/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012, 2013 Bjoern A. Zeeb
* Copyright (c) 2014 Robert N. M. Watson
* Copyright (c) 2016-2017 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-11-C-0249)
* ("MRC2"), as part of the DARPA MRC research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Altera Triple-Speed Ethernet MegaCore, Function User Guide
* UG-01008-3.0, Software Version: 12.0, June 2012.
* Available at the time of writing at:
* http://www.altera.com/literature/ug/ug_ethernet.pdf
*
* We are using an Marvell E1111 (Alaska) PHY on the DE4. See mii/e1000phy.c.
*/
/*
* XXX-BZ NOTES:
* - ifOutBroadcastPkts are only counted if both ether dst and src are all-1s;
* seems an IP core bug, they count ether broadcasts as multicast. Is this
* still the case?
* - figure out why the TX FIFO fill status and intr did not work as expected.
* - test 100Mbit/s and 10Mbit/s
* - blacklist the one special factory programmed ethernet address (for now
* hardcoded, later from loader?)
* - resolve all XXX, left as reminders to shake out details later
* - Jumbo frame support
*/
#include
__FBSDID("$FreeBSD$");
#include "opt_device_polling.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define RX_QUEUE_SIZE 4096
#define TX_QUEUE_SIZE 4096
#define NUM_RX_MBUF 512
#define BUFRING_SIZE 8192
#include
/* XXX once we'd do parallel attach, we need a global lock for this. */
#define ATSE_ETHERNET_OPTION_BITS_UNDEF 0
#define ATSE_ETHERNET_OPTION_BITS_READ 1
static int atse_ethernet_option_bits_flag = ATSE_ETHERNET_OPTION_BITS_UNDEF;
static uint8_t atse_ethernet_option_bits[ALTERA_ETHERNET_OPTION_BITS_LEN];
/*
* Softc and critical resource locking.
*/
#define ATSE_LOCK(_sc) mtx_lock(&(_sc)->atse_mtx)
#define ATSE_UNLOCK(_sc) mtx_unlock(&(_sc)->atse_mtx)
#define ATSE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->atse_mtx, MA_OWNED)
#define ATSE_DEBUG
#undef ATSE_DEBUG
#ifdef ATSE_DEBUG
#define DPRINTF(format, ...) printf(format, __VA_ARGS__)
#else
#define DPRINTF(format, ...)
#endif
/*
* Register space access macros.
*/
static inline void
csr_write_4(struct atse_softc *sc, uint32_t reg, uint32_t val4,
const char *f, const int l)
{
val4 = htole32(val4);
DPRINTF("[%s:%d] CSR W %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
bus_write_4(sc->atse_mem_res, reg * 4, val4);
}
static inline uint32_t
csr_read_4(struct atse_softc *sc, uint32_t reg, const char *f, const int l)
{
uint32_t val4;
val4 = le32toh(bus_read_4(sc->atse_mem_res, reg * 4));
DPRINTF("[%s:%d] CSR R %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
return (val4);
}
/*
* See page 5-2 that it's all dword offsets and the MS 16 bits need to be zero
* on write and ignored on read.
*/
static inline void
pxx_write_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, uint16_t val,
const char *f, const int l, const char *s)
{
uint32_t val4;
val4 = htole32(val & 0x0000ffff);
DPRINTF("[%s:%d] %s W %s 0x%08x (0x%08jx) = 0x%08x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val4);
bus_write_4(sc->atse_mem_res, (bmcr + reg) * 4, val4);
}
static inline uint16_t
pxx_read_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, const char *f,
const int l, const char *s)
{
uint32_t val4;
uint16_t val;
val4 = bus_read_4(sc->atse_mem_res, (bmcr + reg) * 4);
val = le32toh(val4) & 0x0000ffff;
DPRINTF("[%s:%d] %s R %s 0x%08x (0x%08jx) = 0x%04x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val);
return (val);
}
#define CSR_WRITE_4(sc, reg, val) \
csr_write_4((sc), (reg), (val), __func__, __LINE__)
#define CSR_READ_4(sc, reg) \
csr_read_4((sc), (reg), __func__, __LINE__)
#define PCS_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr0, (reg), (val), __func__, __LINE__, \
"PCS")
#define PCS_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr0, (reg), __func__, __LINE__, "PCS")
#define PHY_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr1, (reg), (val), __func__, __LINE__, \
"PHY")
#define PHY_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr1, (reg), __func__, __LINE__, "PHY")
static void atse_tick(void *);
static int atse_detach(device_t);
static int
atse_rx_enqueue(struct atse_softc *sc, uint32_t n)
{
struct mbuf *m;
int i;
for (i = 0; i < n; i++) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->dev,
