/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012, 2013 Bjoern A. Zeeb * Copyright (c) 2014 Robert N. M. Watson * Copyright (c) 2016-2017 Ruslan Bukin * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-11-C-0249) * ("MRC2"), as part of the DARPA MRC research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Altera Triple-Speed Ethernet MegaCore, Function User Guide * UG-01008-3.0, Software Version: 12.0, June 2012. * Available at the time of writing at: * http://www.altera.com/literature/ug/ug_ethernet.pdf * * We are using an Marvell E1111 (Alaska) PHY on the DE4. See mii/e1000phy.c. */ /* * XXX-BZ NOTES: * - ifOutBroadcastPkts are only counted if both ether dst and src are all-1s; * seems an IP core bug, they count ether broadcasts as multicast. Is this * still the case? * - figure out why the TX FIFO fill status and intr did not work as expected. * - test 100Mbit/s and 10Mbit/s * - blacklist the one special factory programmed ethernet address (for now * hardcoded, later from loader?) * - resolve all XXX, left as reminders to shake out details later * - Jumbo frame support */ #include __FBSDID("$FreeBSD$"); #include "opt_device_polling.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RX_QUEUE_SIZE 4096 #define TX_QUEUE_SIZE 4096 #define NUM_RX_MBUF 512 #define BUFRING_SIZE 8192 #include /* XXX once we'd do parallel attach, we need a global lock for this. */ #define ATSE_ETHERNET_OPTION_BITS_UNDEF 0 #define ATSE_ETHERNET_OPTION_BITS_READ 1 static int atse_ethernet_option_bits_flag = ATSE_ETHERNET_OPTION_BITS_UNDEF; static uint8_t atse_ethernet_option_bits[ALTERA_ETHERNET_OPTION_BITS_LEN]; /* * Softc and critical resource locking. */ #define ATSE_LOCK(_sc) mtx_lock(&(_sc)->atse_mtx) #define ATSE_UNLOCK(_sc) mtx_unlock(&(_sc)->atse_mtx) #define ATSE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->atse_mtx, MA_OWNED) #define ATSE_DEBUG #undef ATSE_DEBUG #ifdef ATSE_DEBUG #define DPRINTF(format, ...) printf(format, __VA_ARGS__) #else #define DPRINTF(format, ...) #endif /* * Register space access macros. */ static inline void csr_write_4(struct atse_softc *sc, uint32_t reg, uint32_t val4, const char *f, const int l) { val4 = htole32(val4); DPRINTF("[%s:%d] CSR W %s 0x%08x (0x%08x) = 0x%08x\n", f, l, "atse_mem_res", reg, reg * 4, val4); bus_write_4(sc->atse_mem_res, reg * 4, val4); } static inline uint32_t csr_read_4(struct atse_softc *sc, uint32_t reg, const char *f, const int l) { uint32_t val4; val4 = le32toh(bus_read_4(sc->atse_mem_res, reg * 4)); DPRINTF("[%s:%d] CSR R %s 0x%08x (0x%08x) = 0x%08x\n", f, l, "atse_mem_res", reg, reg * 4, val4); return (val4); } /* * See page 5-2 that it's all dword offsets and the MS 16 bits need to be zero * on write and ignored on read. */ static inline void pxx_write_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, uint16_t val, const char *f, const int l, const char *s) { uint32_t val4; val4 = htole32(val & 0x0000ffff); DPRINTF("[%s:%d] %s W %s 0x%08x (0x%08jx) = 0x%08x\n", f, l, s, "atse_mem_res", reg, (bmcr + reg) * 4, val4); bus_write_4(sc->atse_mem_res, (bmcr + reg) * 4, val4); } static inline uint16_t pxx_read_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, const char *f, const int l, const char *s) { uint32_t val4; uint16_t val; val4 = bus_read_4(sc->atse_mem_res, (bmcr + reg) * 4); val = le32toh(val4) & 0x0000ffff; DPRINTF("[%s:%d] %s R %s 0x%08x (0x%08jx) = 0x%04x\n", f, l, s, "atse_mem_res", reg, (bmcr + reg) * 4, val); return (val); } #define CSR_WRITE_4(sc, reg, val) \ csr_write_4((sc), (reg), (val), __func__, __LINE__) #define CSR_READ_4(sc, reg) \ csr_read_4((sc), (reg), __func__, __LINE__) #define PCS_WRITE_2(sc, reg, val) \ pxx_write_2((sc), sc->atse_bmcr0, (reg), (val), __func__, __LINE__, \ "PCS") #define PCS_READ_2(sc, reg) \ pxx_read_2((sc), sc->atse_bmcr0, (reg), __func__, __LINE__, "PCS") #define PHY_WRITE_2(sc, reg, val) \ pxx_write_2((sc), sc->atse_bmcr1, (reg), (val), __func__, __LINE__, \ "PHY") #define PHY_READ_2(sc, reg) \ pxx_read_2((sc), sc->atse_bmcr1, (reg), __func__, __LINE__, "PHY") static void atse_tick(void *); static int atse_detach(device_t); static int atse_rx_enqueue(struct atse_softc *sc, uint32_t n) { struct mbuf *m; int i; for (i = 0; i < n; i++) { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->dev, "%s: Can't alloc rx mbuf\n", __func__); return (-1); } m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; xdma_enqueue_mbuf(sc->xchan_rx, &m, 0, 4, 4, XDMA_DEV_TO_MEM); } return (0); } static int atse_xdma_tx_intr(void *arg, xdma_transfer_status_t *status) { xdma_transfer_status_t st; struct atse_softc *sc; if_t ifp; struct mbuf *m; int err; sc = arg; ATSE_LOCK(sc); ifp = sc->atse_ifp; for (;;) { err = xdma_dequeue_mbuf(sc->xchan_tx, &m, &st); if (err != 0) { break; } if (st.error != 0) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } m_freem(m); sc->txcount--; } if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); ATSE_UNLOCK(sc); return (0); } static int atse_xdma_rx_intr(void *arg, xdma_transfer_status_t *status) { xdma_transfer_status_t st; struct atse_softc *sc; if_t ifp; struct mbuf *m; int err; uint32_t cnt_processed; sc = arg; ATSE_LOCK(sc); ifp = sc->atse_ifp; cnt_processed = 0; for (;;) { err = xdma_dequeue_mbuf(sc->xchan_rx, &m, &st); if (err != 0) { break; } cnt_processed++; if (st.error != 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); continue; } m->m_pkthdr.len = m->m_len = st.transferred; m->m_pkthdr.rcvif = ifp; m_adj(m, ETHER_ALIGN); ATSE_UNLOCK(sc); if_input(ifp, m); ATSE_LOCK(sc); } atse_rx_enqueue(sc, cnt_processed); ATSE_UNLOCK(sc); return (0); } static int atse_transmit_locked(if_t ifp) { struct atse_softc *sc; struct mbuf *m; struct buf_ring *br; int error; int enq; sc = if_getsoftc(ifp); br = sc->br; enq = 0; while ((m = drbr_peek(ifp, br)) != NULL) { error = xdma_enqueue_mbuf(sc->xchan_tx, &m, 0, 4, 4, XDMA_MEM_TO_DEV); if (error != 0) { /* No space in request queue available yet. */ drbr_putback(ifp, br, m); break; } drbr_advance(ifp, br); sc->txcount++; enq++; /* If anyone is interested give them a copy. */ ETHER_BPF_MTAP(ifp, m); } if (enq > 0) xdma_queue_submit(sc->xchan_tx); return (0); } static int atse_transmit(if_t ifp, struct mbuf *m) { struct atse_softc *sc; struct buf_ring *br; int error; sc = if_getsoftc(ifp); br = sc->br; ATSE_LOCK(sc); mtx_lock(&sc->br_mtx); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { error = drbr_enqueue(ifp, sc->br, m); mtx_unlock(&sc->br_mtx); ATSE_UNLOCK(sc); return (error); } if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) { error = drbr_enqueue(ifp, sc->br, m); mtx_unlock(&sc->br_mtx); ATSE_UNLOCK(sc); return (error); } error = drbr_enqueue(ifp, br, m); if (error) { mtx_unlock(&sc->br_mtx); ATSE_UNLOCK(sc); return (error); } error = atse_transmit_locked(ifp); mtx_unlock(&sc->br_mtx); ATSE_UNLOCK(sc); return (error); } static void atse_qflush(if_t ifp) { struct atse_softc *sc; sc = if_getsoftc(ifp); printf("%s\n", __func__); } static int atse_stop_locked(struct atse_softc *sc) { uint32_t mask, val4; if_t ifp; int i; ATSE_LOCK_ASSERT(sc); callout_stop(&sc->atse_tick); ifp = sc->atse_ifp; if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); /* Disable MAC transmit and receive datapath. */ mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA; val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); val4 &= ~mask; CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); /* Wait for bits to be cleared; i=100 is excessive. */ for (i = 0; i < 100; i++) { val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); if ((val4 & mask) == 0) { break; } DELAY(10); } if ((val4 & mask) != 0) { device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n"); /* Punt. */ } sc->atse_flags &= ~ATSE_FLAGS_LINK; return (0); } static u_int atse_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint64_t *h = arg; uint8_t *addr, x, y; int i, j; addr = LLADDR(sdl); x = 0; for (i = 0; i < ETHER_ADDR_LEN; i++) { y = addr[i] & 0x01; for (j = 1; j < 8; j++) y ^= (addr[i] >> j) & 0x01; x |= (y << i); } *h |= (1 << x); return (1); } static int atse_rxfilter_locked(struct atse_softc *sc) { if_t ifp; uint32_t val4; int i; /* XXX-BZ can we find out if we have the MHASH synthesized? */ val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); /* For simplicity always hash full 48 bits of addresses. */ if ((val4 & BASE_CFG_COMMAND_CONFIG_MHASH_SEL) != 0) val4 &= ~BASE_CFG_COMMAND_CONFIG_MHASH_SEL; ifp = sc->atse_ifp; if (if_getflags(ifp) & IFF_PROMISC) { val4 |= BASE_CFG_COMMAND_CONFIG_PROMIS_EN; } else { val4 &= ~BASE_CFG_COMMAND_CONFIG_PROMIS_EN; } CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); if (if_getflags(ifp) & IFF_ALLMULTI) { /* Accept all multicast addresses. */ for (i = 0; i <= MHASH_LEN; i++) CSR_WRITE_4(sc, MHASH_START + i, 0x1); } else { /* * Can hold MHASH_LEN entries. * XXX-BZ bitstring.h would be more general. */ uint64_t h; /* * Re-build and re-program hash table. First build the * bit-field "yes" or "no" for each slot per address, then * do all the programming afterwards. */ h = 0; (void)if_foreach_llmaddr(ifp, atse_hash_maddr, &h); for (i = 0; i <= MHASH_LEN; i++) { CSR_WRITE_4(sc, MHASH_START + i, (h & (1 << i)) ? 