/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include /* * Atsushi Onoe's rate control algorithm. */ #include "opt_ath.h" #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX for ether_sprintf */ #include #include #ifdef INET #include #include #endif #include #include #include /* * Default parameters for the rate control algorithm. These are * all tunable with sysctls. The rate controller runs periodically * (each ath_rateinterval ms) analyzing transmit statistics for each * neighbor/station (when operating in station mode this is only the AP). * If transmits look to be working well over a sampling period then * it gives a "raise rate credit". If transmits look to not be working * well than it deducts a credit. If the credits cross a threshold then * the transmit rate is raised. Various error conditions force the * the transmit rate to be dropped. * * The decision to issue/deduct a credit is based on the errors and * retries accumulated over the sampling period. ath_rate_raise defines * the percent of retransmits for which a credit is issued/deducted. * ath_rate_raise_threshold defines the threshold on credits at which * the transmit rate is increased. * * XXX this algorithm is flawed. */ static int ath_rateinterval = 1000; /* rate ctl interval (ms) */ static int ath_rate_raise = 10; /* add credit threshold */ static int ath_rate_raise_threshold = 10; /* rate ctl raise threshold */ static void ath_rate_update(struct ath_softc *, struct ieee80211_node *, int rate); static void ath_rate_ctl_start(struct ath_softc *, struct ieee80211_node *); static void ath_rate_ctl(void *, struct ieee80211_node *); void ath_rate_node_init(struct ath_softc *sc, struct ath_node *an) { /* NB: assumed to be zero'd by caller */ } void ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an) { } void ath_rate_findrate(struct ath_softc *sc, struct ath_node *an, int shortPreamble, size_t frameLen, int tid, int is_aggr, u_int8_t *rix, int *try0, u_int8_t *txrate, int *maxdur, int *maxpktlen) { struct onoe_node *on = ATH_NODE_ONOE(an); *rix = on->on_tx_rix0; *try0 = on->on_tx_try0; if (shortPreamble) *txrate = on->on_tx_rate0sp; else *txrate = on->on_tx_rate0; *maxdur = -1; *maxpktlen = -1; } /* * Get the TX rates. * * The short preamble bits aren't set here; the caller should augment * the returned rate with the relevant preamble rate flag. */ void ath_rate_getxtxrates(struct ath_softc *sc, struct ath_node *an, uint8_t rix0, int is_aggr, struct ath_rc_series *rc) { struct onoe_node *on = ATH_NODE_ONOE(an); rc[0].flags = rc[1].flags = rc[2].flags = rc[3].flags = 0; rc[0].rix = on->on_tx_rate0; rc[1].rix = on->on_tx_rate1; rc[2].rix = on->on_tx_rate2; rc[3].rix = on->on_tx_rate3; rc[0].tries = on->on_tx_try0; rc[1].tries = 2; rc[2].tries = 2; rc[3].tries = 2; } void ath_rate_setupxtxdesc(struct ath_softc *sc, struct ath_node *an, struct ath_desc *ds, int shortPreamble, u_int8_t rix) { struct onoe_node *on = ATH_NODE_ONOE(an); ath_hal_setupxtxdesc(sc->sc_ah, ds , on->on_tx_rate1sp, 2 /* series 1 */ , on->on_tx_rate2sp, 2 /* series 2 */ , on->on_tx_rate3sp, 2 /* series 3 */ ); } void ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an, const struct ath_rc_series *rc, const struct ath_tx_status *ts, int frame_size, int rc_framesize, int nframes, int nbad) { struct onoe_node *on = ATH_NODE_ONOE(an); if (ts->ts_status == 0) on->on_tx_ok++; else on->on_tx_err++; on->on_tx_retr += ts->ts_shortretry + ts->ts_longretry; if (on->on_interval != 0 && ticks - on->on_ticks > on->on_interval) { ath_rate_ctl(sc, &an->an_node); on->on_ticks = ticks; } } void ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew) { if (isnew) ath_rate_ctl_start(sc, &an->an_node); } void ath_rate_update_rx_rssi(struct ath_softc *sc, struct ath_node *an, int rssi) { } static void ath_rate_update(struct ath_softc *sc, struct ieee80211_node *ni, int rate) { struct ath_node *an = ATH_NODE(ni); struct onoe_node *on = ATH_NODE_ONOE(an); struct ieee80211vap *vap = ni->ni_vap; const HAL_RATE_TABLE *rt = sc->sc_currates; u_int8_t rix; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); IEEE80211_NOTE(vap, IEEE80211_MSG_RATECTL, ni, "%s: set xmit rate to %dM", __func__, ni->ni_rates.rs_nrates > 0 ? (ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL) / 2 : 0); /* * Before associating a node has no rate set setup * so we can't calculate any transmit codes to use. * This is ok since we should never be sending anything * but management frames and those always go at the * lowest hardware rate. */ if (ni->ni_rates.rs_nrates == 0) goto done; on->on_rix = rate; ni->ni_txrate = ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL; on->on_tx_rix0 = sc->sc_rixmap[ni->ni_txrate]; on->on_tx_rate0 = rt->info[on->on_tx_rix0].rateCode; on->on_tx_rate0sp = on->on_tx_rate0 | rt->info[on->on_tx_rix0].shortPreamble; if (sc->sc_mrretry) { /* * Hardware supports multi-rate retry; setup two * step-down retry rates and make the lowest rate * be the ``last chance''. We use 4, 2, 2, 2 tries * respectively (4 is set here, the rest are fixed * in the xmit routine). */ on->on_tx_try0 = 1 + 3; /* 4 tries at rate 0 */ if (--rate >= 0) { rix = sc->sc_rixmap[ ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL]; on->on_tx_rate1 = rt->info[rix].rateCode; on->on_tx_rate1sp = on->on_tx_rate1 | rt->info[rix].shortPreamble; } else { on->on_tx_rate1 = on->on_tx_rate1sp = 0; } if (--rate >= 0) { rix = sc->sc_rixmap[ ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL]; on->on_tx_rate2 = rt->info[rix].rateCode; on->on_tx_rate2sp = on->on_tx_rate2 | rt->info[rix].shortPreamble; } else { on->on_tx_rate2 = on->on_tx_rate2sp = 0; } if (rate > 0) { /* NB: only do this if we didn't already do it above */ on->on_tx_rate3 = rt->info[0].rateCode; on->on_tx_rate3sp = on->on_tx_rate3 | rt->info[0].shortPreamble; } else { on->on_tx_rate3 = on->on_tx_rate3sp = 0; } } else { on->on_tx_try0 = ATH_TXMAXTRY; /* max tries at rate 0 */ on->on_tx_rate1 = on->on_tx_rate1sp = 0; on->on_tx_rate2 = on->on_tx_rate2sp = 0; on->on_tx_rate3 = on->on_tx_rate3sp = 0; } done: on->on_tx_ok = on->on_tx_err = on->on_tx_retr = on->on_tx_upper = 0; on->on_interval = ath_rateinterval; if (vap->iv_opmode == IEEE80211_M_STA) on->on_interval /= 2; on->on_interval = (on->on_interval * hz) / 1000; } /* * Set the starting transmit rate for a node. */ static void ath_rate_ctl_start(struct ath_softc *sc, struct ieee80211_node *ni) { #define RATE(_ix) (ni->ni_rates.rs_rates[(_ix)] & IEEE80211_RATE_VAL) const struct ieee80211_txparam *tp = ni->ni_txparms; int srate; KASSERT(ni->ni_rates.rs_nrates > 0, ("no rates")); if (tp == NULL || tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { /* * No fixed rate is requested. For 11b start with * the highest negotiated rate; otherwise, for 11g * and 11a, we start "in the middle" at 24Mb or 36Mb. */ srate = ni->ni_rates.rs_nrates - 1; if (sc->sc_curmode != IEEE80211_MODE_11B) { /* * Scan the negotiated rate set to find the * closest rate. */ /* NB: the rate set is assumed sorted */ for (; srate >= 0 && RATE(srate) > 72; srate--) ; } } else { /* * A fixed rate is to be used; ic_fixed_rate is the * IEEE code for this rate (sans basic bit). Convert this * to the index into the negotiated rate set for * the node. We know the rate is there because the * rate set is checked when the station associates. */ /* NB: the rate set is assumed sorted */ srate = ni->ni_rates.rs_nrates - 1; for (; srate >= 0 && RATE(srate) != tp->ucastrate; srate--) ; } /* * The selected rate may not be available due to races * and mode settings. Also orphaned nodes created in * adhoc mode may not have any rate set so this lookup * can fail. This is not fatal. */ ath_rate_update(sc, ni, srate < 0 ? 0 : srate); #undef RATE } /* * Examine and potentially adjust the transmit rate. */ static void ath_rate_ctl(void *arg, struct ieee80211_node *ni) { struct ath_softc *sc = arg; struct onoe_node *on = ATH_NODE_ONOE(ATH_NODE(ni)); struct ieee80211_rateset *rs = &ni->ni_rates; int dir = 0, nrate, enough; /* * Rate control * XXX: very primitive version. */ enough = (on->on_tx_ok + on->on_tx_err >= 10); /* no packet reached -> down */ if (on->on_tx_err > 0 && on->on_tx_ok == 0) dir = -1; /* all packets needs retry in average -> down */ if (enough && on->on_tx_ok < on->on_tx_retr) dir = -1; /* no error and less than rate_raise% of packets need retry -> up */ if (enough && on->on_tx_err == 0 && on->on_tx_retr < (on->on_tx_ok * ath_rate_raise) / 100) dir = 1; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "ok %d err %d retr %d upper %d dir %d", on->on_tx_ok, on->on_tx_err, on->on_tx_retr, on->on_tx_upper, dir); nrate = on->on_rix; switch (dir) { case 0: if (enough && on->on_tx_upper > 0) on->on_tx_upper--; break; case -1: if (nrate > 0) { nrate--; sc->sc_stats.ast_rate_drop++; } on->on_tx_upper = 0; break; case 1: /* raise rate if we hit rate_raise_threshold */ if (++on->on_tx_upper < ath_rate_raise_threshold) break; on->on_tx_upper = 0; if (nrate + 1 < rs->rs_nrates) { nrate++; sc->sc_stats.ast_rate_raise++; } break; } if (nrate != on->on_rix) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "%s: %dM -> %dM (%d ok, %d err, %d retr)", __func__, ni->ni_txrate / 2, (rs->rs_rates[nrate] & IEEE80211_RATE_VAL) / 2, on->on_tx_ok, on->on_tx_err, on->on_tx_retr); ath_rate_update(sc, ni, nrate); } else if (enough) on->on_tx_ok = on->on_tx_err = on->on_tx_retr = 0; } static void ath_rate_sysctlattach(struct ath_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_interval", CTLFLAG_RW, &ath_rateinterval, 0, "rate control: operation interval (ms)"); /* XXX bounds check values */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_raise", CTLFLAG_RW, &ath_rate_raise, 0, "rate control: retry threshold to credit rate raise (%%)"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rate_raise_threshold", CTLFLAG_RW, &ath_rate_raise_threshold,0, "rate control: # good periods before raising rate"); } static int ath_rate_fetch_node_stats(struct ath_softc *sc, struct ath_node *an, struct ath_rateioctl *re) { return (EINVAL); } struct ath_ratectrl * ath_rate_attach(struct ath_softc *sc) { struct onoe_softc *osc; osc = malloc(sizeof(struct onoe_softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (osc == NULL) return NULL; osc->arc.arc_space = sizeof(struct onoe_node); ath_rate_sysctlattach(sc); return &osc->arc; } void ath_rate_detach(struct ath_ratectrl *arc) { struct onoe_softc *osc = (struct onoe_softc *) arc; free(osc, M_DEVBUF); }