"%s: Can't alloc rx mbuf\n", __func__);
return (-1);
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
xdma_enqueue_mbuf(sc->xchan_rx, &m, 0, 4, 4, XDMA_DEV_TO_MEM);
}
return (0);
}
static int
atse_xdma_tx_intr(void *arg, xdma_transfer_status_t *status)
{
xdma_transfer_status_t st;
struct atse_softc *sc;
struct ifnet *ifp;
struct mbuf *m;
int err;
sc = arg;
ATSE_LOCK(sc);
ifp = sc->atse_ifp;
for (;;) {
err = xdma_dequeue_mbuf(sc->xchan_tx, &m, &st);
if (err != 0) {
break;
}
if (st.error != 0) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
m_freem(m);
sc->txcount--;
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ATSE_UNLOCK(sc);
return (0);
}
static int
atse_xdma_rx_intr(void *arg, xdma_transfer_status_t *status)
{
xdma_transfer_status_t st;
struct atse_softc *sc;
struct ifnet *ifp;
struct mbuf *m;
int err;
uint32_t cnt_processed;
sc = arg;
ATSE_LOCK(sc);
ifp = sc->atse_ifp;
cnt_processed = 0;
for (;;) {
err = xdma_dequeue_mbuf(sc->xchan_rx, &m, &st);
if (err != 0) {
break;
}
cnt_processed++;
if (st.error != 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
continue;
}
m->m_pkthdr.len = m->m_len = st.transferred;
m->m_pkthdr.rcvif = ifp;
m_adj(m, ETHER_ALIGN);
ATSE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ATSE_LOCK(sc);
}
atse_rx_enqueue(sc, cnt_processed);
ATSE_UNLOCK(sc);
return (0);
}
static int
atse_transmit_locked(struct ifnet *ifp)
{
struct atse_softc *sc;
struct mbuf *m;
struct buf_ring *br;
int error;
int enq;
sc = ifp->if_softc;
br = sc->br;
enq = 0;
while ((m = drbr_peek(ifp, br)) != NULL) {
error = xdma_enqueue_mbuf(sc->xchan_tx, &m, 0, 4, 4, XDMA_MEM_TO_DEV);
if (error != 0) {
/* No space in request queue available yet. */
drbr_putback(ifp, br, m);
break;
}
drbr_advance(ifp, br);
sc->txcount++;
enq++;
/* If anyone is interested give them a copy. */
ETHER_BPF_MTAP(ifp, m);
}
if (enq > 0)
xdma_queue_submit(sc->xchan_tx);
return (0);
}
static int
atse_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct atse_softc *sc;
struct buf_ring *br;
int error;
sc = ifp->if_softc;
br = sc->br;
ATSE_LOCK(sc);
mtx_lock(&sc->br_mtx);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
error = drbr_enqueue(ifp, sc->br, m);
mtx_unlock(&sc->br_mtx);
ATSE_UNLOCK(sc);
return (error);
}
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) {
error = drbr_enqueue(ifp, sc->br, m);
mtx_unlock(&sc->br_mtx);
ATSE_UNLOCK(sc);
return (error);
}
error = drbr_enqueue(ifp, br, m);
if (error) {
mtx_unlock(&sc->br_mtx);
ATSE_UNLOCK(sc);
return (error);
}
error = atse_transmit_locked(ifp);
mtx_unlock(&sc->br_mtx);
ATSE_UNLOCK(sc);
return (error);
}
static void
atse_qflush(struct ifnet *ifp)
{
struct atse_softc *sc;
sc = ifp->if_softc;
printf("%s\n", __func__);
}
static int
atse_stop_locked(struct atse_softc *sc)
{
uint32_t mask, val4;
struct ifnet *ifp;
int i;
ATSE_LOCK_ASSERT(sc);
callout_stop(&sc->atse_tick);
ifp = sc->atse_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0) {
break;
}
DELAY(10);
}
if ((val4 & mask) != 0) {
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
/* Punt. */
}
sc->atse_flags &= ~ATSE_FLAGS_LINK;
return (0);
}
static u_int
atse_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint64_t *h = arg;
uint8_t *addr, x, y;
int i, j;
addr = LLADDR(sdl);
x = 0;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
y = addr[i] & 0x01;
for (j = 1; j < 8; j++)
y ^= (addr[i] >> j) & 0x01;
x |= (y << i);
}
*h |= (1 << x);
return (1);
}
static int
atse_rxfilter_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
uint32_t val4;
int i;
/* XXX-BZ can we find out if we have the MHASH synthesized? */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* For simplicity always hash full 48 bits of addresses. */
if ((val4 & BASE_CFG_COMMAND_CONFIG_MHASH_SEL) != 0)
val4 &= ~BASE_CFG_COMMAND_CONFIG_MHASH_SEL;
ifp = sc->atse_ifp;
if (ifp->if_flags & IFF_PROMISC) {
val4 |= BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
} else {
val4 &= ~BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
}
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
if (ifp->if_flags & IFF_ALLMULTI) {
/* Accept all multicast addresses. */
for (i = 0; i <= MHASH_LEN; i++)
CSR_WRITE_4(sc, MHASH_START + i, 0x1);
} else {
/*
* Can hold MHASH_LEN entries.
