/*- * Copyright (c) 2009-2012 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ahci.h" #include #include #include #include #include /* local prototypes */ static void ahci_intr(void *data); static void ahci_intr_one(void *data); static void ahci_intr_one_edge(void *data); static int ahci_ch_init(device_t dev); static int ahci_ch_deinit(device_t dev); static int ahci_ch_suspend(device_t dev); static int ahci_ch_resume(device_t dev); static void ahci_ch_pm(void *arg); static void ahci_ch_intr(void *arg); static void ahci_ch_intr_direct(void *arg); static void ahci_ch_intr_main(struct ahci_channel *ch, uint32_t istatus); static void ahci_begin_transaction(struct ahci_channel *ch, union ccb *ccb); static void ahci_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error); static void ahci_execute_transaction(struct ahci_slot *slot); static void ahci_timeout(struct ahci_slot *slot); static void ahci_end_transaction(struct ahci_slot *slot, enum ahci_err_type et); static int ahci_setup_fis(struct ahci_channel *ch, struct ahci_cmd_tab *ctp, union ccb *ccb, int tag); static void ahci_dmainit(device_t dev); static void ahci_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error); static void ahci_dmafini(device_t dev); static void ahci_slotsalloc(device_t dev); static void ahci_slotsfree(device_t dev); static void ahci_reset(struct ahci_channel *ch); static void ahci_start(struct ahci_channel *ch, int fbs); static void ahci_stop(struct ahci_channel *ch); static void ahci_clo(struct ahci_channel *ch); static void ahci_start_fr(struct ahci_channel *ch); static void ahci_stop_fr(struct ahci_channel *ch); static int ahci_sata_connect(struct ahci_channel *ch); static int ahci_sata_phy_reset(struct ahci_channel *ch); static int ahci_wait_ready(struct ahci_channel *ch, int t, int t0); static void ahci_issue_recovery(struct ahci_channel *ch); static void ahci_process_read_log(struct ahci_channel *ch, union ccb *ccb); static void ahci_process_request_sense(struct ahci_channel *ch, union ccb *ccb); static void ahciaction(struct cam_sim *sim, union ccb *ccb); static void ahcipoll(struct cam_sim *sim); static MALLOC_DEFINE(M_AHCI, "AHCI driver", "AHCI driver data buffers"); #define recovery_type spriv_field0 #define RECOVERY_NONE 0 #define RECOVERY_READ_LOG 1 #define RECOVERY_REQUEST_SENSE 2 #define recovery_slot spriv_field1 int ahci_ctlr_setup(device_t dev) { struct ahci_controller *ctlr = device_get_softc(dev); /* Clear interrupts */ ATA_OUTL(ctlr->r_mem, AHCI_IS, ATA_INL(ctlr->r_mem, AHCI_IS)); /* Configure CCC */ if (ctlr->ccc) { ATA_OUTL(ctlr->r_mem, AHCI_CCCP, ATA_INL(ctlr->r_mem, AHCI_PI)); ATA_OUTL(ctlr->r_mem, AHCI_CCCC, (ctlr->ccc << AHCI_CCCC_TV_SHIFT) | (4 << AHCI_CCCC_CC_SHIFT) | AHCI_CCCC_EN); ctlr->cccv = (ATA_INL(ctlr->r_mem, AHCI_CCCC) & AHCI_CCCC_INT_MASK) >> AHCI_CCCC_INT_SHIFT; if (bootverbose) { device_printf(dev, "CCC with %dms/4cmd enabled on vector %d\n", ctlr->ccc, ctlr->cccv); } } /* Enable AHCI interrupts */ ATA_OUTL(ctlr->r_mem, AHCI_GHC, ATA_INL(ctlr->r_mem, AHCI_GHC) | AHCI_GHC_IE); return (0); } int ahci_ctlr_reset(device_t dev) { struct ahci_controller *ctlr = device_get_softc(dev); int timeout; /* Enable AHCI mode */ ATA_OUTL(ctlr->r_mem, AHCI_GHC, AHCI_GHC_AE); /* Reset AHCI controller */ ATA_OUTL(ctlr->r_mem, AHCI_GHC, AHCI_GHC_AE|AHCI_GHC_HR); for (timeout = 