/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1998 - 2008 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* prototypes */ static void ataaction(struct cam_sim *sim, union ccb *ccb); static void atapoll(struct cam_sim *sim); static void ata_cam_begin_transaction(device_t dev, union ccb *ccb); static void ata_cam_end_transaction(device_t dev, struct ata_request *request); static void ata_cam_request_sense(device_t dev, struct ata_request *request); static int ata_check_ids(device_t dev, union ccb *ccb); static void ata_conn_event(void *context, int dummy); static void ata_interrupt_locked(void *data); static int ata_module_event_handler(module_t mod, int what, void *arg); static void ata_periodic_poll(void *data); static int ata_str2mode(const char *str); /* global vars */ MALLOC_DEFINE(M_ATA, "ata_generic", "ATA driver generic layer"); int (*ata_raid_ioctl_func)(u_long cmd, caddr_t data) = NULL; devclass_t ata_devclass; int ata_dma_check_80pin = 1; /* sysctl vars */ static SYSCTL_NODE(_hw, OID_AUTO, ata, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "ATA driver parameters"); SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma_check_80pin, CTLFLAG_RWTUN, &ata_dma_check_80pin, 0, "Check for 80pin cable before setting ATA DMA mode"); FEATURE(ata_cam, "ATA devices are accessed through the cam(4) driver"); /* * newbus device interface related functions */ int ata_probe(device_t dev) { return (BUS_PROBE_LOW_PRIORITY); } int ata_attach(device_t dev) { struct ata_channel *ch = device_get_softc(dev); int error, rid; struct cam_devq *devq; const char *res; char buf[64]; int i, mode; /* check that we have a virgin channel to attach */ if (ch->r_irq) return EEXIST; /* initialize the softc basics */ ch->dev = dev; ch->state = ATA_IDLE; bzero(&ch->state_mtx, sizeof(struct mtx)); mtx_init(&ch->state_mtx, "ATA state lock", NULL, MTX_DEF); TASK_INIT(&ch->conntask, 0, ata_conn_event, dev); for (i = 0; i < 16; i++) { ch->user[i].revision = 0; snprintf(buf, sizeof(buf), "dev%d.sata_rev", i); if (resource_int_value(device_get_name(dev), device_get_unit(dev), buf, &mode) != 0 && resource_int_value(device_get_name(dev), device_get_unit(dev), "sata_rev", &mode) != 0) mode = -1; if (mode >= 0) ch->user[i].revision = mode; ch->user[i].mode = 0; snprintf(buf, sizeof(buf), "dev%d.mode", i); if (resource_string_value(device_get_name(dev), device_get_unit(dev), buf, &res) == 0) mode = ata_str2mode(res); else if (resource_string_value(device_get_name(dev), device_get_unit(dev), "mode", &res) == 0) mode = ata_str2mode(res); else mode = -1; if (mode >= 0) ch->user[i].mode = mode; if (ch->flags & ATA_SATA) ch->user[i].bytecount = 8192; else ch->user[i].bytecount = 65536; ch->user[i].caps = 0; ch->curr[i] = ch->user[i]; if (ch->flags & ATA_SATA) { if (ch->pm_level > 0) ch->user[i].caps |= CTS_SATA_CAPS_H_PMREQ; if (ch->pm_level > 1) ch->user[i].caps |= CTS_SATA_CAPS_D_PMREQ; } else { if (!(ch->flags & ATA_NO_48BIT_DMA)) ch->user[i].caps |= CTS_ATA_CAPS_H_DMA48; } } callout_init(&ch->poll_callout, 1); /* allocate DMA resources if DMA HW present*/ if (ch->dma.alloc) ch->dma.alloc(dev); /* setup interrupt delivery */ rid = ATA_IRQ_RID; ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (!ch->r_irq) { device_printf(dev, "unable to allocate interrupt\n"); return ENXIO; } if ((error = bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL, ata_interrupt, ch, &ch->ih))) { bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq); device_printf(dev, "unable to setup interrupt\n"); return error; } if (ch->flags & ATA_PERIODIC_POLL) callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); mtx_lock(&ch->state_mtx); /* Create the device queue for our SIM. */ devq = cam_simq_alloc(1); if (devq == NULL) { device_printf(dev, "Unable to allocate simq\n"); error = ENOMEM; goto err1; } /* Construct SIM entry */ ch->sim = cam_sim_alloc(ataaction, atapoll, "ata", ch, device_get_unit(dev), &ch->state_mtx, 