* XXX-BZ bitstring.h would be more general.
*/
uint64_t h;
/*
* Re-build and re-program hash table. First build the
* bit-field "yes" or "no" for each slot per address, then
* do all the programming afterwards.
*/
h = 0;
(void)if_foreach_llmaddr(ifp, atse_hash_maddr, &h);
for (i = 0; i <= MHASH_LEN; i++) {
CSR_WRITE_4(sc, MHASH_START + i,
(h & (1 << i)) ? 0x01 : 0x00);
}
}
return (0);
}
static int
atse_ethernet_option_bits_read_fdt(device_t dev)
{
struct resource *res;
device_t fdev;
int i, rid;
if (atse_ethernet_option_bits_flag & ATSE_ETHERNET_OPTION_BITS_READ) {
return (0);
}
fdev = device_find_child(device_get_parent(dev), "cfi", 0);
if (fdev == NULL) {
return (ENOENT);
}
rid = 0;
res = bus_alloc_resource_any(fdev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (res == NULL) {
return (ENXIO);
}
for (i = 0; i < ALTERA_ETHERNET_OPTION_BITS_LEN; i++) {
atse_ethernet_option_bits[i] = bus_read_1(res,
ALTERA_ETHERNET_OPTION_BITS_OFF + i);
}
bus_release_resource(fdev, SYS_RES_MEMORY, rid, res);
atse_ethernet_option_bits_flag |= ATSE_ETHERNET_OPTION_BITS_READ;
return (0);
}
static int
atse_ethernet_option_bits_read(device_t dev)
{
int error;
error = atse_ethernet_option_bits_read_fdt(dev);
if (error == 0)
return (0);
device_printf(dev, "Cannot read Ethernet addresses from flash.\n");
return (error);
}
static int
atse_get_eth_address(struct atse_softc *sc)
{
unsigned long hostid;
uint32_t val4;
int unit;
/*
* Make sure to only ever do this once. Otherwise a reset would
* possibly change our ethernet address, which is not good at all.
*/
if (sc->atse_eth_addr[0] != 0x00 || sc->atse_eth_addr[1] != 0x00 ||
sc->atse_eth_addr[2] != 0x00) {
return (0);
}
if ((atse_ethernet_option_bits_flag &
ATSE_ETHERNET_OPTION_BITS_READ) == 0) {
goto get_random;
}
val4 = atse_ethernet_option_bits[0] << 24;
val4 |= atse_ethernet_option_bits[1] << 16;
val4 |= atse_ethernet_option_bits[2] << 8;
val4 |= atse_ethernet_option_bits[3];
/* They chose "safe". */
if (val4 != le32toh(0x00005afe)) {
device_printf(sc->atse_dev, "Magic '5afe' is not safe: 0x%08x. "
"Falling back to random numbers for hardware address.\n",
val4);
goto get_random;
}
sc->atse_eth_addr[0] = atse_ethernet_option_bits[4];
sc->atse_eth_addr[1] = atse_ethernet_option_bits[5];
sc->atse_eth_addr[2] = atse_ethernet_option_bits[6];
sc->atse_eth_addr[3] = atse_ethernet_option_bits[7];
sc->atse_eth_addr[4] = atse_ethernet_option_bits[8];
sc->atse_eth_addr[5] = atse_ethernet_option_bits[9];
/* Handle factory default ethernet addresss: 00:07:ed:ff:ed:15 */
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x07 &&
sc->atse_eth_addr[2] == 0xed && sc->atse_eth_addr[3] == 0xff &&
sc->atse_eth_addr[4] == 0xed && sc->atse_eth_addr[5] == 0x15) {
device_printf(sc->atse_dev, "Factory programmed Ethernet "
"hardware address blacklisted. Falling back to random "
"address to avoid collisions.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x00 &&
sc->atse_eth_addr[2] == 0x00 && sc->atse_eth_addr[3] == 0x00 &&
sc->atse_eth_addr[4] == 0x00 && sc->atse_eth_addr[5] == 0x00) {
device_printf(sc->atse_dev, "All zero's Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (ETHER_IS_MULTICAST(sc->atse_eth_addr)) {
device_printf(sc->atse_dev, "Multicast Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
/*
* If we find an Altera prefixed address with a 0x0 ending
* adjust by device unit. If not and this is not the first
* Ethernet, go to random.