1000; timeout > 0; timeout--) { DELAY(1000); if ((ATA_INL(ctlr->r_mem, AHCI_GHC) & AHCI_GHC_HR) == 0) break; } if (timeout == 0) { device_printf(dev, "AHCI controller reset failure\n"); return ENXIO; } /* Reenable AHCI mode */ ATA_OUTL(ctlr->r_mem, AHCI_GHC, AHCI_GHC_AE); return (0); } int ahci_attach(device_t dev) { struct ahci_controller *ctlr = device_get_softc(dev); int error, i, u, speed, unit; u_int32_t version; device_t child; ctlr->dev = dev; ctlr->ccc = 0; resource_int_value(device_get_name(dev), device_get_unit(dev), "ccc", &ctlr->ccc); /* Setup our own memory management for channels. */ ctlr->sc_iomem.rm_start = rman_get_start(ctlr->r_mem); ctlr->sc_iomem.rm_end = rman_get_end(ctlr->r_mem); ctlr->sc_iomem.rm_type = RMAN_ARRAY; ctlr->sc_iomem.rm_descr = "I/O memory addresses"; if ((error = rman_init(&ctlr->sc_iomem)) != 0) { bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid, ctlr->r_mem); return (error); } if ((error = rman_manage_region(&ctlr->sc_iomem, rman_get_start(ctlr->r_mem), rman_get_end(ctlr->r_mem))) != 0) { bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid, ctlr->r_mem); rman_fini(&ctlr->sc_iomem); return (error); } /* Get the HW capabilities */ version = ATA_INL(ctlr->r_mem, AHCI_VS); ctlr->caps = ATA_INL(ctlr->r_mem, AHCI_CAP); if (version >= 0x00010200) ctlr->caps2 = ATA_INL(ctlr->r_mem, AHCI_CAP2); if (ctlr->caps & AHCI_CAP_EMS) ctlr->capsem = ATA_INL(ctlr->r_mem, AHCI_EM_CTL); ctlr->ichannels = ATA_INL(ctlr->r_mem, AHCI_PI); /* Identify and set separate quirks for HBA and RAID f/w Marvells. */ if ((ctlr->quirks & AHCI_Q_ALTSIG) && (ctlr->caps & AHCI_CAP_SPM) == 0) ctlr->quirks |= AHCI_Q_NOBSYRES; if (ctlr->quirks & AHCI_Q_1CH) { ctlr->caps &= ~AHCI_CAP_NPMASK; ctlr->ichannels &= 0x01; } if (ctlr->quirks & AHCI_Q_2CH) { ctlr->caps &= ~AHCI_CAP_NPMASK; ctlr->caps |= 1; ctlr->ichannels &= 0x03; } if (ctlr->quirks & AHCI_Q_4CH) { ctlr->caps &= ~AHCI_CAP_NPMASK; ctlr->caps |= 3; ctlr->ichannels &= 0x0f; } ctlr->channels = MAX(flsl(ctlr->ichannels), (ctlr->caps & AHCI_CAP_NPMASK) + 1); if (ctlr->quirks & AHCI_Q_NOPMP) ctlr->caps &= ~AHCI_CAP_SPM; if (ctlr->quirks & AHCI_Q_NONCQ) ctlr->caps &= ~AHCI_CAP_SNCQ; if ((ctlr->caps & AHCI_CAP_CCCS) == 0) ctlr->ccc = 0; ctlr->emloc = ATA_INL(ctlr->r_mem, AHCI_EM_LOC); /* Create controller-wide DMA tag. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, (ctlr->caps & AHCI_CAP_64BIT) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, 0, NULL, NULL, &ctlr->dma_tag)) { bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid, ctlr->r_mem); rman_fini(&ctlr->sc_iomem); return ENXIO; } ahci_ctlr_setup(dev); /* Setup interrupts. */ if (ahci_setup_interrupt(dev)) { bus_dma_tag_destroy(ctlr->dma_tag); bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid, ctlr->r_mem); rman_fini(&ctlr->sc_iomem); return ENXIO; } i = 0; for (u = ctlr->ichannels; u != 0; u >>= 1) i += (u & 1); ctlr->direct = (ctlr->msi && (ctlr->numirqs > 1 || i <= 3)); resource_int_value(device_get_name(dev), device_get_unit(dev), "direct", &ctlr->direct); /* Announce HW capabilities. */ speed = (ctlr->caps & AHCI_CAP_ISS) >> AHCI_CAP_ISS_SHIFT; device_printf(dev, "AHCI v%x.