1, 0, devq); if (ch->sim == NULL) { device_printf(dev, "unable to allocate sim\n"); cam_simq_free(devq); error = ENOMEM; goto err1; } if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) { device_printf(dev, "unable to register xpt bus\n"); error = ENXIO; goto err2; } if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { device_printf(dev, "unable to create path\n"); error = ENXIO; goto err3; } mtx_unlock(&ch->state_mtx); return (0); err3: xpt_bus_deregister(cam_sim_path(ch->sim)); err2: cam_sim_free(ch->sim, /*free_devq*/TRUE); ch->sim = NULL; err1: bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq); mtx_unlock(&ch->state_mtx); if (ch->flags & ATA_PERIODIC_POLL) callout_drain(&ch->poll_callout); return (error); } int ata_detach(device_t dev) { struct ata_channel *ch = device_get_softc(dev); /* check that we have a valid channel to detach */ if (!ch->r_irq) return ENXIO; /* grap the channel lock so no new requests gets launched */ mtx_lock(&ch->state_mtx); ch->state |= ATA_STALL_QUEUE; mtx_unlock(&ch->state_mtx); if (ch->flags & ATA_PERIODIC_POLL) callout_drain(&ch->poll_callout); taskqueue_drain(taskqueue_thread, &ch->conntask); mtx_lock(&ch->state_mtx); xpt_async(AC_LOST_DEVICE, ch->path, NULL); xpt_free_path(ch->path); xpt_bus_deregister(cam_sim_path(ch->sim)); cam_sim_free(ch->sim, /*free_devq*/TRUE); ch->sim = NULL; mtx_unlock(&ch->state_mtx); /* release resources */ bus_teardown_intr(dev, ch->r_irq, ch->ih); bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); ch->r_irq = NULL; /* free DMA resources if DMA HW present*/ if (ch->dma.free) ch->dma.free(dev); mtx_destroy(&ch->state_mtx); return 0; } static void ata_conn_event(void *context, int dummy) { device_t dev = (device_t)context; struct ata_channel *ch = device_get_softc(dev); union ccb *ccb; mtx_lock(&ch->state_mtx); if (ch->sim == NULL) { mtx_unlock(&ch->state_mtx); return; } ata_reinit(dev); if ((ccb = xpt_alloc_ccb_nowait()) == NULL) return; if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_free_ccb(ccb); return; } xpt_rescan(ccb); mtx_unlock(&ch->state_mtx); } int ata_reinit(device_t dev) { struct ata_channel *ch = device_get_softc(dev); struct ata_request *request; xpt_freeze_simq(ch->sim, 1); if ((request = ch->running)) { ch->running = NULL; if (ch->state == ATA_ACTIVE) ch->state = ATA_IDLE; callout_stop(&request->callout); if (ch->dma.unload) ch->dma.unload(request); request->result = ERESTART; ata_cam_end_transaction(dev, request); } /* reset the controller HW, the channel and device(s) */ ATA_RESET(dev); /* Tell the XPT about the event */ xpt_async(AC_BUS_RESET, ch->path, NULL); xpt_release_simq(ch->sim, TRUE); return(0); } int ata_suspend(device_t dev) { struct ata_channel *ch; /* check for valid device */ if (!dev || !(ch = device_get_softc(dev))) return ENXIO; if (ch->flags & ATA_PERIODIC_POLL) callout_drain(&ch->poll_callout); mtx_lock(&ch->state_mtx); xpt_freeze_simq(ch->sim, 1); while (ch->state != ATA_IDLE) msleep(ch, &ch->state_mtx, PRIBIO, "atasusp", hz/100); mtx_unlock(&ch->state_mtx); return(0); } int ata_resume(device_t dev) { struct ata_channel *ch; int error; /* check for valid device */ if (!dev || !(ch = device_get_softc(dev))) return ENXIO; mtx_lock(&ch->state_mtx); error = ata_reinit(dev); xpt_release_simq(ch->sim, TRUE); mtx_unlock(&ch->state_mtx); if (ch->flags & ATA_PERIODIC_POLL) callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); return error; } void ata_interrupt(void *data) { struct ata_channel *ch = (struct ata_channel *)data; mtx_lock(&ch->state_mtx); ata_interrupt_locked(data); mtx_unlock(&ch->state_mtx); } static void ata_interrupt_locked(void *data) { struct ata_channel *ch = (struct ata_channel *)data; struct ata_request *request; /* ignore interrupt if its not for us */ if (ch->hw.status && !ch->hw.status(ch->dev)) return; /* do we have a running request */ if (!