*/
unit = device_get_unit(sc->atse_dev);
if (unit == 0x00) {
return (0);
}
if (unit > 0x0f) {
device_printf(sc->atse_dev, "We do not support Ethernet "
"addresses for more than 16 MACs. Falling back to "
"random hadware address.\n");
goto get_random;
}
if ((sc->atse_eth_addr[0] & ~0x2) != 0 ||
sc->atse_eth_addr[1] != 0x07 || sc->atse_eth_addr[2] != 0xed ||
(sc->atse_eth_addr[5] & 0x0f) != 0x0) {
device_printf(sc->atse_dev, "Ethernet address not meeting our "
"multi-MAC standards. Falling back to random hadware "
"address.\n");
goto get_random;
}
sc->atse_eth_addr[5] |= (unit & 0x0f);
return (0);
get_random:
/*
* Fall back to random code we also use on bridge(4).
*/
getcredhostid(curthread->td_ucred, &hostid);
if (hostid == 0) {
arc4rand(sc->atse_eth_addr, ETHER_ADDR_LEN, 1);
sc->atse_eth_addr[0] &= ~1;/* clear multicast bit */
sc->atse_eth_addr[0] |= 2; /* set the LAA bit */
} else {
sc->atse_eth_addr[0] = 0x2;
sc->atse_eth_addr[1] = (hostid >> 24) & 0xff;
sc->atse_eth_addr[2] = (hostid >> 16) & 0xff;
sc->atse_eth_addr[3] = (hostid >> 8 ) & 0xff;
sc->atse_eth_addr[4] = hostid & 0xff;
sc->atse_eth_addr[5] = sc->atse_unit & 0xff;
}
return (0);
}
static int
atse_set_eth_address(struct atse_softc *sc, int n)
{
uint32_t v0, v1;
v0 = (sc->atse_eth_addr[3] << 24) | (sc->atse_eth_addr[2] << 16) |
(sc->atse_eth_addr[1] << 8) | sc->atse_eth_addr[0];
v1 = (sc->atse_eth_addr[5] << 8) | sc->atse_eth_addr[4];
if (n & ATSE_ETH_ADDR_DEF) {
CSR_WRITE_4(sc, BASE_CFG_MAC_0, v0);
CSR_WRITE_4(sc, BASE_CFG_MAC_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP1) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP2) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP3) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP4) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_1, v1);
}
return (0);
}
static int
atse_reset(struct atse_softc *sc)
{
uint32_t val4, mask;
uint16_t val;
int i;
/* 1. External PHY Initialization using MDIO. */
/*
* We select the right MDIO space in atse_attach() and let MII do
* anything else.
