)); } ath_tx_default_comp(sc, bf, 0); } else bf->bf_comp(sc, bf, 0); } /* * Process completed xmit descriptors from the specified queue. * Kick the packet scheduler if needed. This can occur from this * particular task. */ static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; struct ath_desc *ds; struct ath_tx_status *ts; struct ieee80211_node *ni; #ifdef IEEE80211_SUPPORT_SUPERG struct ieee80211com *ic = &sc->sc_ic; #endif /* IEEE80211_SUPPORT_SUPERG */ int nacked; HAL_STATUS status; DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", __func__, txq->axq_qnum, (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link); ATH_KTR(sc, ATH_KTR_TXCOMP, 4, "ath_tx_processq: txq=%u head %p link %p depth %p", txq->axq_qnum, (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link, txq->axq_depth); nacked = 0; for (;;) { ATH_TXQ_LOCK(txq); txq->axq_intrcnt = 0; /* reset periodic desc intr count */ bf = TAILQ_FIRST(&txq->axq_q); if (bf == NULL) { ATH_TXQ_UNLOCK(txq); break; } ds = bf->bf_lastds; /* XXX must be setup correctly! */ ts = &bf->bf_status.ds_txstat; status = ath_hal_txprocdesc(ah, ds, ts); #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) ath_printtxbuf(sc, bf, txq->axq_qnum, 0, status == HAL_OK); else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) ath_printtxbuf(sc, bf, txq->axq_qnum, 0, status == HAL_OK); #endif #ifdef ATH_DEBUG_ALQ if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS)) { if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, sc->sc_tx_statuslen, (char *) ds); } #endif if (status == HAL_EINPROGRESS) { ATH_KTR(sc, ATH_KTR_TXCOMP, 3, "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", txq->axq_qnum, bf, ds); ATH_TXQ_UNLOCK(txq); break; } ATH_TXQ_REMOVE(txq, bf, bf_list); /* * Sanity check. */ if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { device_printf(sc->sc_dev, "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", __func__, txq->axq_qnum, bf, bf->bf_state.bfs_tx_queue); } if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { device_printf(sc->sc_dev, "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", __func__, txq->axq_qnum, bf->bf_last, bf->bf_last->bf_state.bfs_tx_queue); } #if 0 if (txq->axq_depth > 0) { /* * More frames follow. Mark the buffer busy * so it's not re-used while the hardware may * still re-read the link field in the descriptor. * * Use the last buffer in an aggregate as that * is where the hardware may be - intermediate * descriptors won't be "busy". */ bf->bf_last->bf_flags |= ATH_BUF_BUSY; } else txq->axq_link = NULL; #else bf->bf_last->bf_flags |= ATH_BUF_BUSY; #endif if (bf->bf_state.bfs_aggr) txq->axq_aggr_depth--; ni = bf->bf_node; ATH_KTR(sc, ATH_KTR_TXCOMP, 5, "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", txq->axq_qnum, bf, ds, ni, ts->ts_status); /* * If unicast frame was ack'd update RSSI, * including the last rx time used to * workaround phantom bmiss interrupts. */ if (ni != NULL && ts->ts_status == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { nacked++; sc->sc_stats.ast_tx_rssi = ts->ts_rssi; ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, ts->ts_rssi); } ATH_TXQ_UNLOCK(txq); /* * Update statistics and call completion */ ath_tx_process_buf_completion(sc, txq, ts, bf); /* XXX at this point, bf and ni may be totally invalid */ } #ifdef IEEE80211_SUPPORT_SUPERG /* * Flush fast-frame staging queue when traffic slows. */ if (txq->axq_depth <= 1) ieee80211_ff_flush(ic, txq->axq_ac); #endif /* Kick the software TXQ scheduler */ if (dosched) { ATH_TX_LOCK(sc); ath_txq_sched(sc, txq); ATH_TX_UNLOCK(sc); } ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_processq: txq=%u: done", txq->axq_qnum); return nacked; } #define TXQACTIVE(t, q) ( (t) & (1 << (q))) /* * Deferred processing of transmit interrupt; special-cased * for a single hardware transmit queue (e.g. 5210 and 5211). */ static void ath_tx_proc_q0(void *arg, int npending) { struct ath_softc *sc = arg; uint32_t txqs; ATH_PCU_LOCK(sc); sc->sc_txproc_cnt++; txqs = sc->sc_txq_active; sc->sc_txq_active &= ~txqs; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc_q0: txqs=0x%08x", txqs); if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) /* XXX why is lastrx updated in tx code? */ sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) ath_tx_processq(sc, sc->sc_cabq, 1); sc->sc_wd_timer = 0; if (sc->sc_softled) ath_led_event(sc, sc->sc_txrix); ATH_PCU_LOCK(sc); sc->sc_txproc_cnt--; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ath_tx_kick(sc); } /* * Deferred processing of transmit interrupt; special-cased * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). */ static void ath_tx_proc_q0123(void *arg, int npending) { struct ath_softc *sc = arg; int nacked; uint32_t txqs; ATH_PCU_LOCK(sc); sc->sc_txproc_cnt++; txqs = sc->sc_txq_active; sc->sc_txq_active &= ~txqs; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc_q0123: txqs=0x%08x", txqs); /* * Process each active queue. */ nacked = 0; if (TXQACTIVE(txqs, 0)) nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); if (TXQACTIVE(txqs, 1)) nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); if (TXQACTIVE(txqs, 2)) nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); if (TXQACTIVE(txqs, 3)) nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) ath_tx_processq(sc, sc->sc_cabq, 1); if (nacked) sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); sc->sc_wd_timer = 0; if (sc->sc_softled) ath_led_event(sc, sc->sc_txrix); ATH_PCU_LOCK(sc); sc->sc_txproc_cnt--; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ath_tx_kick(sc); } /* * Deferred processing of transmit interrupt. */ static void ath_tx_proc(void *arg, int npending) { struct ath_softc *sc = arg; int i, nacked; uint32_t txqs; ATH_PCU_LOCK(sc); sc->sc_txproc_cnt++; txqs = sc->sc_txq_active; sc->sc_txq_active &= ~txqs; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); /* * Process each active queue. */ nacked = 0; for (i = 0; i < HAL_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); if (nacked) sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); sc->sc_wd_timer = 0; if (sc->sc_softled) ath_led_event(sc, sc->sc_txrix); ATH_PCU_LOCK(sc); sc->sc_txproc_cnt--; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ath_tx_kick(sc); } #undef TXQACTIVE /* * Deferred processing of TXQ rescheduling. */ static void ath_txq_sched_tasklet(void *arg, int npending) { struct ath_softc *sc = arg; int i; /* XXX is skipping ok? */ ATH_PCU_LOCK(sc); #if 0 if (sc->sc_inreset_cnt > 0) { device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n", __func__); ATH_PCU_UNLOCK(sc); return; } #endif sc->sc_txproc_cnt++; ATH_PCU_UNLOCK(sc); ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_TX_LOCK(sc); for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { ath_txq_sched(sc, &sc->sc_txq[i]); } } ATH_TX_UNLOCK(sc); ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); ATH_PCU_LOCK(sc); sc->sc_txproc_cnt--; ATH_PCU_UNLOCK(sc); } void ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) { ATH_TXBUF_LOCK_ASSERT(sc); if (bf->bf_flags & ATH_BUF_MGMT) TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); else { TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); sc->sc_txbuf_cnt++; if (sc->sc_txbuf_cnt > ath_txbuf) { device_printf(sc->sc_dev, "%s: sc_txbuf_cnt > %d?