0x01 : 0x00); } } return (0); } static int atse_ethernet_option_bits_read_fdt(device_t dev) { struct resource *res; device_t fdev; int i, rid; if (atse_ethernet_option_bits_flag & ATSE_ETHERNET_OPTION_BITS_READ) { return (0); } fdev = device_find_child(device_get_parent(dev), "cfi", 0); if (fdev == NULL) { return (ENOENT); } rid = 0; res = bus_alloc_resource_any(fdev, SYS_RES_MEMORY, &rid, RF_ACTIVE | RF_SHAREABLE); if (res == NULL) { return (ENXIO); } for (i = 0; i < ALTERA_ETHERNET_OPTION_BITS_LEN; i++) { atse_ethernet_option_bits[i] = bus_read_1(res, ALTERA_ETHERNET_OPTION_BITS_OFF + i); } bus_release_resource(fdev, SYS_RES_MEMORY, rid, res); atse_ethernet_option_bits_flag |= ATSE_ETHERNET_OPTION_BITS_READ; return (0); } static int atse_ethernet_option_bits_read(device_t dev) { int error; error = atse_ethernet_option_bits_read_fdt(dev); if (error == 0) return (0); device_printf(dev, "Cannot read Ethernet addresses from flash.\n"); return (error); } static int atse_get_eth_address(struct atse_softc *sc) { unsigned long hostid; uint32_t val4; int unit; /* * Make sure to only ever do this once. Otherwise a reset would * possibly change our ethernet address, which is not good at all. */ if (sc->atse_eth_addr[0] != 0x00 || sc->atse_eth_addr[1] != 0x00 || sc->atse_eth_addr[2] != 0x00) { return (0); } if ((atse_ethernet_option_bits_flag & ATSE_ETHERNET_OPTION_BITS_READ) == 0) { goto get_random; } val4 = atse_ethernet_option_bits[0] << 24; val4 |= atse_ethernet_option_bits[1] << 16; val4 |= atse_ethernet_option_bits[2] << 8; val4 |= atse_ethernet_option_bits[3]; /* They chose "safe". */ if (val4 != le32toh(0x00005afe)) { device_printf(sc->atse_dev, "Magic '5afe' is not safe: 0x%08x. " "Falling back to random numbers for hardware address.\n", val4); goto get_random; } sc->atse_eth_addr[0] = atse_ethernet_option_bits[4]; sc->atse_eth_addr[1] = atse_ethernet_option_bits[5]; sc->atse_eth_addr[2] = atse_ethernet_option_bits[6]; sc->atse_eth_addr[3] = atse_ethernet_option_bits[7]; sc->atse_eth_addr[4] = atse_ethernet_option_bits[8]; sc->atse_eth_addr[5] = atse_ethernet_option_bits[9]; /* Handle factory default ethernet addresss: 00:07:ed:ff:ed:15 */ if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x07 && sc->atse_eth_addr[2] == 0xed && sc->atse_eth_addr[3] == 0xff && sc->atse_eth_addr[4] == 0xed && sc->atse_eth_addr[5] == 0x15) { device_printf(sc->atse_dev, "Factory programmed Ethernet " "hardware address blacklisted. Falling back to random " "address to avoid collisions.\n"); device_printf(sc->atse_dev, "Please re-program your flash.\n"); goto get_random; } if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x00 && sc->atse_eth_addr[2] == 0x00 && sc->atse_eth_addr[3] == 0x00 && sc->atse_eth_addr[4] == 0x00 && sc->atse_eth_addr[5] == 0x00) { device_printf(sc->atse_dev, "All zero's Ethernet hardware " "address blacklisted. Falling back to random address.\n"); device_printf(sc->atse_dev, "Please re-program your flash.\n"); goto get_random; } if (ETHER_IS_MULTICAST(sc->atse_eth_addr)) { device_printf(sc->atse_dev, "Multicast Ethernet hardware " "address blacklisted. Falling back to random address.\n"); device_printf(sc->atse_dev, "Please re-program your flash.\n"); goto get_random; } /* * If we find an Altera prefixed address with a 0x0 ending * adjust by device unit. If not and this is not the first * Ethernet, go to random. */ unit = device_get_unit(sc->atse_dev); if (unit == 0x00) { return (0); } if (unit > 0x0f) { device_printf(sc->atse_dev, "We do not support Ethernet " "addresses for more than 16 MACs. Falling back to " "random hadware address.\n"); goto get_random; } if ((sc->atse_eth_addr[0] & ~0x2) != 0 || sc->atse_eth_addr[1] != 0x07 || sc->atse_eth_addr[2] != 0xed || (sc->atse_eth_addr[5] & 0x0f) != 0x0) { device_printf(sc->atse_dev, "Ethernet address not meeting our " "multi-MAC standards. Falling back to random hadware " "address.\n"); goto get_random; } sc->atse_eth_addr[5] |= (unit & 0x0f); return (0); get_random: /* * Fall back to random code we also use on bridge(4). */ getcredhostid(curthread->td_ucred, &hostid); if (hostid == 0) { arc4rand(sc->atse_eth_addr, ETHER_ADDR_LEN, 1); sc->atse_eth_addr[0] &= ~1;/* clear multicast bit */ sc->atse_eth_addr[0] |= 2; /* set the LAA bit */ } else { sc->atse_eth_addr[0] = 0x2; sc->atse_eth_addr[1] = (hostid >> 24) & 0xff; sc->atse_eth_addr[2] = (hostid >> 16) & 0xff; sc->atse_eth_addr[3] = (hostid >> 8 ) & 0xff; sc->atse_eth_addr[4] = hostid & 0xff; sc->atse_eth_addr[5] = sc->atse_unit & 0xff; } return (0); } static int atse_set_eth_address(struct atse_softc *sc, int n) { uint32_t v0, v1; v0 = (sc->atse_eth_addr[3] << 24) | (sc->atse_eth_addr[2] << 16) | (sc->atse_eth_addr[1] << 8) | sc->atse_eth_addr[0]; v1 = (sc->atse_eth_addr[5] << 8) | sc->atse_eth_addr[4]; if (n & ATSE_ETH_ADDR_DEF) { CSR_WRITE_4(sc, BASE_CFG_MAC_0, v0); CSR_WRITE_4(sc, BASE_CFG_MAC_1, v1); } if (n & ATSE_ETH_ADDR_SUPP1) { CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_0, v0); CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_1, v1); } if (n & ATSE_ETH_ADDR_SUPP2) { CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_0, v0); CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_1, v1); } if (n & ATSE_ETH_ADDR_SUPP3) { CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_0, v0); CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_1, v1); } if (n & ATSE_ETH_ADDR_SUPP4) { CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_0, v0); CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_1, v1); } return (0); } static int atse_reset(struct atse_softc *sc) { uint32_t val4, mask; uint16_t val; int i; /* 1. External PHY Initialization using MDIO. */ /* * We select the right MDIO space in atse_attach() and let MII do * anything else. */ /* 2. PCS Configuration Register Initialization. */ /* a. Set auto negotiation link timer to 1.6ms for SGMII. */ PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_0, 0x0D40); PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_1, 0x0003); /* b. Configure SGMII. */ val = PCS_EXT_IF_MODE_SGMII_ENA|PCS_EXT_IF_MODE_USE_SGMII_AN; PCS_WRITE_2(sc, PCS_EXT_IF_MODE, val); /* c. Enable auto negotiation. */ /* Ignore Bits 6,8,13; should be set,set,unset. */ val = PCS_READ_2(sc, PCS_CONTROL); val &= ~(PCS_CONTROL_ISOLATE|PCS_CONTROL_POWERDOWN); val &= ~PCS_CONTROL_LOOPBACK; /* Make this a -link1 option? */ val |= PCS_CONTROL_AUTO_NEGOTIATION_ENABLE; PCS_WRITE_2(sc, PCS_CONTROL, val); /* d. PCS reset. */ val = PCS_READ_2(sc, PCS_CONTROL); val |= PCS_CONTROL_RESET; PCS_WRITE_2(sc, PCS_CONTROL, val); /* Wait for reset bit to clear; i=100 is excessive. */ for (i = 0; i < 100; i++) { val = PCS_READ_2(sc, PCS_CONTROL); if ((val & PCS_CONTROL_RESET) == 0) { break; } DELAY(10); } if ((val & PCS_CONTROL_RESET) != 0) { device_printf(sc->atse_dev, "PCS reset timed out.\n"); return (ENXIO); } /* 3. MAC Configuration Register Initialization. */ /* a. Disable MAC transmit and receive datapath. */ mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA; val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); val4 &= ~mask; /* Samples in the manual do have the SW_RESET bit set here, why? */ CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); /* Wait for bits to be cleared; i=100 is excessive. */ for (i = 0; i < 100; i++) { val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); if ((val4 & mask) == 0) { break; } DELAY(10); } if ((val4 & mask) != 0) { device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n"); return (ENXIO); } /* b. MAC FIFO configuration. */ CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_EMPTY, FIFO_DEPTH_TX - 16); CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_FULL, 3); CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_EMPTY, 8); CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_EMPTY, FIFO_DEPTH_RX - 16); CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_FULL, 8); CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_EMPTY, 8); #if 0 CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 16); CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 16); #else /* For store-and-forward mode, set this threshold to 0. */ CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 0); CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 0); #endif /* c. MAC address configuration. */ /* Also intialize supplementary addresses to our primary one. */ /* XXX-BZ FreeBSD really needs to grow and API for using these. */ atse_get_eth_address(sc); atse_set_eth_address(sc, ATSE_ETH_ADDR_ALL); /* d. MAC function configuration. */ CSR_WRITE_4(sc, BASE_CFG_FRM_LENGTH, 1518); /* Default. */ CSR_WRITE_4(sc, BASE_CFG_TX_IPG_LENGTH, 12); CSR_WRITE_4(sc, BASE_CFG_PAUSE_QUANT, 0xFFFF); val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); /* * If 1000BASE-X/SGMII PCS is initialized, set the ETH_SPEED (bit 3) * and ENA_10 (bit 25) in command_config register to 0. If half duplex * is reported in the PHY/PCS status register, set the HD_ENA (bit 10) * to 1 in command_config register. * BZ: We shoot for 1000 instead. */ #if 0 val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED; #else val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED; #endif val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10; #if 0 /* * We do not want to set this, otherwise, we could not even send * random raw ethernet frames for various other research. By default * FreeBSD will use the right ether source address. */ val4 |= BASE_CFG_COMMAND_CONFIG_TX_ADDR_INS; #endif val4 |= BASE_CFG_COMMAND_CONFIG_PAD_EN; val4 &= ~BASE_CFG_COMMAND_CONFIG_CRC_FWD; #if 0 val4 |= BASE_CFG_COMMAND_CONFIG_CNTL_FRM_ENA; #endif #if 1 val4 |= BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC; #endif val &= ~BASE_CFG_COMMAND_CONFIG_LOOP_ENA; /* link0? */ CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); /* * Make sure we do not enable 32bit alignment; FreeBSD cannot * cope with the additional padding (though we should!?). * Also make sure we get the CRC appended. */ val4 = CSR_READ_4(sc, TX_CMD_STAT); val4 &= ~(TX_CMD_STAT_OMIT_CRC|TX_CMD_STAT_TX_SHIFT16); CSR_WRITE_4(sc, TX_CMD_STAT, val4); val4 = CSR_READ_4(sc, RX_CMD_STAT); val4 &= ~RX_CMD_STAT_RX_SHIFT16; val4 |= RX_CMD_STAT_RX_SHIFT16; CSR_WRITE_4(sc, RX_CMD_STAT, val4); /* e. Reset MAC. */ val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); val4 |= BASE_CFG_COMMAND_CONFIG_SW_RESET; CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); /* Wait for bits to be cleared; i=100 is excessive. */ for (i = 0; i < 100; i++) { val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) == 0) { break; } DELAY(10); } if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) != 0) { device_printf(sc->atse_dev, "MAC reset timed out.\n"); return (ENXIO); } /* f. Enable MAC transmit and receive datapath. */ mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA; val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); val4 |= mask; CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); /* Wait for bits to be cleared; i=100 is excessive. */ for (i = 0; i < 100; i++) { val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); if ((val4 & mask) == mask) { break; } DELAY(10); } if ((val4 & mask) != mask) { device_printf(sc->atse_dev, "Enabling MAC TX/RX timed out.\n"); return (ENXIO); } return (0); } static void atse_init_locked(struct atse_softc *sc) { if_t ifp; struct mii_data *mii; uint8_t *eaddr; ATSE_LOCK_ASSERT(sc); ifp = sc->atse_ifp; if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { return; } /* * Must update the ether address if changed. Given we do not handle * in atse_ioctl() but it's in the general framework, just always * do it here before atse_reset(). */ eaddr = if_getlladdr(sc->atse_ifp); bcopy(eaddr, &sc->atse_eth_addr, ETHER_ADDR_LEN); /* Make things frind to halt, cleanup, ... */ atse_stop_locked(sc); atse_reset(sc); /* ... and fire up the engine again. */ atse_rxfilter_locked(sc); sc->atse_flags &= ATSE_FLAGS_LINK; /* Preserve. */ mii = device_get_softc(sc->atse_miibus); sc->atse_flags &= ~ATSE_FLAGS_LINK; mii_mediachg(mii); if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); callout_reset(&sc->atse_tick, hz, atse_tick, sc); } static void atse_init(void *xsc) { struct atse_softc *sc; /* * XXXRW: There is some argument that we should immediately do RX * processing after enabling interrupts, or one may not fire if there * are buffered packets. */ sc = (struct atse_softc *)xsc; ATSE_LOCK(sc); atse_init_locked(sc); ATSE_UNLOCK(sc); } static int atse_ioctl(if_t ifp, u_long command, caddr_t data) { struct atse_softc *sc; struct ifreq *ifr; int error, mask; error = 0; sc = if_getsoftc(ifp); ifr = (struct ifreq *)data; switch (command) { case SIOCSIFFLAGS: ATSE_LOCK(sc); if (if_getflags(ifp) & IFF_UP) { if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 && ((if_getflags(ifp) ^ sc->atse_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) atse_rxfilter_locked(sc); else atse_init_locked(sc); } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) atse_stop_locked(sc); sc->atse_if_flags = if_getflags(ifp); ATSE_UNLOCK(sc); break; case SIOCSIFCAP: ATSE_LOCK(sc); mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); ATSE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: ATSE_LOCK(sc); atse_rxfilter_locked(sc); ATSE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: { struct mii_data *mii; struct ifreq *ifr; mii = device_get_softc(sc->atse_miibus); ifr = (struct ifreq *)data; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; } default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void atse_tick(void *xsc) { struct atse_softc *sc; struct mii_data *mii; if_t ifp; sc = (struct atse_softc *)xsc; ATSE_LOCK_ASSERT(sc); ifp = sc->atse_ifp; mii = device_get_softc(sc->atse_miibus); mii_tick(mii); if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) { atse_miibus_statchg(sc->atse_dev); } callout_reset(&sc->atse_tick, hz, atse_tick, sc); } /* * Set media options. */ static int atse_ifmedia_upd(if_t ifp) { struct atse_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = if_getsoftc(ifp); ATSE_LOCK(sc); mii = device_get_softc(sc->atse_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { PHY_RESET(miisc); } error = mii_mediachg(mii); ATSE_UNLOCK(sc); return (error); } /* * Report current media status. */ static void atse_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { struct atse_softc *sc; struct mii_data *mii; sc = if_getsoftc(ifp); ATSE_LOCK(sc); mii = device_get_softc(sc->atse_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; ATSE_UNLOCK(sc); } static struct atse_mac_stats_regs { const char *name; const char *descr; /* Mostly copied from Altera datasheet. */ } atse_mac_stats_regs[] = { [0x1a] = { "aFramesTransmittedOK", "The number of frames that are successfully transmitted including " "the pause frames." }, { "aFramesReceivedOK", "The number of frames that are successfully received including the " "pause frames." }, { "aFrameCheckSequenceErrors", "The number of receive frames with CRC error." }, { "aAlignmentErrors", "The number of receive frames with alignment error." }, { "aOctetsTransmittedOK", "The lower 32 bits of the number of data and padding octets that " "are successfully transmitted." }, { "aOctetsReceivedOK", "The lower 32 bits of the number of data and padding octets that " " are successfully received." }, { "aTxPAUSEMACCtrlFrames", "The number of pause frames transmitted." }, { "aRxPAUSEMACCtrlFrames", "The number received pause frames received." }, { "ifInErrors", "The number of errored frames received." }, { "ifOutErrors", "The number of transmit frames with either a FIFO overflow error, " "a FIFO underflow error, or a error defined by the user " "application." }, { "ifInUcastPkts", "The number of valid unicast frames received." }, { "ifInMulticastPkts", "The number of valid multicast frames received. The count does " "not include pause frames." }, { "ifInBroadcastPkts", "The number of valid broadcast frames received." }, { "ifOutDiscards", "This statistics counter is not in use. The MAC function does not " "discard frames that are written to the FIFO buffer by the user " "application." }, { "ifOutUcastPkts", "The number of valid unicast frames transmitted." }, { "ifOutMulticastPkts", "The number of valid multicast frames transmitted, excluding pause " "frames." }, { "ifOutBroadcastPkts", "The number of valid broadcast frames transmitted." }, { "etherStatsDropEvents", "The number of frames that are dropped due to MAC internal errors " "when FIFO buffer overflow persists." }, { "etherStatsOctets", "The lower 32 bits of the total number of octets received. This " "count includes both good and errored frames." }, { "etherStatsPkts", "The total number of good and errored frames received." }, { "etherStatsUndersizePkts", "The number of frames received with length less than 64 bytes. " "This count does not include errored frames." }, { "etherStatsOversizePkts", "The number of frames received that are longer than the value " "configured in the frm_length register. This count does not " "include errored frames." }, { "etherStatsPkts64Octets", "The number of 64-byte frames received. This count includes good " "and errored frames." }, { "etherStatsPkts65to127Octets", "The number of received good and errored frames between the length " "of 65 and 127 bytes." }, { "etherStatsPkts128to255Octets", "The number of received good and errored frames between the length " "of 128 and 255 bytes." }, { "etherStatsPkts256to511Octets", "The number of received good and errored frames between the length " "of 256 and 511 bytes." }, { "etherStatsPkts512to1023Octets", "The number of received good and errored frames between the length " "of 512 and 1023 bytes." }, { "etherStatsPkts1024to1518Octets", "The number of received good and errored frames between the length " "of 1024 and 1518 bytes." }, { "etherStatsPkts1519toXOctets", "The number of received good and errored frames between the length " "of 1519 and the maximum frame length configured in the frm_length " "register." }, { "etherStatsJabbers", "Too long frames with CRC error." }, { "etherStatsFragments", "Too short frames with CRC error." }, /* 0x39 unused, 0x3a/b non-stats. */ [0x3c] = /* Extended Statistics Counters */ { "msb_aOctetsTransmittedOK", "Upper 32 bits of the number of data and padding octets that are " "successfully transmitted." }, { "msb_aOctetsReceivedOK", "Upper 32 bits of the number of data and padding octets that are " "successfully received." }, { "msb_etherStatsOctets", "Upper 32 bits of the total number of octets received. This count " "includes both good and errored frames." } }; static int sysctl_atse_mac_stats_proc(SYSCTL_HANDLER_ARGS) { struct atse_softc *sc; int error, offset, s; sc = arg1; offset = arg2; s = CSR_READ_4(sc, offset); error = sysctl_handle_int(oidp, &s, 0, req); if (error || !req->newptr) { return (error); } return (0); } static struct atse_rx_err_stats_regs { const char *name; const char *descr; } atse_rx_err_stats_regs[] = { #define ATSE_RX_ERR_FIFO_THRES_EOP 0 /* FIFO threshold reached, on EOP. */ #define ATSE_RX_ERR_ELEN 1 /* Frame/payload length not valid. */ #define ATSE_RX_ERR_CRC32 2 /* CRC-32 error. */ #define ATSE_RX_ERR_FIFO_THRES_TRUNC 3 /* FIFO thresh., truncated frame. */ #define ATSE_RX_ERR_4 4 /* ? */ #define ATSE_RX_ERR_5 5 /* / */ { "rx_err_fifo_thres_eop", "FIFO threshold reached, reported on EOP." }, { "rx_err_fifo_elen", "Frame or payload length not valid." }, { "rx_err_fifo_crc32", "CRC-32 error." }, { "rx_err_fifo_thres_trunc", "FIFO threshold reached, truncated frame" }, { "rx_err_4", "?" }, { "rx_err_5", "?" }, }; static int sysctl_atse_rx_err_stats_proc(SYSCTL_HANDLER_ARGS) { struct atse_softc *sc; int error, offset, s; sc = arg1; offset = arg2; s = sc->atse_rx_err[offset]; error = sysctl_handle_int(oidp, &s, 0, req); if (error || !req->newptr) { return (error); } return (0); } static void atse_sysctl_stats_attach(device_t dev) { struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; struct atse_softc *sc; int i; sc = device_get_softc(dev); sctx = device_get_sysctl_ctx(dev); soid = device_get_sysctl_tree(dev); /* MAC statistics. */ for (i = 0; i < nitems(atse_mac_stats_regs); i++) { if (atse_mac_stats_regs[i].name == NULL || atse_mac_stats_regs[i].descr == NULL) { continue; } SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, atse_mac_stats_regs[i].name, CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i, sysctl_atse_mac_stats_proc, "IU", atse_mac_stats_regs[i].descr); } /* rx_err[]. */ for (i = 0; i < ATSE_RX_ERR_MAX; i++) { if (atse_rx_err_stats_regs[i].name == NULL || atse_rx_err_stats_regs[i].descr == NULL) { continue; } SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, atse_rx_err_stats_regs[i].name, CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i, sysctl_atse_rx_err_stats_proc, "IU", atse_rx_err_stats_regs[i].descr); } } /* * Generic device handling routines. */ int atse_attach(device_t dev) { struct atse_softc *sc; if_t ifp; uint32_t caps; int error; sc = device_get_softc(dev); sc->dev = dev; /* Get xDMA controller */ sc->xdma_tx = xdma_ofw_get(sc->dev, "tx"); if (sc->xdma_tx == NULL) { device_printf(dev, "Can't find DMA controller.\n"); return (ENXIO); } /* * Only final (EOP) write can be less than "symbols per beat" value * so we have to defrag mbuf chain. * Chapter 15. On-Chip FIFO Memory Core. * Embedded Peripherals IP User Guide. */ caps = XCHAN_CAP_NOSEG; /* Alloc xDMA virtual channel. */ sc->xchan_tx = xdma_channel_alloc(sc->xdma_tx, caps); if (sc->xchan_tx == NULL) { device_printf(dev, "Can't alloc virtual DMA channel.\n"); return (ENXIO); } /* Setup interrupt handler. */ error = xdma_setup_intr(sc->xchan_tx, 0, atse_xdma_tx_intr, sc, &sc->ih_tx); if (error) { device_printf(sc->dev, "Can't setup xDMA interrupt handler.\n"); return (ENXIO); } xdma_prep_sg(sc->xchan_tx, TX_QUEUE_SIZE, /* xchan requests queue size */ MCLBYTES, /* maxsegsize */ 8, /* maxnsegs */ 16, /* alignment */ 0, /* boundary */ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR); /* Get RX xDMA controller */ sc->xdma_rx = xdma_ofw_get(sc->dev, "rx"); if (sc->xdma_rx == NULL) { device_printf(dev, "Can't find DMA controller.\n"); return (ENXIO); } /* Alloc xDMA virtual channel. */ sc->xchan_rx = xdma_channel_alloc(sc->xdma_rx, caps); if (sc->xchan_rx == NULL) { device_printf(dev, "Can't alloc virtual DMA channel.\n"); return (ENXIO); } /* Setup interrupt handler. */ error = xdma_setup_intr(sc->xchan_rx, XDMA_INTR_NET, atse_xdma_rx_intr, sc, &sc->ih_rx); if (error) { device_printf(sc->dev, "Can't setup xDMA interrupt handler.\n"); return (ENXIO); } xdma_prep_sg(sc->xchan_rx, RX_QUEUE_SIZE, /* xchan requests queue size */ MCLBYTES, /* maxsegsize */ 1, /* maxnsegs */ 16, /* alignment */ 0, /* boundary */ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR); mtx_init(&sc->br_mtx, "buf ring mtx", NULL, MTX_DEF); sc->br = buf_ring_alloc(BUFRING_SIZE, M_DEVBUF, M_NOWAIT, &sc->br_mtx); if (sc->br == NULL) { return (ENOMEM); } atse_ethernet_option_bits_read(dev); mtx_init(&sc->atse_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->atse_tick, &sc->atse_mtx, 0); /* * We are only doing single-PHY with this driver currently. The * defaults would be right so that BASE_CFG_MDIO_ADDR0 points to the * 1st PHY address (0) apart from the fact that BMCR0 is always * the PCS mapping, so we always use BMCR1. See Table 5-1 0xA0-0xBF. */ #if 0 /* Always PCS. */ sc->atse_bmcr0 = MDIO_0_START; CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR0, 0x00); #endif /* Always use matching PHY for atse[0..]