*/
/* 2. PCS Configuration Register Initialization. */
/* a. Set auto negotiation link timer to 1.6ms for SGMII. */
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_0, 0x0D40);
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_1, 0x0003);
/* b. Configure SGMII. */
val = PCS_EXT_IF_MODE_SGMII_ENA|PCS_EXT_IF_MODE_USE_SGMII_AN;
PCS_WRITE_2(sc, PCS_EXT_IF_MODE, val);
/* c. Enable auto negotiation. */
/* Ignore Bits 6,8,13; should be set,set,unset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val &= ~(PCS_CONTROL_ISOLATE|PCS_CONTROL_POWERDOWN);
val &= ~PCS_CONTROL_LOOPBACK; /* Make this a -link1 option? */
val |= PCS_CONTROL_AUTO_NEGOTIATION_ENABLE;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* d. PCS reset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val |= PCS_CONTROL_RESET;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* Wait for reset bit to clear; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val = PCS_READ_2(sc, PCS_CONTROL);
if ((val & PCS_CONTROL_RESET) == 0) {
break;
}
DELAY(10);
}
if ((val & PCS_CONTROL_RESET) != 0) {
device_printf(sc->atse_dev, "PCS reset timed out.\n");
return (ENXIO);
}
/* 3. MAC Configuration Register Initialization. */
/* a. Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
/* Samples in the manual do have the SW_RESET bit set here, why? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0) {
break;
}
DELAY(10);
}
if ((val4 & mask) != 0) {
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
return (ENXIO);
}
/* b. MAC FIFO configuration. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_EMPTY, FIFO_DEPTH_TX - 16);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_FULL, 3);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_EMPTY, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_EMPTY, FIFO_DEPTH_RX - 16);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_FULL, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_EMPTY, 8);
#if 0
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 16);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 16);
#else
/* For store-and-forward mode, set this threshold to 0. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 0);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 0);
#endif
/* c. MAC address configuration. */
/* Also intialize supplementary addresses to our primary one. */
/* XXX-BZ FreeBSD really needs to grow and API for using these. */
atse_get_eth_address(sc);
atse_set_eth_address(sc, ATSE_ETH_ADDR_ALL);
/* d. MAC function configuration. */
CSR_WRITE_4(sc, BASE_CFG_FRM_LENGTH, 1518); /* Default. */
CSR_WRITE_4(sc, BASE_CFG_TX_IPG_LENGTH, 12);
CSR_WRITE_4(sc, BASE_CFG_PAUSE_QUANT, 0xFFFF);
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/*
* If 1000BASE-X/SGMII PCS is initialized, set the ETH_SPEED (bit 3)
* and ENA_10 (bit 25) in command_config register to 0. If half duplex
* is reported in the PHY/PCS status register, set the HD_ENA (bit 10)
* to 1 in command_config register.
* BZ: We shoot for 1000 instead.
*/
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#else
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#endif
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
#if 0
/*
* We do not want to set this, otherwise, we could not even send
* random raw ethernet frames for various other research. By default
* FreeBSD will use the right ether source address.
*/
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ADDR_INS;
#endif
val4 |= BASE_CFG_COMMAND_CONFIG_PAD_EN;
val4 &= ~BASE_CFG_COMMAND_CONFIG_CRC_FWD;
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_CNTL_FRM_ENA;
#endif
#if 1
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC;
#endif
val &= ~BASE_CFG_COMMAND_CONFIG_LOOP_ENA; /* link0? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/*
* Make sure we do not enable 32bit alignment; FreeBSD cannot
* cope with the additional padding (though we should!?).
* Also make sure we get the CRC appended.
*/
val4 = CSR_READ_4(sc, TX_CMD_STAT);
val4 &= ~(TX_CMD_STAT_OMIT_CRC|TX_CMD_STAT_TX_SHIFT16);
CSR_WRITE_4(sc, TX_CMD_STAT, val4);
val4 = CSR_READ_4(sc, RX_CMD_STAT);
val4 &= ~RX_CMD_STAT_RX_SHIFT16;
val4 |= RX_CMD_STAT_RX_SHIFT16;
CSR_WRITE_4(sc, RX_CMD_STAT, val4);
/* e. Reset MAC. */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= BASE_CFG_COMMAND_CONFIG_SW_RESET;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) == 0) {
break;
}
DELAY(10);
}
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) != 0) {
device_printf(sc->atse_dev, "MAC reset timed out.\n");
return (ENXIO);
}
/* f. Enable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == mask) {
break;
}
DELAY(10);
}
if ((val4 & mask) != mask) {
device_printf(sc->atse_dev, "Enabling MAC TX/RX timed out.\n");
return (ENXIO);
}
return (0);
}
static void
atse_init_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t *eaddr;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
return;
}
/*
* Must update the ether address if changed. Given we do not handle
* in atse_ioctl() but it's in the general framework, just always
* do it here before atse_reset().
*/
eaddr = IF_LLADDR(sc->atse_ifp);
bcopy(eaddr, &sc->atse_eth_addr, ETHER_ADDR_LEN);
/* Make things frind to halt, cleanup, ... */
atse_stop_locked(sc);
atse_reset(sc);
/* ... and fire up the engine again. */
atse_rxfilter_locked(sc);
sc->atse_flags &= ATSE_FLAGS_LINK; /* Preserve. */
mii = device_get_softc(sc->atse_miibus);
sc->atse_flags &= ~ATSE_FLAGS_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
static void
atse_init(void *xsc)
{
struct atse_softc *sc;
/*
* XXXRW: There is some argument that we should immediately do RX
* processing after enabling interrupts, or one may not fire if there
* are buffered packets.