(request = ch->running)) return; ATA_DEBUG_RQ(request, "interrupt"); /* safetycheck for the right state */ if (ch->state == ATA_IDLE) { device_printf(request->dev, "interrupt on idle channel ignored\n"); return; } /* * we have the HW locks, so end the transaction for this request * if it finishes immediately otherwise wait for next interrupt */ if (ch->hw.end_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; if (ch->state == ATA_ACTIVE) ch->state = ATA_IDLE; ata_cam_end_transaction(ch->dev, request); return; } } static void ata_periodic_poll(void *data) { struct ata_channel *ch = (struct ata_channel *)data; callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch); ata_interrupt(ch); } void ata_print_cable(device_t dev, u_int8_t *who) { device_printf(dev, "DMA limited to UDMA33, %s found non-ATA66 cable\n", who); } /* * misc support functions */ void ata_default_registers(device_t dev) { struct ata_channel *ch = device_get_softc(dev); /* fill in the defaults from whats setup already */ ch->r_io[ATA_ERROR].res = ch->r_io[ATA_FEATURE].res; ch->r_io[ATA_ERROR].offset = ch->r_io[ATA_FEATURE].offset; ch->r_io[ATA_IREASON].res = ch->r_io[ATA_COUNT].res; ch->r_io[ATA_IREASON].offset = ch->r_io[ATA_COUNT].offset; ch->r_io[ATA_STATUS].res = ch->r_io[ATA_COMMAND].res; ch->r_io[ATA_STATUS].offset = ch->r_io[ATA_COMMAND].offset; ch->r_io[ATA_ALTSTAT].res = ch->r_io[ATA_CONTROL].res; ch->r_io[ATA_ALTSTAT].offset = ch->r_io[ATA_CONTROL].offset; } void ata_udelay(int interval) { /* for now just use DELAY, the timer/sleep subsystems are not there yet */ if (1 || interval < (1000000/hz) || ata_delayed_attach) DELAY(interval); else pause("ataslp", interval/(1000000/hz)); } const char * ata_cmd2str(struct ata_request *request) { static char buffer[20]; if (request->flags & ATA_R_ATAPI) { switch (request->u.atapi.sense.key ? request->u.atapi.saved_cmd : request->u.atapi.ccb[0]) { case 0x00: return ("TEST_UNIT_READY"); case 0x01: return ("REZERO"); case 0x03: return ("REQUEST_SENSE"); case 0x04: return ("FORMAT"); case 0x08: return ("READ"); case 0x0a: return ("WRITE"); case 0x10: return ("WEOF"); case 0x11: return ("SPACE"); case 0x12: return ("INQUIRY"); case 0x15: return ("MODE_SELECT"); case 0x19: return ("ERASE"); case 0x1a: return ("MODE_SENSE"); case 0x1b: return ("START_STOP"); case 0x1e: return ("PREVENT_ALLOW"); case 0x23: return ("ATAPI_READ_FORMAT_CAPACITIES"); case 0x25: return ("READ_CAPACITY"); case 0x28: return ("READ_BIG"); case 0x2a: return ("WRITE_BIG"); case 0x2b: return ("LOCATE"); case 0x34: return ("READ_POSITION"); case 0x35: return ("SYNCHRONIZE_CACHE"); case 0x3b: return ("WRITE_BUFFER"); case 0x3c: return ("READ_BUFFER"); case 0x42: return ("READ_SUBCHANNEL"); case 0x43: return ("READ_TOC"); case 0x45: return ("PLAY_10"); case 0x47: return ("PLAY_MSF"); case 0x48: return ("PLAY_TRACK"); case 0x4b: return ("PAUSE"); case 0x51: return ("READ_DISK_INFO"); case 0x52: return ("READ_TRACK_INFO"); case 0x53: return ("RESERVE_TRACK"); case 0x54: return ("SEND_OPC_INFO"); case 0x55: return ("MODE_SELECT_BIG"); case 0x58: return ("REPAIR_TRACK"); case 0x59: return ("READ_MASTER_CUE"); case 0x5a: return ("MODE_SENSE_BIG"); case 0x5b: return ("CLOSE_TRACK/SESSION"); case 0x5c: return ("READ_BUFFER_CAPACITY"); case 0x5d: return ("SEND_CUE_SHEET"); case 0x96: return ("SERVICE_ACTION_IN"); case 0xa1: return ("BLANK_CMD"); case 0xa3: return ("SEND_KEY"); case 0xa4: return ("REPORT_KEY"); case 0xa5: return ("PLAY_12"); case 0xa6: return ("LOAD_UNLOAD"); case 0xad: return ("READ_DVD_STRUCTURE"); case 0xb4: return ("PLAY_CD"); case 0xbb: return ("SET_SPEED"); case 0xbd: return ("MECH_STATUS"); case 0xbe: return ("READ_CD"); case 0xff: return ("POLL_DSC"); } } else { switch (request->u.ata.command) { case 0x00: switch (request->u.ata.feature) { case 0x00: return ("NOP FLUSHQUEUE"); case 0x01: return ("NOP AUTOPOLL"); } return ("NOP"); case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); case 0x06: switch (request->u.ata.feature) { case 0x01: return ("DSM TRIM"); } return "DSM"; case 0x08: return ("DEVICE_RESET"); case 0x20: return ("READ"); case 0x24: return ("READ48"); case 0x25: return ("READ_DMA48"); case 0x26: return ("READ_DMA_QUEUED48"); case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); case 0x29: return ("READ_MUL48"); case 0x2a: return ("READ_STREAM_DMA48"); case 0x2b: return ("READ_STREAM48"); case 0x2f: return ("READ_LOG_EXT"); case 0x30: return ("WRITE"); case 0x34: return ("WRITE48"); case 0x35: return ("WRITE_DMA48"); case 0x36: return ("WRITE_DMA_QUEUED48"); case 0x37: return ("SET_MAX_ADDRESS48"); case 0x39: return ("WRITE_MUL48"); case 0x3a: return ("WRITE_STREAM_DMA48"); case 0x3b: return ("WRITE_STREAM48"); case 0x3d: return ("WRITE_DMA_FUA48"); case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); case 0x3f: return ("WRITE_LOG_EXT"); case 0x40: return ("READ_VERIFY"); case 0x42: return ("READ_VERIFY48"); case 0x45: switch (request->u.ata.feature) { case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); } return "WRITE_UNCORRECTABLE48"; case 0x51: return ("CONFIGURE_STREAM"); case 0x60: return ("READ_FPDMA_QUEUED"); case 0x61: return ("WRITE_FPDMA_QUEUED"); case 0x63: return ("NCQ_NON_DATA"); case 0x64: return ("SEND_FPDMA_QUEUED"); case 0x65: return ("RECEIVE_FPDMA_QUEUED"); case 0x67: if (request->u.ata.feature == 0xec) return ("SEP_ATTN IDENTIFY"); switch (request->u.ata.lba) { case 0x00: return ("SEP_ATTN READ BUFFER"); case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); case 0x80: return ("SEP_ATTN WRITE BUFFER"); case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); } return ("SEP_ATTN"); case 0x70: return ("SEEK"); case 0x87: return ("CFA_TRANSLATE_SECTOR"); case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); case 0x92: return ("DOWNLOAD_MICROCODE"); case 0xa0: return ("PACKET"); case 0xa1: return ("ATAPI_IDENTIFY"); case 0xa2: return ("SERVICE"); case 0xb0: switch(request->u.ata.feature) { case 0xd0: return ("SMART READ ATTR VALUES"); case 0xd1: return ("SMART READ ATTR THRESHOLDS"); case 0xd3: return ("SMART SAVE ATTR VALUES"); case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); case 0xd5: return ("SMART READ LOG DATA"); case 0xd8: return ("SMART ENABLE OPERATION"); case 0xd9: return ("SMART DISABLE OPERATION"); case 0xda: return ("SMART RETURN STATUS"); } return ("SMART"); case 0xb1: return ("DEVICE CONFIGURATION"); case 0xc0: return ("CFA_ERASE"); case 0xc4: return ("READ_MUL"); case 0xc5: return ("WRITE_MUL"); case 0xc6: return ("SET_MULTI"); case 0xc7: return ("READ_DMA_QUEUED"); case 0xc8: return ("READ_DMA"); case 0xca: return ("WRITE_DMA"); case 0xcc: return ("WRITE_DMA_QUEUED"); case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); case 0xce: return ("WRITE_MUL_FUA48"); case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); case 0xda: return ("GET_MEDIA_STATUS"); case 0xde: return ("MEDIA_LOCK"); case 0xdf: return ("MEDIA_UNLOCK"); case 0xe0: return ("STANDBY_IMMEDIATE"); case 0xe1: return ("IDLE_IMMEDIATE"); case 0xe2: return ("STANDBY"); case 0xe3: return ("IDLE"); case 0xe4: return ("READ_BUFFER/PM"); case 0xe5: return ("CHECK_POWER_MODE"); case 0xe6: return ("SLEEP"); case 0xe7: return ("FLUSHCACHE"); case 0xe8: return ("WRITE_PM"); case 0xea: return ("FLUSHCACHE48"); case 0xec: return ("ATA_IDENTIFY"); case 0xed: return ("MEDIA_EJECT"); case 0xef: switch (request->u.ata.feature) { case 0x03: return ("SETFEATURES SET TRANSFER MODE"); case 0x02: return ("SETFEATURES ENABLE WCACHE"); case 0x82: return ("SETFEATURES DISABLE WCACHE"); case 0x06: return ("SETFEATURES ENABLE PUIS"); case 0x86: return ("SETFEATURES DISABLE PUIS"); case 0x07: return ("SETFEATURES SPIN-UP"); case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); case 0xaa: return ("SETFEATURES ENABLE RCACHE"); case 0x55: return ("SETFEATURES DISABLE RCACHE"); case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); } return "SETFEATURES"; case 0xf1: return ("SECURITY_SET_PASSWORD"); case 0xf2: return ("SECURITY_UNLOCK"); case 0xf3: return ("SECURITY_ERASE_PREPARE"); case 0xf4: return ("SECURITY_ERASE_UNIT"); case 0xf5: return ("SECURITY_FREEZE_LOCK"); case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); case 0xf9: return ("SET_MAX_ADDRESS"); } } sprintf(buffer, "unknown CMD (0x%02x)", request->u.ata.command); return (buffer); } const char * ata_mode2str(int mode) { switch (mode) { case -1: return "UNSUPPORTED"; case ATA_PIO0: return "PIO0"; case ATA_PIO1: return "PIO1"; case ATA_PIO2: return "PIO2"; case ATA_PIO3: return "PIO3"; case ATA_PIO4: return "PIO4"; case ATA_WDMA0: return "WDMA0"; case ATA_WDMA1: return "WDMA1"; case ATA_WDMA2: return "WDMA2"; case ATA_UDMA0: return "UDMA16"; case ATA_UDMA1: return "UDMA25"; case ATA_UDMA2: return "UDMA33"; case ATA_UDMA3: return "UDMA40"; case ATA_UDMA4: return "UDMA66"; case ATA_UDMA5: return "UDMA100"; case ATA_UDMA6: return "UDMA133"; case ATA_SA150: return "SATA150"; case ATA_SA300: return "SATA300"; case ATA_SA600: return "SATA600"; default: if (mode & ATA_DMA_MASK) return "BIOSDMA"; else return "BIOSPIO"; } } static int ata_str2mode(const char *str) { if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); return (-1); } int ata_atapi(device_t dev, int target) { struct ata_channel *ch = device_get_softc(dev); return (ch->devices & (ATA_ATAPI_MASTER << target)); } void ata_timeout(void *arg) { struct ata_request *request; struct ata_channel *ch; request = arg; ch = device_get_softc(request->parent); //request->flags |= ATA_R_DEBUG; ATA_DEBUG_RQ(request, "timeout"); /* * If we have an ATA_ACTIVE request running, we flag the request * ATA_R_TIMEOUT so ata_cam_end_transaction() will handle it correctly. * Also, NULL out the running request so we wont loose the race with * an eventual interrupt arriving late. */ if (ch->state == ATA_ACTIVE) { request->flags |= ATA_R_TIMEOUT; if (ch->dma.unload) ch->dma.unload(request); ch->running = NULL; ch->state = ATA_IDLE; ata_cam_end_transaction(ch->dev, request); } mtx_unlock(&ch->state_mtx); } static void ata_cam_begin_transaction(device_t dev, union ccb *ccb) { struct ata_channel *ch = device_get_softc(dev); struct ata_request *request; request = &ch->request; bzero(request, sizeof(*request)); /* setup request */ request->dev = NULL; request->parent = dev; request->unit = ccb->ccb_h.target_id; if (ccb->ccb_h.func_code == XPT_ATA_IO) { request->data = ccb->ataio.data_ptr; request->bytecount = ccb->ataio.dxfer_len; request->u.ata.command = ccb->ataio.cmd.command; request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) | (uint16_t)ccb->ataio.cmd.features; request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) | (uint16_t)ccb->ataio.cmd.sector_count; if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) { request->flags |= ATA_R_48BIT; request->u.ata.lba = ((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) | ((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) | ((uint64_t)ccb->ataio.cmd.lba_low_exp << 24); } else { request->u.ata.lba = ((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24); } request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) | ((uint64_t)ccb->ataio.cmd.lba_mid << 8) | (uint64_t)ccb->ataio.cmd.lba_low; if (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT) request->flags |= ATA_R_NEEDRESULT; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ccb->ataio.cmd.flags & CAM_ATAIO_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; if (ccb->ataio.cmd.command == ATA_READ_MUL || ccb->ataio.cmd.command == ATA_READ_MUL48 || ccb->ataio.cmd.command == ATA_WRITE_MUL || ccb->ataio.cmd.command == ATA_WRITE_MUL48) { request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); } else request->transfersize = min(request->bytecount, 