. */ sc->atse_phy_addr = device_get_unit(dev); sc->atse_bmcr1 = MDIO_1_START; CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR1, sc->atse_phy_addr); /* Reset the adapter. */ atse_reset(sc); /* Setup interface. */ ifp = sc->atse_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "if_alloc() failed\n"); error = ENOSPC; goto err; } if_setsoftc(ifp, sc); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setioctlfn(ifp, atse_ioctl); if_settransmitfn(ifp, atse_transmit); if_setqflushfn(ifp, atse_qflush); if_setinitfn(ifp, atse_init); if_setsendqlen(ifp, ATSE_TX_LIST_CNT - 1); if_setsendqready(ifp); /* MII setup. */ error = mii_attach(dev, &sc->atse_miibus, ifp, atse_ifmedia_upd, atse_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHY failed: %d\n", error); goto err; } /* Call media-indepedent attach routine. */ ether_ifattach(ifp, sc->atse_eth_addr); /* Tell the upper layer(s) about vlan mtu support. */ if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); if_setcapenable(ifp, if_getcapabilities(ifp)); err: if (error != 0) { atse_detach(dev); } if (error == 0) { atse_sysctl_stats_attach(dev); } atse_rx_enqueue(sc, NUM_RX_MBUF); xdma_queue_submit(sc->xchan_rx); return (error); } static int atse_detach(device_t dev) { struct atse_softc *sc; if_t ifp; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->atse_mtx), ("%s: mutex not initialized", device_get_nameunit(dev))); ifp = sc->atse_ifp; /* Only cleanup if attach succeeded. */ if (device_is_attached(dev)) { ATSE_LOCK(sc); atse_stop_locked(sc); ATSE_UNLOCK(sc); callout_drain(&sc->atse_tick); ether_ifdetach(ifp); } if (sc->atse_miibus != NULL) { device_delete_child(dev, sc->atse_miibus); } if (ifp != NULL) { if_free(ifp); } mtx_destroy(&sc->atse_mtx); xdma_channel_free(sc->xchan_tx); xdma_channel_free(sc->xchan_rx); xdma_put(sc->xdma_tx); xdma_put(sc->xdma_rx); return (0); } /* Shared between nexus and fdt implementation. */ void atse_detach_resources(device_t dev) { struct atse_softc *sc; sc = device_get_softc(dev); if (sc->atse_mem_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_mem_rid, sc->atse_mem_res); sc->atse_mem_res = NULL; } } int atse_detach_dev(device_t dev) { int error; error = atse_detach(dev); if (error) { /* We are basically in undefined state now. */ device_printf(dev, "atse_detach() failed: %d\n", error); return (error); } atse_detach_resources(dev); return (0); } int atse_miibus_readreg(device_t dev, int phy, int reg) { struct atse_softc *sc; int val; sc = device_get_softc(dev); /* * We currently do not support re-mapping of MDIO space on-the-fly * but de-facto hard-code the phy#. */ if (phy != sc->atse_phy_addr) { return (0); } val = PHY_READ_2(sc, reg); return (val); } int atse_miibus_writereg(device_t dev, int phy, int reg, int data) { struct atse_softc *sc; sc = device_get_softc(dev); /* * We currently do not support re-mapping of MDIO space on-the-fly * but de-facto hard-code the phy#. */ if (phy != sc->atse_phy_addr) { return (0); } PHY_WRITE_2(sc, reg, data); return (0); } void atse_miibus_statchg(device_t dev) { struct atse_softc *sc; struct mii_data *mii; if_t ifp; uint32_t val4; sc = device_get_softc(dev); ATSE_LOCK_ASSERT(sc); mii = device_get_softc(sc->atse_miibus); ifp = sc->atse_ifp; if (mii == NULL || ifp == NULL || (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { return; } val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG); /* Assume no link. */ sc->atse_flags &= ~ATSE_FLAGS_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: val4 |= BASE_CFG_COMMAND_CONFIG_ENA_10; val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED; sc->atse_flags |= ATSE_FLAGS_LINK; break; case IFM_100_TX: val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10; val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED; sc->atse_flags |= ATSE_FLAGS_LINK; break; case IFM_1000_T: val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10; val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED; sc->atse_flags |= ATSE_FLAGS_LINK; break; default: break; } } if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) { /* Need to stop the MAC? */ return; } if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { val4 &= ~BASE_CFG_COMMAND_CONFIG_HD_ENA; } else { val4 |= BASE_CFG_COMMAND_CONFIG_HD_ENA; } /* flow control? */ /* Make sure the MAC is activated. */ val4 |= BASE_CFG_COMMAND_CONFIG_TX_ENA; val4 |= BASE_CFG_COMMAND_CONFIG_RX_ENA; CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4); } MODULE_DEPEND(atse, ether, 1, 1, 1); MODULE_DEPEND(atse, miibus, 1, 1, 1);