/*- * SPDX-License-Identifier: ISC * * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_eeprom_v14.h" #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #define N(a) (sizeof(a)/sizeof(a[0])) struct ar2133State { RF_HAL_FUNCS base; /* public state, must be first */ uint16_t pcdacTable[1]; uint32_t *Bank0Data; uint32_t *Bank1Data; uint32_t *Bank2Data; uint32_t *Bank3Data; uint32_t *Bank6Data; uint32_t *Bank7Data; /* NB: Bank*Data storage follows */ }; #define AR2133(ah) ((struct ar2133State *) AH5212(ah)->ah_rfHal) #define ar5416ModifyRfBuffer ar5212ModifyRfBuffer /*XXX*/ void ar5416ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits, uint32_t firstBit, uint32_t column); static void ar2133WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, int writes) { (void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain, freqIndex, writes); } /* * Fix on 2.4 GHz band for orientation sensitivity issue by increasing * rf_pwd_icsyndiv. * * Theoretical Rules: * if 2 GHz band * if forceBiasAuto * if synth_freq < 2412 * bias = 0 * else if 2412 <= synth_freq <= 2422 * bias = 1 * else // synth_freq > 2422 * bias = 2 * else if forceBias > 0 * bias = forceBias & 7 * else * no change, use value from ini file * else * no change, invalid band * * 1st Mod: * 2422 also uses value of 2 * * * 2nd Mod: * Less than 2412 uses value of 0, 2412 and above uses value of 2 */ static void ar2133ForceBias(struct ath_hal *ah, uint16_t synth_freq) { uint32_t tmp_reg; int reg_writes = 0; uint32_t new_bias = 0; struct ar2133State *priv = AR2133(ah); /* XXX this is a bit of a silly check for 2.4ghz channels -adrian */ if (synth_freq >= 3000) return; if (synth_freq < 2412) new_bias = 0; else if (synth_freq < 2422) new_bias = 1; else new_bias = 2; /* pre-reverse this field */ tmp_reg = ath_hal_reverseBits(new_bias, 3); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Force rf_pwd_icsyndiv to %1d on %4d\n", __func__, new_bias, synth_freq); /* swizzle rf_pwd_icsyndiv */ ar5416ModifyRfBuffer(priv->Bank6Data, tmp_reg, 3, 181, 3); /* write Bank 6 with new params */ ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6, priv->Bank6Data, reg_writes); } /* * Take the MHz channel value and set the Channel value * * ASSUMES: Writes enabled to analog bus */ static HAL_BOOL ar2133SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t channelSel = 0; uint32_t bModeSynth = 0; uint32_t aModeRefSel = 0; uint32_t reg32 = 0; uint16_t freq; CHAN_CENTERS centers; OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; if (freq < 4800) { uint32_t txctl; if (((freq - 2192) % 5) == 0) { channelSel = ((freq - 672) * 2 - 3040)/10; bModeSynth = 0; } else if (((freq - 2224) % 5) == 0) { channelSel = ((freq - 704) * 2 - 3040) / 10; bModeSynth = 1; } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } channelSel = (channelSel << 2) & 0xff; channelSel = ath_hal_reverseBits(channelSel, 8); txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } /* * Handle programming the RF synth for odd frequencies in the * 4.9->5GHz range. This matches the programming from the * later model 802.11abg RF synths. * * This interoperates on the quarter rate channels with the * AR5112 and later RF synths. Please note that the synthesiser * isn't able to completely accurately represent these frequencies * (as the resolution in this reference is 2.5MHz) and thus it will * be slightly "off centre." This matches the same slightly * incorrect * centre frequency behaviour that the AR5112 and later * channel selection code has. * * This is disabled because it hasn't been tested for regulatory * compliance and neither have the NICs which would use it. * So if you enable this