\n", __func__, ath_txbuf); sc->sc_txbuf_cnt = ath_txbuf; } } } void ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) { ATH_TXBUF_LOCK_ASSERT(sc); if (bf->bf_flags & ATH_BUF_MGMT) TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); else { TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); sc->sc_txbuf_cnt++; if (sc->sc_txbuf_cnt > ATH_TXBUF) { device_printf(sc->sc_dev, "%s: sc_txbuf_cnt > %d?\n", __func__, ATH_TXBUF); sc->sc_txbuf_cnt = ATH_TXBUF; } } } /* * Free the holding buffer if it exists */ void ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) { ATH_TXBUF_UNLOCK_ASSERT(sc); ATH_TXQ_LOCK_ASSERT(txq); if (txq->axq_holdingbf == NULL) return; txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; ATH_TXBUF_LOCK(sc); ath_returnbuf_tail(sc, txq->axq_holdingbf); ATH_TXBUF_UNLOCK(sc); txq->axq_holdingbf = NULL; } /* * Add this buffer to the holding queue, freeing the previous * one if it exists. */ static void ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) { struct ath_txq *txq; txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; ATH_TXBUF_UNLOCK_ASSERT(sc); ATH_TXQ_LOCK_ASSERT(txq); /* XXX assert ATH_BUF_BUSY is set */ /* XXX assert the tx queue is under the max number */ if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", __func__, bf, bf->bf_state.bfs_tx_queue); bf->bf_flags &= ~ATH_BUF_BUSY; ath_returnbuf_tail(sc, bf); return; } ath_txq_freeholdingbuf(sc, txq); txq->axq_holdingbf = bf; } /* * Return a buffer to the pool and update the 'busy' flag on the * previous 'tail' entry. * * This _must_ only be called when the buffer is involved in a completed * TX. The logic is that if it was part of an active TX, the previous * buffer on the list is now not involved in a halted TX DMA queue, waiting * for restart (eg for TDMA.) * * The caller must free the mbuf and recycle the node reference. * * XXX This method of handling busy / holding buffers is insanely stupid. * It requires bf_state.bfs_tx_queue to be correctly assigned. It would * be much nicer if buffers in the processq() methods would instead be * always completed there (pushed onto a txq or ath_bufhead) so we knew * exactly what hardware queue they came from in the first place. */ void ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) { struct ath_txq *txq; txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); /* * If this buffer is busy, push it onto the holding queue. */ if (bf->bf_flags & ATH_BUF_BUSY) { ATH_TXQ_LOCK(txq); ath_txq_addholdingbuf(sc, bf); ATH_TXQ_UNLOCK(txq); return; } /* * Not a busy buffer, so free normally */ ATH_TXBUF_LOCK(sc); ath_returnbuf_tail(sc, bf); ATH_TXBUF_UNLOCK(sc); } /* * This is currently used by ath_tx_draintxq() and * ath_tx_tid_free_pkts(). * * It recycles a single ath_buf. */ void ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) { struct ieee80211_node *ni = bf->bf_node; struct mbuf *m0 = bf->bf_m; /* * Make sure that we only sync/unload if there's an mbuf. * If not (eg we cloned a buffer), the unload will have already * occurred. */ if (bf->bf_m != NULL) { bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); } bf->bf_node = NULL; bf->bf_m = NULL; /* Free the buffer, it's not needed any longer */ ath_freebuf(sc, bf); /* Pass the buffer back to net80211 - completing it */ ieee80211_tx_complete(ni, m0, status); } static struct ath_buf * ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) { struct ath_buf *bf; ATH_TXQ_LOCK_ASSERT(txq); /* * Drain the FIFO queue first, then if it's * empty, move to the normal frame queue. */ bf = TAILQ_FIRST(&txq->fifo.axq_q); if (bf != NULL) { /* * Is it the last buffer in this set? * Decrement the FIFO counter. */ if (bf->bf_flags & ATH_BUF_FIFOEND) { if (txq->axq_fifo_depth == 0) { device_printf(sc->sc_dev, "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", __func__, txq->axq_qnum, txq->fifo.axq_depth); } else txq->axq_fifo_depth--; } ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); return (bf); } /* * Debugging! */ if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { device_printf(sc->sc_dev, "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", __func__, txq->axq_qnum, txq->axq_fifo_depth, txq->fifo.axq_depth); } /* * Now drain the pending queue. */ bf = TAILQ_FIRST(&txq->axq_q); if (bf == NULL) { txq->axq_link = NULL; return (NULL); } ATH_TXQ_REMOVE(txq, bf, bf_list); return (bf); } void ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) { #ifdef ATH_DEBUG struct ath_hal *ah = sc->sc_ah; #endif struct ath_buf *bf; u_int ix; /* * NB: this assumes output has been stopped and * we do not need to block ath_tx_proc */ for (ix = 0;; ix++) { ATH_TXQ_LOCK(txq); bf = ath_tx_draintxq_get_one(sc, txq); if (bf == NULL) { ATH_TXQ_UNLOCK(txq); break; } if (bf->bf_state.bfs_aggr) txq->axq_aggr_depth--; #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_RESET) { struct ieee80211com *ic = &sc->sc_ic; int status = 0; /* * EDMA operation has a TX completion FIFO * separate from the TX descriptor, so this * method of checking the "completion" status * is wrong. */ if (! sc->sc_isedma) { status = (ath_hal_txprocdesc(ah, bf->bf_lastds, &bf->bf_status.ds_txstat) == HAL_OK); } ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 0, -1); } #endif /* ATH_DEBUG */ /* * Since we're now doing magic in the completion * functions, we -must- call it for aggregation * destinations or BAW tracking will get upset. */ /* * Clear ATH_BUF_BUSY; the completion handler * will free the buffer. */ ATH_TXQ_UNLOCK(txq); bf->bf_flags &= ~ATH_BUF_BUSY; if (bf->bf_comp) bf->bf_comp(sc, bf, 1); else ath_tx_default_comp(sc, bf, 1); } /* * Free the holding buffer if it exists */ ATH_TXQ_LOCK(txq); ath_txq_freeholdingbuf(sc, txq); ATH_TXQ_UNLOCK(txq); /* * Drain software queued frames which are on * active TIDs. */ ath_tx_txq_drain(sc, txq); } static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hal *ah = sc->sc_ah; ATH_TXQ_LOCK_ASSERT(txq); DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " "link %p, holdingbf=%p\n", __func__, txq->axq_qnum, (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), (int) ath_hal_numtxpending(ah, txq->axq_qnum), txq->axq_flags, txq->axq_link, txq->axq_holdingbf); (void) ath_hal_stoptxdma(ah, txq->axq_qnum); /* We've stopped TX DMA, so mark this as stopped. */ txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; #ifdef