*/
sc = (struct atse_softc *)xsc;
ATSE_LOCK(sc);
atse_init_locked(sc);
ATSE_UNLOCK(sc);
}
static int
atse_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct atse_softc *sc;
struct ifreq *ifr;
int error, mask;
error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
ATSE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->atse_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
atse_rxfilter_locked(sc);
else
atse_init_locked(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
atse_stop_locked(sc);
sc->atse_if_flags = ifp->if_flags;
ATSE_UNLOCK(sc);
break;
case SIOCSIFCAP:
ATSE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
ATSE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ATSE_LOCK(sc);
atse_rxfilter_locked(sc);
ATSE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
{
struct mii_data *mii;
struct ifreq *ifr;
mii = device_get_softc(sc->atse_miibus);
ifr = (struct ifreq *)data;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
}
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
atse_tick(void *xsc)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = (struct atse_softc *)xsc;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
mii = device_get_softc(sc->atse_miibus);
mii_tick(mii);
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) {
atse_miibus_statchg(sc->atse_dev);
}
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
/*
* Set media options.
*/
static int
atse_ifmedia_upd(struct ifnet *ifp)
{
struct atse_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
PHY_RESET(miisc);
}
error = mii_mediachg(mii);
ATSE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
atse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct atse_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ATSE_UNLOCK(sc);
}
static struct atse_mac_stats_regs {
const char *name;
const char *descr; /* Mostly copied from Altera datasheet. */
} atse_mac_stats_regs[] = {
[0x1a] =
{ "aFramesTransmittedOK",
"The number of frames that are successfully transmitted including "
"the pause frames." },
{ "aFramesReceivedOK",
"The number of frames that are successfully received including the "
"pause frames." },
{ "aFrameCheckSequenceErrors",
"The number of receive frames with CRC error." },
{ "aAlignmentErrors",
"The number of receive frames with alignment error." },
{ "aOctetsTransmittedOK",
"The lower 32 bits of the number of data and padding octets that "
"are successfully transmitted." },
{ "aOctetsReceivedOK",
"The lower 32 bits of the number of data and padding octets that "
" are successfully received." },
{ "aTxPAUSEMACCtrlFrames",
"The number of pause frames transmitted." },
{ "aRxPAUSEMACCtrlFrames",
"The number received pause frames received." },
{ "ifInErrors",
"The number of errored frames received." },
{ "ifOutErrors",
"The number of transmit frames with either a FIFO overflow error, "
"a FIFO underflow error, or a error defined by the user "
"application." },
{ "ifInUcastPkts",
"The number of valid unicast frames received." },
{ "ifInMulticastPkts",
"The number of valid multicast frames received. The count does "
"not include pause frames." },
{ "ifInBroadcastPkts",
"The number of valid broadcast frames received." },
{ "ifOutDiscards",
"This statistics counter is not in use. The MAC function does not "
"discard frames that are written to the FIFO buffer by the user "
"application." },
{ "ifOutUcastPkts",
"The number of valid unicast frames transmitted." },
{ "ifOutMulticastPkts",
"The number of valid multicast frames transmitted, excluding pause "
"frames." },
{ "ifOutBroadcastPkts",
"The number of valid broadcast frames transmitted." },
{ "etherStatsDropEvents",
"The number of frames that are dropped due to MAC internal errors "
"when FIFO buffer overflow persists." },
{ "etherStatsOctets",
"The lower 32 bits of the total number of octets received. This "
"count includes both good and errored frames." },
{ "etherStatsPkts",
"The total number of good and errored frames received." },
{ "etherStatsUndersizePkts",
"The number of frames received with length less than 64 bytes. "
"This count does not include errored frames." },
{ "etherStatsOversizePkts",
"The number of frames received that are longer than the value "
"configured in the frm_length register. This count does not "
"include errored frames." },
{ "etherStatsPkts64Octets",
"The number of 64-byte frames received. This count includes good "
"and errored frames." },
{ "etherStatsPkts65to127Octets",
"The number of received good and errored frames between the length "
"of 65 and 127 bytes." },
{ "etherStatsPkts128to255Octets",
"The number of received good and errored frames between the length "
"of 128 and 255 bytes." },
{ "etherStatsPkts256to511Octets",
"The number of received good and errored frames between the length "
"of 256 and 511 bytes." },
{ "etherStatsPkts512to1023Octets",
"The number of received good and errored frames between the length "
"of 512 and 1023 bytes." },
{ "etherStatsPkts1024to1518Octets",
"The number of received good and errored frames between the length "
"of 1024 and 1518 bytes." },