code, you must first ensure that you've * re-certified the NICs in question beforehand or you will be * violating your local regulatory rules and breaking the law. */ #if 0 } else if (((freq % 5) == 2) && (freq <= 5435)) { freq = freq - 2; channelSel = ath_hal_reverseBits( (uint32_t) (((freq - 4800) * 10) / 25 + 1), 8); /* XXX what about for Howl/Sowl? */ aModeRefSel = ath_hal_reverseBits(0, 2); #endif } else if ((freq % 20) == 0 && freq >= 5120) { channelSel = ath_hal_reverseBits(((freq - 4800) / 20 << 2), 8); if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah)) aModeRefSel = ath_hal_reverseBits(3, 2); else aModeRefSel = ath_hal_reverseBits(1, 2); } else if ((freq % 10) == 0) { channelSel = ath_hal_reverseBits(((freq - 4800) / 10 << 1), 8); if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah)) aModeRefSel = ath_hal_reverseBits(2, 2); else aModeRefSel = ath_hal_reverseBits(1, 2); } else if ((freq % 5) == 0) { channelSel = ath_hal_reverseBits((freq - 4800) / 5, 8); aModeRefSel = ath_hal_reverseBits(1, 2); } else { HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } /* Workaround for hw bug - AR5416 specific */ if (AR_SREV_OWL(ah) && ah->ah_config.ah_ar5416_biasadj) ar2133ForceBias(ah, freq); reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) | (1 << 5) | 0x1; OS_REG_WRITE(ah, AR_PHY(0x37), reg32); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; } /* * Return a reference to the requested RF Bank. */ static uint32_t * ar2133GetRfBank(struct ath_hal *ah, int bank) { struct ar2133State *priv = AR2133(ah); HALASSERT(priv != AH_NULL); switch (bank) { case 1: return priv->Bank1Data; case 2: return priv->Bank2Data; case 3: return priv->Bank3Data; case 6: return priv->Bank6Data; case 7: return priv->Bank7Data; } HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", __func__, bank); return AH_NULL; } /* * Reads EEPROM header info from device structure and programs * all rf registers * * REQUIRES: Access to the analog rf device */ static HAL_BOOL ar2133SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t modesIndex, uint16_t *rfXpdGain) { struct ar2133State *priv = AR2133(ah); int writes; HALASSERT(priv); /* Setup Bank 0 Write */ ath_hal_ini_bank_setup(priv->Bank0Data, &AH5416(ah)->ah_ini_bank0, 1); /* Setup Bank 1 Write */ ath_hal_ini_bank_setup(priv->Bank1Data, &AH5416(ah)->ah_ini_bank1, 1); /* Setup Bank 2 Write */ ath_hal_ini_bank_setup(priv->Bank2Data, &AH5416(ah)->ah_ini_bank2, 1); /* Setup Bank 3 Write */ ath_hal_ini_bank_setup(priv->Bank3Data, &AH5416(ah)->ah_ini_bank3, modesIndex); /* Setup Bank 6 Write */ ath_hal_ini_bank_setup(priv->Bank6Data, &AH5416(ah)->ah_ini_bank6, modesIndex); /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 2ghz: OB_2:%d, DB_2:%d\n", __func__, ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL), ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL)); ar5416ModifyRfBuffer(priv->Bank6Data, ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL), 3, 197, 0); ar5416ModifyRfBuffer(priv->Bank6Data, ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL), 3, 194, 0); } else { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 5ghz: OB_5:%d, DB_5:%d\n", __func__, ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL), ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL)); ar5416ModifyRfBuffer(priv->Bank6Data, ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL), 3, 203, 0); ar5416ModifyRfBuffer(priv->Bank6Data, ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL), 3, 200, 0); } /* Setup Bank 7 Setup */ ath_hal_ini_bank_setup(priv->Bank7Data, &AH5416(ah)->ah_ini_bank7, 1); /* Write Analog registers */ writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank0, priv->Bank0Data, 0); writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank1, priv->Bank1Data, writes); writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank2, priv->Bank2Data, writes); writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank3, priv->Bank3Data, writes); writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6, priv->Bank6Data, writes); (void) ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank7, priv->Bank7Data, writes); return AH_TRUE; #undef RF_BANK_SETUP } /* * Read the transmit power levels from the structures taken from EEPROM * Interpolate read transmit power values for this channel * Organize the transmit power values into a table for writing into the hardware */ static HAL_BOOL ar2133SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax, const struct ieee80211_channel *chan, uint16_t *rfXpdGain) { return AH_TRUE; } #if 0 static int16_t ar2133GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data) { int i, minIndex; int16_t minGain,minPwr,minPcdac,retVal; /* Assume NUM_POINTS_XPD0 > 0 */ minGain = data->pDataPerXPD[0].xpd_gain; for (minIndex=0,i=1; ipDataPerXPD[i].xpd_gain < minGain) { minIndex = i; minGain = data->pDataPerXPD[i].xpd_gain; } } minPwr = data->pDataPerXPD[minIndex].pwr_t4[0]; minPcdac = data->pDataPerXPD[minIndex].pcdac[0]; for (i=1; ipDataPerXPD[minIndex].pwr_t4[i] < minPwr) { minPwr = data->pDataPerXPD[minIndex].pwr_t4[i]; minPcdac = data->pDataPerXPD[minIndex].pcdac[i]; } } retVal = minPwr - (minPcdac*2); return(retVal); } #endif static HAL_BOOL ar2133GetChannelMaxMinPower(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *maxPow, int16_t *minPow) { #if 0 struct ath_hal_5212 *ahp = AH5212(ah); int numChannels=0,i,last; int totalD, totalF,totalMin; EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL; EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL; *maxPow = 0; if (IS_CHAN_A(chan)) { powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11A].pDataPerChannel; numChannels = powerArray[headerInfo11A].numChannels; } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) { /* XXX - is this correct? Should we also use the same power for turbo G? */ powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11G].pDataPerChannel; numChannels = powerArray[headerInfo11G].numChannels; } else if (IS_CHAN_B(chan)) { powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11B].pDataPerChannel; numChannels = powerArray[headerInfo11B].numChannels; } else { return (AH_TRUE); } /* Make sure the channel is in the range of the TP values * (freq piers) */ if ((numChannels < 1) || (chan->channel < data[0].channelValue) || (chan->channel > data[numChannels-1].channelValue)) return(AH_FALSE); /* Linearly interpolate the power value now */ for (last=0,i=0; (ichannel > data[i].channelValue); last=i++); totalD = data[i].channelValue - data[last].channelValue; if (totalD > 0) { totalF = data[i].maxPower_t4 - data[last].maxPower_t4; *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD); totalMin = ar2133GetMinPower(ah,&data[i]) - ar2133GetMinPower(ah, &data[last]); *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar2133GetMinPower(ah, &data[last])*totalD)/totalD); return (AH_TRUE); } else { if (chan->channel == data[i].channelValue) { *maxPow = data[i].maxPower_t4; *minPow = ar2133GetMinPower(ah, &data[i]); return(AH_TRUE); } else return(AH_FALSE); } #else *maxPow = *minPow = 0; return AH_FALSE; #endif } /* * The ordering of nfarray is thus: * * nfarray[0]: Chain 0 ctl * nfarray[1]: Chain 1 ctl * nfarray[2]: Chain 2 ctl * nfarray[3]: Chain 0 ext * nfarray[4]: Chain 1 ext * nfarray[5]: Chain 2 ext */ static void