ATH_DEBUG if ((sc->sc_debug & ATH_DEBUG_RESET) && (txq->axq_holdingbf != NULL)) { ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); } #endif } int ath_stoptxdma(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; int i; /* XXX return value */ if (sc->sc_invalid) return 0; if (!sc->sc_invalid) { /* don't touch the hardware if marked invalid */ DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", __func__, sc->sc_bhalq, (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), NULL); /* stop the beacon queue */ (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); /* Stop the data queues */ for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { ATH_TXQ_LOCK(&sc->sc_txq[i]); ath_tx_stopdma(sc, &sc->sc_txq[i]); ATH_TXQ_UNLOCK(&sc->sc_txq[i]); } } } return 1; } #ifdef ATH_DEBUG void ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; int i = 0; if (! (sc->sc_debug & ATH_DEBUG_RESET)) return; device_printf(sc->sc_dev, "%s: Q%d: begin\n", __func__, txq->axq_qnum); TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { ath_printtxbuf(sc, bf, txq->axq_qnum, i, ath_hal_txprocdesc(ah, bf->bf_lastds, &bf->bf_status.ds_txstat) == HAL_OK); i++; } device_printf(sc->sc_dev, "%s: Q%d: end\n", __func__, txq->axq_qnum); } #endif /* ATH_DEBUG */ /* * Drain the transmit queues and reclaim resources. */ void ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf_last; int i; (void) ath_stoptxdma(sc); /* * Dump the queue contents */ for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { /* * XXX TODO: should we just handle the completed TX frames * here, whether or not the reset is a full one or not? */ if (ATH_TXQ_SETUP(sc, i)) { #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_RESET) ath_tx_dump(sc, &sc->sc_txq[i]); #endif /* ATH_DEBUG */ if (reset_type == ATH_RESET_NOLOSS) { ath_tx_processq(sc, &sc->sc_txq[i], 0); ATH_TXQ_LOCK(&sc->sc_txq[i]); /* * Free the holding buffer; DMA is now * stopped. */ ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); /* * Setup the link pointer to be the * _last_ buffer/descriptor in the list. * If there's nothing in the list, set it * to NULL. */ bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], axq_q_s); if (bf_last != NULL) { ath_hal_gettxdesclinkptr(ah, bf_last->bf_lastds, &sc->sc_txq[i].axq_link); } else { sc->sc_txq[i].axq_link = NULL; } ATH_TXQ_UNLOCK(&sc->sc_txq[i]); } else ath_tx_draintxq(sc, &sc->sc_txq[i]); } } #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_RESET) { struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); if (bf != NULL && bf->bf_m != NULL) { ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, ath_hal_txprocdesc(ah, bf->bf_lastds, &bf->bf_status.ds_txstat) == HAL_OK); ieee80211_dump_pkt(&sc->sc_ic, mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 0, -1); } } #endif /* ATH_DEBUG */ sc->sc_wd_timer = 0; } /* * Update internal state after a channel change. */ static void ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) { enum ieee80211_phymode mode; /* * Change channels and update the h/w rate map * if we're switching; e.g. 11a to 11b/g. */ mode = ieee80211_chan2mode(chan); if (mode != sc->sc_curmode) ath_setcurmode(sc, mode); sc->sc_curchan = chan; } /* * Set/change channels. If the channel is really being changed, * it's done by resetting the chip. To accomplish this we must * first cleanup any pending DMA, then restart stuff after a la * ath_init. */ static int ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; int ret = 0; /* Treat this as an interface reset */ ATH_PCU_UNLOCK_ASSERT(sc); ATH_UNLOCK_ASSERT(sc); /* (Try to) stop TX/RX from occurring */ taskqueue_block(sc->sc_tq); ATH_PCU_LOCK(sc); /* Disable interrupts */ ath_hal_intrset(ah, 0); /* Stop new RX/TX/interrupt completion */ if (ath_reset_grablock(sc, 1) == 0) { device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", __func__); } /* Stop pending RX/TX completion */ ath_txrx_stop_locked(sc); ATH_PCU_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", __func__, ieee80211_chan2ieee(ic, chan), chan->ic_freq, chan->ic_flags); if (chan != sc->sc_curchan) { HAL_STATUS status; /* * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ #if 0 ath_hal_intrset(ah, 0); /* disable interrupts */ #endif ath_stoprecv(sc, 1); /* turn off frame recv */ /* * First, handle completed TX/RX frames. */ ath_rx_flush(sc); ath_draintxq(sc, ATH_RESET_NOLOSS); /* * Next, flush the non-scheduled frames. */ ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ ath_update_chainmasks(sc, chan); ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, sc->sc_cur_rxchainmask); if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, HAL_RESET_NORMAL, &status)) { device_printf(sc->sc_dev, "%s: unable to reset " "channel %u (%u MHz, flags 0x%x), hal status %u\n", __func__, ieee80211_chan2ieee(ic, chan), chan->ic_freq, chan->ic_flags, status); ret = EIO; goto finish; } sc->sc_diversity = ath_hal_getdiversity(ah); ATH_RX_LOCK(sc); sc->sc_rx_stopped = 1; sc->sc_rx_resetted = 1; ATH_RX_UNLOCK(sc); /* Let DFS at it in case it's a DFS channel */ ath_dfs_radar_enable(sc, chan); /* Let spectral at in case spectral is enabled */ ath_spectral_enable(sc, chan); /* * Let bluetooth coexistence at in case it's needed for this * channel */ ath_btcoex_enable(sc, ic->ic_curchan); /* * If we're doing TDMA, enforce the TXOP limitation for chips * that support it. */ if (sc->sc_hasenforcetxop && sc->sc_tdma) ath_hal_setenforcetxop(sc->sc_ah, 1); else ath_hal_setenforcetxop(sc->sc_ah, 0); /* * Re-enable rx framework. */ if (ath_startrecv(sc) != 0) { device_printf(sc->sc_dev, "%s: unable to restart recv logic\n", __func__); ret = EIO; goto finish; } /* * Change channels and update the h/w rate map * if we're switching; e.g. 11a to 11b/g. */ ath_chan_change(sc, chan); /* * Reset clears the beacon timers; reset them * here if needed. */ if (sc->sc_beacons) { /* restart beacons */ #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma) ath_tdma_config(sc, NULL); else #endif ath_beacon_config(sc, NULL); } /* * Re-enable interrupts. */ #if 0 ath_hal_intrset(ah, sc->sc_imask); #endif } finish: ATH_PCU_LOCK(sc); sc->sc_inreset_cnt--; /* XXX only do this if sc_inreset_cnt == 0? */ ath_hal_intrset(ah, sc->sc_imask); ATH_PCU_UNLOCK(sc); ath_txrx_start(sc); /* XXX ath_start? */ return ret; } /* * Periodically recalibrate the PHY to account * for temperature/environment changes. */ static void ath_calibrate(void *arg) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; HAL_BOOL longCal, isCalDone = AH_TRUE; HAL_BOOL aniCal, shortCal = AH_FALSE; int nextcal; ATH_LOCK_ASSERT(sc); /* * Force the hardware awake for ANI work. */ ath_power_set_power_state(sc, HAL_PM_AWAKE); /* Skip trying to do this if we're in reset */ if (sc->sc_inreset_cnt) goto restart; if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ goto restart; longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); if (sc->sc_doresetcal) shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); if (aniCal) { sc->sc_stats.ast_ani_cal++; sc->sc_lastani = ticks; ath_hal_ani_poll(ah, sc->sc_curchan); } if (longCal) { sc->sc_stats.ast_per_cal++; sc->sc_lastlongcal = ticks; if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { /* * Rfgain is out of bounds, reset the chip * to load new gain values. */ DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: rfgain change\n", __func__); sc->sc_stats.ast_per_rfgain++; sc->sc_resetcal = 0; sc->sc_doresetcal = AH_TRUE; taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); ath_power_restore_power_state(sc); return; } /* * If this long cal is after an idle period, then * reset the data collection state so we start fresh. */ if (sc->sc_resetcal) { (void) ath_hal_calreset(ah, sc->sc_curchan); sc->sc_lastcalreset = ticks; sc->sc_lastshortcal = ticks; sc->sc_resetcal = 0; sc->sc_doresetcal = AH_TRUE; } } /* Only call if we're doing a short/long cal, not for ANI calibration */ if (shortCal || longCal) { isCalDone = AH_FALSE; if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { if (longCal) { /* * Calibrate noise floor data again in case of change. */ ath_hal_process_noisefloor(ah); } } else { DPRINTF(sc, ATH_DEBUG_ANY, "%s: calibration of channel %u failed\n", __func__, sc->sc_curchan->ic_freq); sc->sc_stats.ast_per_calfail++; } if (shortCal) sc->sc_lastshortcal = ticks; } if (!isCalDone) { restart: /* * Use a shorter interval to potentially collect multiple * data samples required to complete calibration. Once * we're told the work is done we drop back to a longer * interval between requests. We're more aggressive doing * work when operating as an AP to improve operation right * after startup. */ sc->sc_lastshortcal = ticks; nextcal = ath_shortcalinterval*hz/1000; if (sc->sc_opmode != HAL_M_HOSTAP) nextcal *= 10; sc->sc_doresetcal = AH_TRUE; } else { /* nextcal should be the shortest time for next event */ nextcal = ath_longcalinterval*hz; if (sc->sc_lastcalreset == 0) sc->sc_lastcalreset = sc->sc_lastlongcal; else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) sc->sc_resetcal = 1; /* setup reset next trip */ sc->sc_doresetcal = AH_FALSE; } /* ANI calibration may occur more often than short/long/resetcal */ if (ath_anicalinterval > 0) nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); if (nextcal != 0) { DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", __func__, nextcal, isCalDone ? "" : "!"); callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); } else { DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", __func__); /* NB: don't rearm timer */ } /* * Restore power state now that we're done. */ ath_power_restore_power_state(sc); } static void ath_scan_start(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; u_int32_t rfilt; /* XXX calibration timer? */ /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ ATH_LOCK(sc); sc->sc_scanning = 1; sc->sc_syncbeacon = 0; rfilt = ath_calcrxfilter(sc); ATH_UNLOCK(sc); ATH_PCU_LOCK(sc); ath_hal_setrxfilter(ah, rfilt); ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); ATH_PCU_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); } static void ath_scan_end(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; u_int32_t rfilt; ATH_LOCK(sc); sc->sc_scanning = 0; rfilt = ath_calcrxfilter(sc); ATH_UNLOCK(sc); ATH_PCU_LOCK(sc); ath_hal_setrxfilter(ah, rfilt); ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); ath_hal_process_noisefloor(ah); ATH_PCU_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); } #ifdef ATH_ENABLE_11N /* * For now, just do a channel change. * * Later, we'll go through the hard slog of suspending tx/rx, changing rate * control state and resetting the hardware without dropping frames out * of the queue. * * The unfortunate trouble here is making absolutely sure that the * channel width change has propagated enough so the hardware * absolutely isn't handed bogus frames for it's current operating * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and * does occur in parallel, we need to make certain we've blocked * any further ongoing TX (and RX, that can cause raw TX) * before we do this. */ static void ath_update_chw(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); ath_set_channel(ic); } #endif /* ATH_ENABLE_11N */ static void ath_set_channel(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); (void) ath_chan_set(sc, ic->ic_curchan); /* * If we are returning to our bss channel then mark state * so the next recv'd beacon's tsf will be used to sync the * beacon timers. Note that since we only hear beacons in * sta/ibss mode this has no effect in other operating modes. */ ATH_LOCK(sc); if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) sc->sc_syncbeacon = 1; ath_power_restore_power_state(sc); ATH_UNLOCK(sc); } /* * Walk the vap list and check if there any vap's in RUN state. */ static int ath_isanyrunningvaps(struct ieee80211vap *this) { struct ieee80211com *ic = this->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap != this && vap->iv_state >= IEEE80211_S_RUN) return 1; } return 0; } static int ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ath_softc *sc = ic->ic_softc; struct ath_vap *avp = ATH_VAP(vap); struct ath_hal *ah = sc->sc_ah; struct ieee80211_node *ni = NULL; int i, error, stamode; u_int32_t rfilt; int csa_run_transition = 0; enum ieee80211_state ostate = vap->iv_state; static const HAL_LED_STATE leds[] = { HAL_LED_INIT, /* IEEE80211_S_INIT */ HAL_LED_SCAN, /* IEEE80211_S_SCAN */ HAL_LED_AUTH, /* IEEE80211_S_AUTH */ HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ HAL_LED_RUN, /* IEEE80211_S_CAC */ HAL_LED_RUN, /* IEEE80211_S_RUN */ HAL_LED_RUN, /* IEEE80211_S_CSA */ HAL_LED_RUN, /* IEEE80211_S_SLEEP */ }; DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); /* * net80211 _should_ have the comlock asserted at this point. * There are some comments around the calls to vap->iv_newstate * which indicate that it (newstate) may end up dropping the * lock. This and the subsequent lock assert check after newstate * are an attempt to catch these and figure out how/why. */ IEEE80211_LOCK_ASSERT(ic); /* Before we touch the hardware - wake it up */ ATH_LOCK(sc); /* * If the NIC is in anything other than SLEEP state, * we need to ensure that self-generated frames are * set for PWRMGT=0. Otherwise we may end up with * strange situations. * * XXX TODO: is this actually the case? :-) */ if (nstate != IEEE80211_S_SLEEP) ath_power_setselfgen(sc, HAL_PM_AWAKE); /* * Now, wake the thing up. */ ath_power_set_power_state(sc, HAL_PM_AWAKE); /* * And stop the calibration callout whilst we have * ATH_LOCK held. */ callout_stop(&sc->sc_cal_ch); ATH_UNLOCK(sc); if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) csa_run_transition = 1; ath_hal_setledstate(ah, leds[nstate]); /* set LED */ if (nstate == IEEE80211_S_SCAN) { /* * Scanning: turn off beacon miss and don't beacon. * Mark beacon state so when we reach RUN state we'll * [re]setup beacons. Unblock the task q thread so * deferred interrupt processing is done. */ /* Ensure we stay awake during scan */ ATH_LOCK(sc); ath_power_setselfgen(sc, HAL_PM_AWAKE); ath_power_setpower(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ath_hal_intrset(ah, sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); sc->sc_beacons = 0; taskqueue_unblock(sc->sc_tq); } ni = ieee80211_ref_node(vap->iv_bss); rfilt = ath_calcrxfilter(sc); stamode = (vap->iv_opmode == IEEE80211_M_STA || vap->iv_opmode == IEEE80211_M_AHDEMO || vap->iv_opmode == IEEE80211_M_IBSS); /* * XXX Dont need to do this (and others) if we've transitioned * from SLEEP->RUN. */ if (stamode && nstate == IEEE80211_S_RUN) { sc->sc_curaid = ni->ni_associd; IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); } DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); ath_hal_setrxfilter(ah, rfilt); /* XXX is this to restore keycache on resume? */ if (vap->iv_opmode != IEEE80211_M_STA && (vap->iv_flags & IEEE80211_F_PRIVACY)) { for (i = 0; i < IEEE80211_WEP_NKID; i++) if (ath_hal_keyisvalid(ah, i)) ath_hal_keysetmac(ah, i, ni->ni_bssid); } /* * Invoke the parent method to do net80211 work. */ error = avp->av_newstate(vap, nstate, arg); if (error != 0) goto bad; /* * See above: ensure av_newstate() doesn't drop the lock * on us. */ IEEE80211_LOCK_ASSERT(ic); if (nstate == IEEE80211_S_RUN) { /* NB: collect bss node again, it may have changed */ ieee80211_free_node(ni); ni = ieee80211_ref_node(vap->iv_bss); DPRINTF(sc, ATH_DEBUG_STATE, "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " "capinfo 0x%04x chan %d\n", __func__, vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); switch (vap->iv_opmode) { #ifdef IEEE80211_SUPPORT_TDMA case IEEE80211_M_AHDEMO: if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) break; /* fall thru... */ #endif case IEEE80211_M_HOSTAP: case IEEE80211_M_IBSS: case IEEE80211_M_MBSS: /* * Allocate and setup the beacon frame. * * Stop any previous beacon DMA. This may be * necessary, for example, when an ibss merge * causes reconfiguration; there will be a state * transition from RUN->RUN that means we may * be called with beacon transmission active. */ ath_hal_stoptxdma(ah, sc->sc_bhalq); error = ath_beacon_alloc(sc, ni); if (error != 0) goto bad; /* * If joining an adhoc network defer beacon timer * configuration to the next beacon frame so we * have a current TSF to use. Otherwise we're * starting an ibss/bss so there's no need to delay; * if this is the first vap moving to RUN state, then * beacon state needs to be [re]configured. */ if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf != 0) { sc->sc_syncbeacon = 1; } else if (!sc->sc_beacons) { #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) ath_tdma_config(sc, vap); else #endif ath_beacon_config(sc, vap); sc->sc_beacons = 1; } break; case IEEE80211_M_STA: /* * Defer beacon timer configuration to the next * beacon frame so we have a current TSF to use * (any TSF collected when scanning is likely old). * However if it's due to a CSA -> RUN transition, * force a beacon update so we pick up a lack of * beacons from an AP in CAC and thus force a * scan. * * And, there's also corner cases here where * after a scan, the AP may have disappeared. * In that case, we may not receive an actual * beacon to update the beacon timer and thus we * won't get notified of the missing beacons. */ if (ostate != IEEE80211_S_RUN && ostate != IEEE80211_S_SLEEP) { DPRINTF(sc, ATH_DEBUG_BEACON, "%s: STA; syncbeacon=1\n", __func__); sc->sc_syncbeacon = 1; if (csa_run_transition) ath_beacon_config(sc, vap); /* * PR: kern/175227 * * Reconfigure beacons during reset; as otherwise * we won't get the beacon timers reprogrammed * after a reset and thus we won't pick up a * beacon miss interrupt. * * Hopefully we'll see a beacon before the BMISS * timer fires (too often), leading to a STA * disassociation. */ sc->sc_beacons = 1; } break; case IEEE80211_M_MONITOR: /* * Monitor mode vaps have only INIT->RUN and RUN->RUN * transitions so we must re-enable interrupts here to * handle the case of a single monitor mode vap. */ ath_hal_intrset(ah, sc->sc_imask); break; case IEEE80211_M_WDS: break; default: break; } /* * Let the hal process statistics collected during a * scan so it can provide calibrated noise floor data. */ ath_hal_process_noisefloor(ah); /* * Reset rssi stats; maybe not the best place... */ sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; /* * Force awake for RUN mode. */ ATH_LOCK(sc); ath_power_setselfgen(sc, HAL_PM_AWAKE); ath_power_setpower(sc, HAL_PM_AWAKE); /* * Finally, start any timers and the task q thread * (in case we didn't go through SCAN state). */ if (ath_longcalinterval != 0) { /* start periodic recalibration timer */ callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); } else { DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", __func__); } ATH_UNLOCK(sc); taskqueue_unblock(sc->sc_tq); } else if (nstate == IEEE80211_S_INIT) { /* * If there are no vaps left in RUN state then * shutdown host/driver operation: * o disable interrupts * o disable the task queue thread * o mark beacon processing as stopped */ if (!ath_isanyrunningvaps(vap)) { sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); /* disable interrupts */ ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); taskqueue_block(sc->sc_tq); sc->sc_beacons = 0; } #ifdef IEEE80211_SUPPORT_TDMA ath_hal_setcca(ah, AH_TRUE); #endif } else if (nstate == IEEE80211_S_SLEEP) { /* We're going to sleep, so transition appropriately */ /* For now, only do this if we're a single STA vap */ if (sc->sc_nvaps == 1 && vap->iv_opmode == IEEE80211_M_STA) { DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); ATH_LOCK(sc); /* * Always at least set the self-generated * frame config to set PWRMGT=1. */ ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); /* * If we're not syncing beacons, transition * to NETWORK_SLEEP. * * We stay awake if syncbeacon > 0 in case * we need to listen for some beacons otherwise * our beacon timer config may be wrong. */ if (sc->sc_syncbeacon == 0) { ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); } ATH_UNLOCK(sc); } } bad: ieee80211_free_node(ni); /* * Restore the power state - either to what it was, or * to network_sleep if it's alright. */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); return error; } /* * Allocate a key cache slot to the station so we can * setup a mapping from key index to node. The key cache * slot is needed for managing antenna state and for * compression when stations do not use crypto. We do * it uniliaterally here; if crypto is employed this slot * will be reassigned. */ static void ath_setup_stationkey(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ath_softc *sc = vap->iv_ic->ic_softc; ieee80211_keyix keyix, rxkeyix; /* XXX should take a locked ref to vap->iv_bss */ if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { /* * Key cache is full; we'll fall back to doing * the more expensive lookup in software. Note * this also means no h/w compression. */ /* XXX msg+statistic */ } else { /* XXX locking? */ ni->ni_ucastkey.wk_keyix = keyix; ni->ni_ucastkey.wk_rxkeyix = rxkeyix; /* NB: must mark device key to get called back on delete */ ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); /* NB: this will create a pass-thru key entry */ ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); } } /* * Setup driver-specific state for a newly associated node. * Note that we're called also on a re-associate, the isnew * param tells us if this is the first time or not. */ static void ath_newassoc(struct ieee80211_node *ni, int isnew) { struct ath_node *an = ATH_NODE(ni); struct ieee80211vap *vap = ni->ni_vap; struct ath_softc *sc = vap->iv_ic->ic_softc; const struct ieee80211_txparam *tp = ni->ni_txparms; an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", __func__, ni->ni_macaddr, ":", isnew, an->an_is_powersave); ATH_NODE_LOCK(an); ath_rate_newassoc(sc, an, isnew); ATH_NODE_UNLOCK(an); if (isnew && (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) ath_setup_stationkey(ni); /* * If we're reassociating, make sure that any paused queues * get unpaused. * * Now, we may have frames in the hardware queue for this node. * So if we are reassociating and there are frames in the queue, * we need to go through the cleanup path to ensure that they're * marked as non-aggregate. */ if (! isnew) { DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; is_powersave=%d\n", __func__, ni->ni_macaddr, ":", an->an_is_powersave); /* XXX for now, we can't hold the lock across assoc */ ath_tx_node_reassoc(sc, an); /* XXX for now, we can't hold the lock across wakeup */ if (an->an_is_powersave) ath_tx_node_wakeup(sc, an); } } static int ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, int nchans, struct ieee80211_channel chans[]) { struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: rd %u cc %u location %c%s\n", __func__, reg->regdomain, reg->country, reg->location, reg->ecm ? " ecm" : ""); status = ath_hal_set_channels(ah, chans, nchans, reg->country, reg->regdomain); if (status != HAL_OK) { DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", __func__, status); return EINVAL; /* XXX */ } return 0; } static void ath_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct ath_softc *sc = ic->ic_softc; struct ath_hal *ah = sc->sc_ah; DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", __func__, SKU_DEBUG, CTRY_DEFAULT); /* XXX check return */ (void) ath_hal_getchannels(ah, chans, maxchans, nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); } static int ath_getchannels(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; /* * Collect channel set based on EEPROM contents. */ status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); if (status != HAL_OK) { device_printf(sc->sc_dev, "%s: unable to collect channel list from hal, status %d\n", __func__, status); return EINVAL; } (void) ath_hal_getregdomain(ah, &sc->sc_eerd); ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ /* XXX map Atheros sku's to net80211 SKU's */ /* XXX net80211 types too small */ ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ ic->ic_regdomain.isocc[1] = ' '; ic->ic_regdomain.ecm = 1; ic->ic_regdomain.location = 'I'; DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", __func__, sc->sc_eerd, sc->sc_eecc, ic->ic_regdomain.regdomain, ic->ic_regdomain.country, ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); return 0; } static int ath_rate_setup(struct ath_softc *sc, u_int mode) { struct ath_hal *ah = sc->sc_ah; const HAL_RATE_TABLE *rt; switch (mode) { case IEEE80211_MODE_11A: rt = ath_hal_getratetable(ah, HAL_MODE_11A); break; case IEEE80211_MODE_HALF: rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); break; case IEEE80211_MODE_QUARTER: rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); break; case IEEE80211_MODE_11B: rt = ath_hal_getratetable(ah, HAL_MODE_11B); break; case IEEE80211_MODE_11G: rt = ath_hal_getratetable(ah, HAL_MODE_11G); break; case IEEE80211_MODE_TURBO_A: rt = ath_hal_getratetable(ah, HAL_MODE_108A); break; case IEEE80211_MODE_TURBO_G: rt = ath_hal_getratetable(ah, HAL_MODE_108G); break; case IEEE80211_MODE_STURBO_A: rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); break; case IEEE80211_MODE_11NA: rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); break; case IEEE80211_MODE_11NG: rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); break; default: DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", __func__, mode); return 0; } sc->sc_rates[mode] = rt; return (rt != NULL); } static void ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) { /* NB: on/off times from the Atheros NDIS driver, w/ permission */ static const struct { u_int rate; /* tx/rx 802.11 rate */ u_int16_t timeOn; /* LED on time (ms) */ u_int16_t timeOff; /* LED off time (ms) */ } blinkrates[] = { { 108, 40, 10 }, { 96, 44, 11 }, { 72, 50, 13 }, { 48, 57, 14 }, { 36, 67, 16 }, { 24, 80, 20 }, { 22, 100, 25 }, { 18, 133, 34 }, { 12, 160, 40 }, { 10, 200, 50 }, { 6, 240, 58 }, { 4, 267, 66 }, { 2, 400, 100 }, { 0, 500, 130 }, /* XXX half/quarter rates */ }; const HAL_RATE_TABLE *rt; int i, j; memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); rt = sc->sc_rates[mode]; KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); for (i = 0; i < rt->rateCount; i++) { uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; if (rt->info[i].phy != IEEE80211_T_HT) sc->sc_rixmap[ieeerate] = i; else sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; } memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); for (i = 0; i < nitems(sc->sc_hwmap); i++) { if (i >= rt->rateCount) { sc->sc_hwmap[i].ledon = (500 * hz) / 1000; sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; continue; } sc->sc_hwmap[i].ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; if (rt->info[i].phy == IEEE80211_T_HT) sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; if (rt->info[i].shortPreamble || rt->info[i].phy == IEEE80211_T_OFDM) sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; for (j = 0; j < nitems(blinkrates)-1; j++) if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) break; /* NB: this uses the last entry if the rate isn't found */ /* XXX beware of overlow */ sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; } sc->sc_currates = rt; sc->sc_curmode = mode; /* * All protection frames are transmitted at 2Mb/s for * 11g, otherwise at 1Mb/s. */ if (mode == IEEE80211_MODE_11G) sc->sc_protrix = ath_tx_findrix(sc, 2*2); else sc->sc_protrix = ath_tx_findrix(sc, 2*1); /* NB: caller is responsible for resetting rate control state */ } static void ath_watchdog(void *arg) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int do_reset = 0; ATH_LOCK_ASSERT(sc); if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { uint32_t hangs; ath_power_set_power_state(sc, HAL_PM_AWAKE); if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && hangs != 0) { device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", hangs & 0xff ? "bb" : "mac", hangs); } else device_printf(sc->sc_dev, "device timeout\n"); do_reset = 1; counter_u64_add(ic->ic_oerrors, 1); sc->sc_stats.ast_watchdog++; ath_power_restore_power_state(sc); } /* * We can't hold the lock across the ath_reset() call. * * And since this routine can't hold a lock and sleep, * do the reset deferred. */ if (do_reset) { taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); } callout_schedule(&sc->sc_wd_ch, hz); } static void ath_parent(struct ieee80211com *ic) { struct ath_softc *sc = ic->ic_softc; int error = EDOOFUS; ATH_LOCK(sc); if (ic->ic_nrunning > 0) { /* * To avoid rescanning another access point, * do not call ath_init() here. Instead, * only reflect promisc mode settings. */ if (sc->sc_running) { ath_power_set_power_state(sc, HAL_PM_AWAKE); ath_mode_init(sc); ath_power_restore_power_state(sc); } else if (!sc->sc_invalid) { /* * Beware of being called during attach/detach * to reset promiscuous mode. In that case we * will still be marked UP but not RUNNING. * However trying to re-init the interface * is the wrong thing to do as we've already * torn down much of our state. There's * probably a better way to deal with this. */ error = ath_init(sc); } } else { ath_stop(sc); if (!sc->sc_invalid) ath_power_setpower(sc, HAL_PM_FULL_SLEEP); } ATH_UNLOCK(sc); if (error == 0) { #ifdef ATH_TX99_DIAG if (sc->sc_tx99 != NULL) sc->sc_tx99->start(sc->sc_tx99); else #endif ieee80211_start_all(ic); } } /* * Announce various information on device/driver attach. */ static void ath_announce(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); if (bootverbose) { int i; for (i = 0; i <= WME_AC_VO; i++) { struct ath_txq *txq = sc->sc_ac2q[i]; device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n", txq->axq_qnum, ieee80211_wme_acnames[i]); } device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", sc->sc_cabq->axq_qnum); device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", sc->sc_bhalq); } if (ath_rxbuf != ATH_RXBUF) device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); if (ath_txbuf != ATH_TXBUF) device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); if (sc->sc_mcastkey && bootverbose) device_printf(sc->sc_dev, "using multicast key search\n"); } static void ath_dfs_tasklet(void *p, int npending) { struct ath_softc *sc = (struct ath_softc *) p; struct ieee80211com *ic = &sc->sc_ic; /* * If previous processing has found a radar event, * signal this to the net80211 layer to begin DFS * processing. */ if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { /* DFS event found, initiate channel change */ /* * XXX doesn't currently tell us whether the event * XXX was found in the primary or extension * XXX channel! */ IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, sc->sc_curchan); IEEE80211_UNLOCK(ic); } } /* * Enable/disable power save. This must be called with * no TX driver locks currently held, so it should only * be called from the RX path (which doesn't hold any * TX driver locks.) */ static void ath_node_powersave(struct ieee80211_node *ni, int enable) { #ifdef ATH_SW_PSQ struct ath_node *an = ATH_NODE(ni); struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; struct ath_vap *avp = ATH_VAP(ni->ni_vap); /* XXX and no TXQ locks should be held here */ DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", __func__, ni->ni_macaddr, ":", !! enable); /* Suspend or resume software queue handling */ if (enable) ath_tx_node_sleep(sc, an); else ath_tx_node_wakeup(sc, an); /* Update net80211 state */ avp->av_node_ps(ni, enable); #else struct ath_vap *avp = ATH_VAP(ni->ni_vap); /* Update net80211 state */ avp->av_node_ps(ni, enable); #endif/* ATH_SW_PSQ */ } /* * Notification from net80211 that the powersave queue state has * changed. * * Since the software queue also may have some frames: * * + if the node software queue has frames and the TID state * is 0, we set the TIM; * + if the node and the stack are both empty, we clear the TIM bit. * + If the stack tries to set the bit, always set it. * + If the stack tries to clear the bit, only clear it if the * software queue in question is also cleared. * * TODO: this is called during node teardown; so let's ensure this * is all correctly handled and that the TIM bit is cleared. * It may be that the node flush is called _AFTER_ the net80211 * stack clears the TIM. * * Here is the racy part. Since it's possible >1 concurrent, * overlapping TXes will appear complete with a TX completion in * another thread, it's possible that the concurrent TIM calls will * clash. We can't hold the node lock here because setting the * TIM grabs the net80211 comlock and this may cause a LOR. * The solution is either to totally serialise _everything_ at * this point (ie, all TX, completion and any reset/flush go into * one taskqueue) or a new "ath TIM lock" needs to be created that * just wraps the driver state change and this call to avp->av_set_tim(). * * The same race exists in the net80211 power save queue handling * as well. Since multiple transmitting threads may queue frames * into the driver, as well as ps-poll and the driver transmitting * frames (and thus clearing the psq), it's quite possible that * a packet entering the PSQ and a ps-poll being handled will * race, causing the TIM to be cleared and not re-set. */ static int ath_node_set_tim(struct ieee80211_node *ni, int enable) { #ifdef ATH_SW_PSQ struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; struct ath_node *an = ATH_NODE(ni); struct ath_vap *avp = ATH_VAP(ni->ni_vap); int changed = 0; ATH_TX_LOCK(sc); an->an_stack_psq = enable; /* * This will get called for all operating modes, * even if avp->av_set_tim is unset. * It's currently set for hostap/ibss modes; but * the same infrastructure is used for both STA * and AP/IBSS node power save. */ if (avp->av_set_tim == NULL) { ATH_TX_UNLOCK(sc); return (0); } /* * If setting the bit, always set it here. * If clearing the bit, only clear it if the * software queue is also empty. * * If the node has left power save, just clear the TIM * bit regardless of the state of the power save queue. * * XXX TODO: although atomics are used, it's quite possible * that a race will occur between this and setting/clearing * in another thread. TX completion will occur always in * one thread, however setting/clearing the TIM bit can come * from a variety of different process contexts! */ if (enable && an->an_tim_set == 1) { DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d, tim_set=1, ignoring\n", __func__, ni->ni_macaddr, ":", enable); ATH_TX_UNLOCK(sc); } else if (enable) { DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d, enabling TIM\n", __func__, ni->ni_macaddr, ":", enable); an->an_tim_set = 1; ATH_TX_UNLOCK(sc); changed = avp->av_set_tim(ni, enable); } else if (an->an_swq_depth == 0) { /* disable */ DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", __func__, ni->ni_macaddr, ":", enable); an->an_tim_set = 0; ATH_TX_UNLOCK(sc); changed = avp->av_set_tim(ni, enable); } else if (! an->an_is_powersave) { /* * disable regardless; the node isn't in powersave now */ DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", __func__, ni->ni_macaddr, ":", enable); an->an_tim_set = 0; ATH_TX_UNLOCK(sc); changed = avp->av_set_tim(ni, enable); } else { /* * psq disable, node is currently in powersave, node * software queue isn't empty, so don't clear the TIM bit * for now. */ ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", __func__, ni->ni_macaddr, ":", enable); changed = 0; } return (changed); #else struct ath_vap *avp = ATH_VAP(ni->ni_vap); /* * Some operating modes don't set av_set_tim(), so don't * update it here. */ if (avp->av_set_tim == NULL) return (0); return (avp->av_set_tim(ni, enable)); #endif /* ATH_SW_PSQ */ } /* * Set or update the TIM from the software queue. * * Check the software queue depth before attempting to do lock * anything; that avoids trying to obtain the lock. Then, * re-check afterwards to ensure nothing has changed in the * meantime. * * set: This is designed to be called from the TX path, after * a frame has been queued; to see if the swq > 0. * * clear: This is designed to be called from the buffer completion point * (right now it's ath_tx_default_comp()) where the state of * a software queue has changed. * * It makes sense to place it at buffer free / completion rather * than after each software queue operation, as there's no real * point in churning the TIM bit as the last frames in the software * queue are transmitted. If they fail and we retry them, we'd * just be setting the TIM bit again anyway. */ void ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, int enable) { #ifdef ATH_SW_PSQ struct ath_node *an; struct ath_vap *avp; /* Don't do this for broadcast/etc frames */ if (ni == NULL) return; an = ATH_NODE(ni); avp = ATH_VAP(ni->ni_vap); /* * And for operating modes without the TIM handler set, let's * just skip those. */ if (avp->av_set_tim == NULL) return; ATH_TX_LOCK_ASSERT(sc); if (enable) { if (an->an_is_powersave && an->an_tim_set == 0 && an->an_swq_depth != 0) { DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: swq_depth>0, tim_set=0, set!\n", __func__, ni->ni_macaddr, ":"); an->an_tim_set = 1; (void) avp->av_set_tim(ni, 1); } } else { /* * Don't bother grabbing the lock unless the queue is empty. */ if (an->an_swq_depth != 0) return; if (an->an_is_powersave && an->an_stack_psq == 0 && an->an_tim_set == 1 && an->an_swq_depth == 0) { DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," " clear!\n", __func__, ni->ni_macaddr, ":"); an->an_tim_set = 0; (void) avp->av_set_tim(ni, 0); } } #else return; #endif /* ATH_SW_PSQ */ } /* * Received a ps-poll frame from net80211. * * Here we get a chance to serve out a software-queued frame ourselves * before we punt it to net80211 to transmit us one itself - either * because there's traffic in the net80211 psq, or a NULL frame to * indicate there's nothing else. */ static void ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) { #ifdef ATH_SW_PSQ struct ath_node *an; struct ath_vap *avp; struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; int tid; /* Just paranoia */ if (ni == NULL) return; /* * Unassociated (temporary node) station. */ if (ni->ni_associd == 0) return; /* * We do have an active node, so let's begin looking into it. */ an = ATH_NODE(ni); avp = ATH_VAP(ni->ni_vap); /* * For now, we just call the original ps-poll method. * Once we're ready to flip this on: * * + Set leak to 1, as no matter what we're going to have * to send a frame; * + Check the software queue and if there's something in it, * schedule the highest TID thas has traffic from this node. * Then make sure we schedule the software scheduler to * run so it picks up said frame. * * That way whatever happens, we'll at least send _a_ frame * to the given node. * * Again, yes, it's crappy QoS if the node has multiple * TIDs worth of traffic - but let's get it working first * before we optimise it. * * Also yes, there's definitely latency here - we're not * direct dispatching to the hardware in this path (and * we're likely being called from the packet receive path, * so going back into TX may be a little hairy!) but again * I'd like to get this working first before optimising * turn-around time. */ ATH_TX_LOCK(sc); /* * Legacy - we're called and the node isn't asleep. * Immediately punt. */ if (! an->an_is_powersave) { DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: not in powersave?\n", __func__, ni->ni_macaddr, ":"); ATH_TX_UNLOCK(sc); avp->av_recv_pspoll(ni, m); return; } /* * We're in powersave. * * Leak a frame. */ an->an_leak_count = 1; /* * Now, if there's no frames in the node, just punt to * recv_pspoll. * * Don't bother checking if the TIM bit is set, we really * only care if there are any frames here! */ if (an->an_swq_depth == 0) { ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: SWQ empty; punting to net80211\n", __func__, ni->ni_macaddr, ":"); avp->av_recv_pspoll(ni, m); return; } /* * Ok, let's schedule the highest TID that has traffic * and then schedule something. */ for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { struct ath_tid *atid = &an->an_tid[tid]; /* * No frames? Skip. */ if (atid->axq_depth == 0) continue; ath_tx_tid_sched(sc, atid); /* * XXX we could do a direct call to the TXQ * scheduler code here to optimise latency * at the expense of a REALLY deep callstack. */ ATH_TX_UNLOCK(sc); taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: leaking frame to TID %d\n", __func__, ni->ni_macaddr, ":", tid); return; } ATH_TX_UNLOCK(sc); /* * XXX nothing in the TIDs at this point? Eek. */ DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", __func__, ni->ni_macaddr, ":"); avp->av_recv_pspoll(ni, m); #else avp->av_recv_pspoll(ni, m); #endif /* ATH_SW_PSQ */ } MODULE_VERSION(if_ath, 1); MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) MODULE_DEPEND(if_ath, alq, 1, 1, 1); #endif