512); } else { request->data = ccb->csio.data_ptr; request->bytecount = ccb->csio.dxfer_len; bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, request->u.atapi.ccb, ccb->csio.cdb_len); request->flags |= ATA_R_ATAPI; if (ch->curr[ccb->ccb_h.target_id].atapi == 16) request->flags |= ATA_R_ATAPI16; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) request->flags |= ATA_R_DMA; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) request->flags |= ATA_R_READ; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) request->flags |= ATA_R_WRITE; request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); } request->retries = 0; request->timeout = (ccb->ccb_h.timeout + 999) / 1000; callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); request->ccb = ccb; request->flags |= ATA_R_DATA_IN_CCB; ch->running = request; ch->state = ATA_ACTIVE; if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; ch->state = ATA_IDLE; ata_cam_end_transaction(dev, request); return; } } static void ata_cam_request_sense(device_t dev, struct ata_request *request) { struct ata_channel *ch = device_get_softc(dev); union ccb *ccb = request->ccb; ch->requestsense = 1; bzero(request, sizeof(*request)); request->dev = NULL; request->parent = dev; request->unit = ccb->ccb_h.target_id; request->data = (void *)&ccb->csio.sense_data; request->bytecount = ccb->csio.sense_len; request->u.atapi.ccb[0] = ATAPI_REQUEST_SENSE; request->u.atapi.ccb[4] = ccb->csio.sense_len; request->flags |= ATA_R_ATAPI; if (ch->curr[ccb->ccb_h.target_id].atapi == 16) request->flags |= ATA_R_ATAPI16; if (ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) request->flags |= ATA_R_DMA; request->flags |= ATA_R_READ; request->transfersize = min(request->bytecount, ch->curr[ccb->ccb_h.target_id].bytecount); request->retries = 0; request->timeout = (ccb->ccb_h.timeout + 999) / 1000; callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED); request->ccb = ccb; ch->running = request; ch->state = ATA_ACTIVE; if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) { ch->running = NULL; ch->state = ATA_IDLE; ata_cam_end_transaction(dev, request); return; } } static void ata_cam_process_sense(device_t dev, struct ata_request *request) { struct ata_channel *ch = device_get_softc(dev); union ccb *ccb = request->ccb; int fatalerr = 0; ch->requestsense = 0; if (request->flags & ATA_R_TIMEOUT) fatalerr = 1; if ((request->flags & ATA_R_TIMEOUT) == 0 && (request->status & ATA_S_ERROR) == 0 && request->result == 0) { ccb->ccb_h.status |= CAM_AUTOSNS_VALID; } else { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; } xpt_done(ccb); /* Do error recovery if needed. */ if (fatalerr) ata_reinit(dev); } static void ata_cam_end_transaction(device_t dev, struct ata_request *request) { struct ata_channel *ch = device_get_softc(dev); union ccb *ccb = request->ccb; int fatalerr = 0; if (ch->requestsense) { ata_cam_process_sense(dev, request); return; } ccb->ccb_h.status &= ~CAM_STATUS_MASK; if (request->flags & ATA_R_TIMEOUT) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_CMD_TIMEOUT | CAM_RELEASE_SIMQ; fatalerr = 1; } else if (request->status & ATA_S_ERROR) { if (ccb->ccb_h.func_code == XPT_ATA_IO) { ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR; } else { ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND; } } else if (request->result == ERESTART) ccb->ccb_h.status |= CAM_REQUEUE_REQ; else if (request->result != 0) ccb->ccb_h.status |= CAM_REQ_CMP_ERR; else ccb->ccb_h.status |= CAM_REQ_CMP; if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP && !(ccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } if (ccb->ccb_h.func_code == XPT_ATA_IO && ((request->status & ATA_S_ERROR) || (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT))) { struct ata_res *res = &ccb->ataio.res; res->status = request->status; res->error = request->error; res->lba_low = request->u.ata.lba; res->lba_mid = request->u.ata.lba >> 8; res->lba_high = request->u.ata.lba >> 16; res->device = request->u.ata.lba >> 24; res->lba_low_exp = request->u.ata.lba >> 24; res->lba_mid_exp = request->u.ata.lba >> 32; res->lba_high_exp = request->u.ata.lba >> 40; res->sector_count = request->u.ata.count; res->sector_count_exp = request->u.ata.count >> 8; } if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if (ccb->ccb_h.func_code == XPT_ATA_IO) { ccb->ataio.resid = ccb->ataio.dxfer_len - request->donecount; } else { ccb->csio.resid = ccb->csio.dxfer_len - request->donecount; } } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR && (ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) ata_cam_request_sense(dev, request); else xpt_done(ccb); /* Do error recovery if needed. */ if (fatalerr) ata_reinit(dev); } static int ata_check_ids(device_t dev, union ccb *ccb) { struct ata_channel *ch = device_get_softc(dev); if (ccb->ccb_h.target_id > ((ch->flags & ATA_NO_SLAVE) ? 0 : 1)) { ccb->ccb_h.status = CAM_TID_INVALID; xpt_done(ccb); return (-1); } if (ccb->ccb_h.target_lun != 0) { ccb->ccb_h.status = CAM_LUN_INVALID; xpt_done(ccb); return (-1); } /* * It's a programming error to see AUXILIARY register requests. */ KASSERT(ccb->ccb_h.func_code != XPT_ATA_IO || ((ccb->ataio.ata_flags & ATA_FLAG_AUX) == 0), ("AUX register unsupported")); return (0); } static void ataaction(struct cam_sim *sim, union ccb *ccb) { device_t dev, parent; struct ata_channel *ch; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ataaction func_code=%x\n", ccb->ccb_h.func_code)); ch = (struct ata_channel *)cam_sim_softc(sim); dev = ch->dev; switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_ATA_IO: /* Execute the requested I/O operation */ case XPT_SCSI_IO: if (ata_check_ids(dev, ccb)) return; if ((ch->devices & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER) << ccb->ccb_h.target_id)) == 0) { ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; } if (ch->running) device_printf(dev, "already running!\n"); if (ccb->ccb_h.func_code == XPT_ATA_IO && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET)) { struct ata_res *res = &ccb->ataio.res; bzero(res, sizeof(*res)); if (ch->devices & (ATA_ATA_MASTER << ccb->ccb_h.target_id)) { res->lba_high = 0; res->lba_mid = 0; } else { res->lba_high = 0xeb; res->lba_mid = 0x14; } ccb->ccb_h.status = CAM_REQ_CMP; break; } ata_cam_begin_transaction(dev, ccb); return; case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ata_cam_device *d; if (ata_check_ids(dev, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; if (ch->flags & ATA_SATA) { if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION) d->revision = cts->xport_specific.sata.revision; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) { if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { d->mode = ATA_SETMODE(ch->dev, ccb->ccb_h.target_id, cts->xport_specific.sata.mode); } else d->mode = cts->xport_specific.sata.mode; } if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT) d->bytecount = min(8192, cts->xport_specific.sata.bytecount); if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI) d->atapi = cts->xport_specific.sata.atapi; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_CAPS) d->caps = cts->xport_specific.sata.caps; } else { if (cts->xport_specific.ata.valid & CTS_ATA_VALID_MODE) { if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { d->mode = ATA_SETMODE(ch->dev, ccb->ccb_h.target_id, cts->xport_specific.ata.mode); } else d->mode = cts->xport_specific.ata.mode; } if (cts->xport_specific.ata.valid & CTS_ATA_VALID_BYTECOUNT) d->bytecount = cts->xport_specific.ata.bytecount; if (cts->xport_specific.ata.valid & CTS_ATA_VALID_ATAPI) d->atapi = cts->xport_specific.ata.atapi; if (cts->xport_specific.ata.valid & CTS_ATA_VALID_CAPS) d->caps = cts->xport_specific.ata.caps; } ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ata_cam_device *d; if (ata_check_ids(dev, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; cts->protocol = PROTO_UNSPECIFIED; cts->protocol_version = PROTO_VERSION_UNSPECIFIED; if (ch->flags & ATA_SATA) { cts->transport = XPORT_SATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->xport_specific.sata.valid = 0; cts->xport_specific.sata.mode = d->mode; cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE; cts->xport_specific.sata.bytecount = d->bytecount; cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { cts->xport_specific.sata.revision = ATA_GETREV(dev, ccb->ccb_h.target_id); if (cts->xport_specific.sata.revision != 0xff) { cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; } cts->xport_specific.sata.caps = d->caps & CTS_SATA_CAPS_D; if (ch->pm_level) { cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_PMREQ; } cts->xport_specific.sata.caps &= ch->user[ccb->ccb_h.target_id].caps; } else { cts->xport_specific.sata.revision = d->revision; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; cts->xport_specific.sata.caps = d->caps; } cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; cts->xport_specific.sata.atapi = d->atapi; cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI; } else { cts->transport = XPORT_ATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->xport_specific.ata.valid = 0; cts->xport_specific.ata.mode = d->mode; cts->xport_specific.ata.valid |= CTS_ATA_VALID_MODE; cts->xport_specific.ata.bytecount = d->bytecount; cts->xport_specific.ata.valid |= CTS_ATA_VALID_BYTECOUNT; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { cts->xport_specific.ata.caps = d->caps & CTS_ATA_CAPS_D; if (!(ch->flags & ATA_NO_48BIT_DMA)) cts->xport_specific.ata.caps |= CTS_ATA_CAPS_H_DMA48; cts->xport_specific.ata.caps &= ch->user[ccb->ccb_h.target_id].caps; } else cts->xport_specific.ata.caps = d->caps; cts->xport_specific.ata.valid |= CTS_ATA_VALID_CAPS; cts->xport_specific.ata.atapi = d->atapi; cts->xport_specific.ata.valid |= CTS_ATA_VALID_ATAPI; } ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ ata_reinit(dev); ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; parent = device_get_parent(dev); cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE; cpi->target_sprt = 0; cpi->hba_misc = PIM_SEQSCAN | PIM_UNMAPPED; cpi->hba_eng_cnt = 0; if (ch->flags & ATA_NO_SLAVE) cpi->max_target = 0; else cpi->max_target = 1; cpi->max_lun = 0; cpi->initiator_id = 0; cpi->bus_id = cam_sim_bus(sim); if (ch->flags & ATA_SATA) cpi->base_transfer_speed = 150000; else cpi->base_transfer_speed = 3300; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "ATA", HBA_IDLEN); strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); if (ch->flags & ATA_SATA) cpi->transport = XPORT_SATA; else cpi->transport = XPORT_ATA; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->protocol = PROTO_ATA; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->maxio = ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS; if (device_get_devclass(device_get_parent(parent)) == devclass_find("pci")) { cpi->hba_vendor = pci_get_vendor(parent); cpi->hba_device = pci_get_device(parent); cpi->hba_subvendor = pci_get_subvendor(parent); cpi->hba_subdevice = pci_get_subdevice(parent); } cpi->ccb_h.status = CAM_REQ_CMP; break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } static void atapoll(struct cam_sim *sim) { struct ata_channel *ch = (struct ata_channel *)cam_sim_softc(sim); ata_interrupt_locked(ch); } /* * module handeling */ static int ata_module_event_handler(module_t mod, int what, void *arg) { switch (what) { case MOD_LOAD: ata_devclass = devclass_find("ata"); return 0; case MOD_UNLOAD: return 0; default: return EOPNOTSUPP; } } static moduledata_t ata_moduledata = { "ata", ata_module_event_handler, NULL }; DECLARE_MODULE(ata, ata_moduledata, SI_SUB_DRIVERS, SI_ORDER_ANY); MODULE_VERSION(ata, 1); MODULE_DEPEND(ata, cam, 1, 1, 1);