ar2133GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[]) { struct ath_hal_5416 *ahp = AH5416(ah); int16_t nf; /* * Blank nf array - some chips may only * have one or two RX chainmasks enabled. */ nfarray[0] = nfarray[1] = nfarray[2] = 0; nfarray[3] = nfarray[4] = nfarray[5] = 0; switch (ahp->ah_rx_chainmask) { case 0x7: nf = MS(OS_REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ctl] [chain 2] is %d\n", nf); nfarray[2] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ext] [chain 2] is %d\n", nf); nfarray[5] = nf; /* fall thru... */ case 0x3: case 0x5: nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ctl] [chain 1] is %d\n", nf); nfarray[1] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ext] [chain 1] is %d\n", nf); nfarray[4] = nf; /* fall thru... */ case 0x1: nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ctl] [chain 0] is %d\n", nf); nfarray[0] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ext] [chain 0] is %d\n", nf); nfarray[3] = nf; break; } } /* * Adjust NF based on statistical values for 5GHz frequencies. * Stubbed:Not used by Fowl */ static int16_t ar2133GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) { return 0; } /* * Free memory for analog bank scratch buffers */ static void ar2133RfDetach(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); HALASSERT(ahp->ah_rfHal != AH_NULL); ath_hal_free(ahp->ah_rfHal); ahp->ah_rfHal = AH_NULL; } /* * Allocate memory for analog bank scratch buffers * Scratch Buffer will be reinitialized every reset so no need to zero now */ HAL_BOOL ar2133RfAttach(struct ath_hal *ah, HAL_STATUS *status) { struct ath_hal_5212 *ahp = AH5212(ah); struct ar2133State *priv; uint32_t *bankData; HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR2133 radio\n", __func__); HALASSERT(ahp->ah_rfHal == AH_NULL); priv = ath_hal_malloc(sizeof(struct ar2133State) + AH5416(ah)->ah_ini_bank0.rows * sizeof(uint32_t) + AH5416(ah)->ah_ini_bank1.rows * sizeof(uint32_t) + AH5416(ah)->ah_ini_bank2.rows * sizeof(uint32_t) + AH5416(ah)->ah_ini_bank3.rows * sizeof(uint32_t) + AH5416(ah)->ah_ini_bank6.rows * sizeof(uint32_t) + AH5416(ah)->ah_ini_bank7.rows * sizeof(uint32_t) ); if (priv == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot allocate private state\n", __func__); *status = HAL_ENOMEM; /* XXX */ return AH_FALSE; } priv->base.rfDetach = ar2133RfDetach; priv->base.writeRegs = ar2133WriteRegs; priv->base.getRfBank = ar2133GetRfBank; priv->base.setChannel = ar2133SetChannel; priv->base.setRfRegs = ar2133SetRfRegs; priv->base.setPowerTable = ar2133SetPowerTable; priv->base.getChannelMaxMinPower = ar2133GetChannelMaxMinPower; priv->base.getNfAdjust = ar2133GetNfAdjust; bankData = (uint32_t *) &priv[1]; priv->Bank0Data = bankData, bankData += AH5416(ah)->ah_ini_bank0.rows; priv->Bank1Data = bankData, bankData += AH5416(ah)->ah_ini_bank1.rows; priv->Bank2Data = bankData, bankData += AH5416(ah)->ah_ini_bank2.rows; priv->Bank3Data = bankData, bankData += AH5416(ah)->ah_ini_bank3.rows; priv->Bank6Data = bankData, bankData += AH5416(ah)->ah_ini_bank6.rows; priv->Bank7Data = bankData, bankData += AH5416(ah)->ah_ini_bank7.rows; ahp->ah_pcdacTable = priv->pcdacTable; ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); ahp->ah_rfHal = &priv->base; /* * Set noise floor adjust method; we arrange a * direct call instead of thunking. */ AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust; AH_PRIVATE(ah)->ah_getNoiseFloor = ar2133GetNoiseFloor; return AH_TRUE; } static HAL_BOOL ar2133Probe(struct ath_hal *ah) { return (AR_SREV_OWL(ah) || AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)); } AH_RF(RF2133, ar2133Probe, ar2133RfAttach);