{ "etherStatsPkts1519toXOctets",
"The number of received good and errored frames between the length "
"of 1519 and the maximum frame length configured in the frm_length "
"register." },
{ "etherStatsJabbers",
"Too long frames with CRC error." },
{ "etherStatsFragments",
"Too short frames with CRC error." },
/* 0x39 unused, 0x3a/b non-stats. */
[0x3c] =
/* Extended Statistics Counters */
{ "msb_aOctetsTransmittedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully transmitted." },
{ "msb_aOctetsReceivedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully received." },
{ "msb_etherStatsOctets",
"Upper 32 bits of the total number of octets received. This count "
"includes both good and errored frames." }
};
static int
sysctl_atse_mac_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = CSR_READ_4(sc, offset);
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr) {
return (error);
}
return (0);
}
static struct atse_rx_err_stats_regs {
const char *name;
const char *descr;
} atse_rx_err_stats_regs[] = {
#define ATSE_RX_ERR_FIFO_THRES_EOP 0 /* FIFO threshold reached, on EOP. */
#define ATSE_RX_ERR_ELEN 1 /* Frame/payload length not valid. */
#define ATSE_RX_ERR_CRC32 2 /* CRC-32 error. */
#define ATSE_RX_ERR_FIFO_THRES_TRUNC 3 /* FIFO thresh., truncated frame. */
#define ATSE_RX_ERR_4 4 /* ? */
#define ATSE_RX_ERR_5 5 /* / */
{ "rx_err_fifo_thres_eop",
"FIFO threshold reached, reported on EOP." },
{ "rx_err_fifo_elen",
"Frame or payload length not valid." },
{ "rx_err_fifo_crc32",
"CRC-32 error." },
{ "rx_err_fifo_thres_trunc",
"FIFO threshold reached, truncated frame" },
{ "rx_err_4",
"?" },
{ "rx_err_5",
"?" },
};
static int
sysctl_atse_rx_err_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = sc->atse_rx_err[offset];
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr) {
return (error);
}
return (0);
}
static void
atse_sysctl_stats_attach(device_t dev)
{
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
struct atse_softc *sc;
int i;
sc = device_get_softc(dev);
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
/* MAC statistics. */
for (i = 0; i < nitems(atse_mac_stats_regs); i++) {
if (atse_mac_stats_regs[i].name == NULL ||
atse_mac_stats_regs[i].descr == NULL) {
continue;
}
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_mac_stats_regs[i].name,
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
sc, i, sysctl_atse_mac_stats_proc, "IU",
atse_mac_stats_regs[i].descr);
}
/* rx_err[]. */
for (i = 0; i < ATSE_RX_ERR_MAX; i++) {
if (atse_rx_err_stats_regs[i].name == NULL ||
atse_rx_err_stats_regs[i].descr == NULL) {
continue;
}
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_rx_err_stats_regs[i].name,
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
sc, i, sysctl_atse_rx_err_stats_proc, "IU",
atse_rx_err_stats_regs[i].descr);
}
}
/*
* Generic device handling routines.
*/
int
atse_attach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
uint32_t caps;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
/* Get xDMA controller */
sc->xdma_tx = xdma_ofw_get(sc->dev, "tx");
if (sc->xdma_tx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
/*
* Only final (EOP) write can be less than "symbols per beat" value
* so we have to defrag mbuf chain.
* Chapter 15. On-Chip FIFO Memory Core.
* Embedded Peripherals IP User Guide.
*/
caps = XCHAN_CAP_NOSEG;
/* Alloc xDMA virtual channel. */
sc->xchan_tx = xdma_channel_alloc(sc->xdma_tx, caps);
if (sc->xchan_tx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
/* Setup interrupt handler. */
error = xdma_setup_intr(sc->xchan_tx, 0,
atse_xdma_tx_intr, sc, &sc->ih_tx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
xdma_prep_sg(sc->xchan_tx,
TX_QUEUE_SIZE, /* xchan requests queue size */
MCLBYTES, /* maxsegsize */
8, /* maxnsegs */
16, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR);
/* Get RX xDMA controller */
sc->xdma_rx = xdma_ofw_get(sc->dev, "rx");
if (sc->xdma_rx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
/* Alloc xDMA virtual channel. */
sc->xchan_rx = xdma_channel_alloc(sc->xdma_rx, caps);
if (sc->xchan_rx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
/* Setup interrupt handler. */
error = xdma_setup_intr(sc->xchan_rx, XDMA_INTR_NET,
atse_xdma_rx_intr, sc, &sc->ih_rx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
xdma_prep_sg(sc->xchan_rx,
RX_QUEUE_SIZE, /* xchan requests queue size */
MCLBYTES, /* maxsegsize */
1, /* maxnsegs */
16, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR);
mtx_init(&sc->br_mtx, "buf ring mtx", NULL, MTX_DEF);
sc->br = buf_ring_alloc(BUFRING_SIZE, M_DEVBUF,
M_NOWAIT, &sc->br_mtx);
if (sc->br == NULL) {
return (ENOMEM);
}
atse_ethernet_option_bits_read(dev);
mtx_init(&sc->atse_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->atse_tick, &sc->atse_mtx, 0);
/*
* We are only doing single-PHY with this driver currently. The
* defaults would be right so that BASE_CFG_MDIO_ADDR0 points to the
* 1st PHY address (0) apart from the fact that BMCR0 is always
* the PCS mapping, so we always use BMCR1. See Table 5-1 0xA0-0xBF.
*/
#if 0 /* Always PCS. */
sc->atse_bmcr0 = MDIO_0_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR0, 0x00);
#endif
/* Always use matching PHY for atse[0..]. */
sc->atse_phy_addr = device_get_unit(dev);
sc->atse_bmcr1 = MDIO_1_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR1, sc->atse_phy_addr);
/* Reset the adapter. */
atse_reset(sc);
/* Setup interface. */
ifp = sc->atse_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
error = ENOSPC;
goto err;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = atse_ioctl;
ifp->if_transmit = atse_transmit;
ifp->if_qflush = atse_qflush;
ifp->if_init = atse_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ATSE_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = ATSE_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* MII setup. */
error = mii_attach(dev, &sc->atse_miibus, ifp, atse_ifmedia_upd,
atse_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHY failed: %d\n", error);
goto err;
}
/* Call media-indepedent attach routine. */
ether_ifattach(ifp, sc->atse_eth_addr);
/* Tell the upper layer(s) about vlan mtu support. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
err:
if (error != 0) {
atse_detach(dev);
}
if (error == 0) {
atse_sysctl_stats_attach(dev);
}
atse_rx_enqueue(sc, NUM_RX_MBUF);
xdma_queue_submit(sc->xchan_rx);
return (error);
}
static int
atse_detach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->atse_mtx), ("%s: mutex not initialized",
device_get_nameunit(dev)));
ifp = sc->atse_ifp;
/* Only cleanup if attach succeeded. */
if (device_is_attached(dev)) {
ATSE_LOCK(sc);
atse_stop_locked(sc);
ATSE_UNLOCK(sc);
callout_drain(&sc->atse_tick);
ether_ifdetach(ifp);
}
if (sc->atse_miibus != NULL) {
device_delete_child(dev, sc->atse_miibus);
}
if (ifp != NULL) {
if_free(ifp);
}
mtx_destroy(&sc->atse_mtx);
xdma_channel_free(sc->xchan_tx);
xdma_channel_free(sc->xchan_rx);
xdma_put(sc->xdma_tx);
xdma_put(sc->xdma_rx);
return (0);
}
/* Shared between nexus and fdt implementation. */
void
atse_detach_resources(device_t dev)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
if (sc->atse_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_mem_rid,
sc->atse_mem_res);
sc->atse_mem_res = NULL;
}
}
int
atse_detach_dev(device_t dev)
{
int error;
error = atse_detach(dev);
if (error) {
/* We are basically in undefined state now. */
device_printf(dev, "atse_detach() failed: %d\n", error);
return (error);
}
atse_detach_resources(dev);
return (0);
}
int
atse_miibus_readreg(device_t dev, int phy, int reg)
{
struct atse_softc *sc;
int val;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr) {
return (0);
}
val = PHY_READ_2(sc, reg);
return (val);
}
int
atse_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr) {
return (0);
}
PHY_WRITE_2(sc, reg, data);
return (0);
}
void
atse_miibus_statchg(device_t dev)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t val4;
sc = device_get_softc(dev);
ATSE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->atse_miibus);
ifp = sc->atse_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
return;
}
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* Assume no link. */
sc->atse_flags &= ~ATSE_FLAGS_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
val4 |= BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_100_TX:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_1000_T:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
default:
break;
}
}
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) {
/* Need to stop the MAC? */
return;
}
if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
val4 &= ~BASE_CFG_COMMAND_CONFIG_HD_ENA;
} else {
val4 |= BASE_CFG_COMMAND_CONFIG_HD_ENA;
}
/* flow control? */
/* Make sure the MAC is activated. */
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ENA;
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ENA;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
}
MODULE_DEPEND(atse, ether, 1, 1, 1);
MODULE_DEPEND(atse, miibus, 1, 1, 1);