%02x with %d %sGbps ports, Port Multiplier %s%s\n", ((version >> 20) & 0xf0) + ((version >> 16) & 0x0f), ((version >> 4) & 0xf0) + (version & 0x0f), (ctlr->caps & AHCI_CAP_NPMASK) + 1, ((speed == 1) ? "1.5":((speed == 2) ? "3": ((speed == 3) ? "6":"?"))), (ctlr->caps & AHCI_CAP_SPM) ? "supported" : "not supported", (ctlr->caps & AHCI_CAP_FBSS) ? " with FBS" : ""); if (ctlr->quirks != 0) { device_printf(dev, "quirks=0x%b\n", ctlr->quirks, AHCI_Q_BIT_STRING); } if (bootverbose) { device_printf(dev, "Caps:%s%s%s%s%s%s%s%s %sGbps", (ctlr->caps & AHCI_CAP_64BIT) ? " 64bit":"", (ctlr->caps & AHCI_CAP_SNCQ) ? " NCQ":"", (ctlr->caps & AHCI_CAP_SSNTF) ? " SNTF":"", (ctlr->caps & AHCI_CAP_SMPS) ? " MPS":"", (ctlr->caps & AHCI_CAP_SSS) ? " SS":"", (ctlr->caps & AHCI_CAP_SALP) ? " ALP":"", (ctlr->caps & AHCI_CAP_SAL) ? " AL":"", (ctlr->caps & AHCI_CAP_SCLO) ? " CLO":"", ((speed == 1) ? "1.5":((speed == 2) ? "3": ((speed == 3) ? "6":"?")))); printf("%s%s%s%s%s%s %dcmd%s%s%s %dports\n", (ctlr->caps & AHCI_CAP_SAM) ? " AM":"", (ctlr->caps & AHCI_CAP_SPM) ? " PM":"", (ctlr->caps & AHCI_CAP_FBSS) ? " FBS":"", (ctlr->caps & AHCI_CAP_PMD) ? " PMD":"", (ctlr->caps & AHCI_CAP_SSC) ? " SSC":"", (ctlr->caps & AHCI_CAP_PSC) ? " PSC":"", ((ctlr->caps & AHCI_CAP_NCS) >> AHCI_CAP_NCS_SHIFT) + 1, (ctlr->caps & AHCI_CAP_CCCS) ? " CCC":"", (ctlr->caps & AHCI_CAP_EMS) ? " EM":"", (ctlr->caps & AHCI_CAP_SXS) ? " eSATA":"", (ctlr->caps & AHCI_CAP_NPMASK) + 1); } if (bootverbose && version >= 0x00010200) { device_printf(dev, "Caps2:%s%s%s%s%s%s\n", (ctlr->caps2 & AHCI_CAP2_DESO) ? " DESO":"", (ctlr->caps2 & AHCI_CAP2_SADM) ? " SADM":"", (ctlr->caps2 & AHCI_CAP2_SDS) ? " SDS":"", (ctlr->caps2 & AHCI_CAP2_APST) ? " APST":"", (ctlr->caps2 & AHCI_CAP2_NVMP) ? " NVMP":"", (ctlr->caps2 & AHCI_CAP2_BOH) ? " BOH":""); } /* Attach all channels on this controller */ for (unit = 0; unit < ctlr->channels; unit++) { child = device_add_child(dev, "ahcich", -1); if (child == NULL) { device_printf(dev, "failed to add channel device\n"); continue; } device_set_ivars(child, (void *)(intptr_t)unit); if ((ctlr->ichannels & (1 << unit)) == 0) device_disable(child); } if (ctlr->caps & AHCI_CAP_EMS) { child = device_add_child(dev, "ahciem", -1); if (child == NULL) device_printf(dev, "failed to add enclosure device\n"); else device_set_ivars(child, (void *)(intptr_t)-1); } bus_generic_attach(dev); return 0; } int ahci_detach(device_t dev) { struct ahci_controller *ctlr = device_get_softc(dev); int i; /* Detach & delete all children */ device_delete_children(dev); /* Free interrupts. */ for (i = 0; i < ctlr->numirqs; i++) { if (ctlr->irqs[i].r_irq) { bus_teardown_intr(dev, ctlr->irqs[i].r_irq, ctlr->irqs[i].handle); bus_release_resource(dev, SYS_RES_IRQ, ctlr->irqs[i].r_irq_rid, ctlr->irqs[i].r_irq); } } bus_dma_tag_destroy(ctlr->dma_tag); /* Free memory. */ rman_fini(&ctlr->sc_iomem); if (ctlr->r_mem) bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid, ctlr->r_mem); return (0); } int ahci_setup_interrupt(device_t dev) { struct ahci_controller *ctlr = device_get_softc(dev); int i; /* Check for single MSI vector fallback. */ if (ctlr->numirqs > 1 && (ATA_INL(ctlr->r_mem, AHCI_GHC) & AHCI_GHC_MRSM) != 0) { device_printf(dev, "Falling back to one MSI\n"); ctlr->numirqs = 1; } /* Allocate all IRQs. */ for (i = 0; i < ctlr->numirqs; i++) { ctlr->irqs[i].ctlr = ctlr; ctlr->irqs[i].r_irq_rid = i + (ctlr->msi ? 1 : 0); if (ctlr->channels == 1 && !ctlr->ccc && ctlr->msi) ctlr->irqs[i].mode = AHCI_IRQ_MODE_ONE; else if (ctlr->numirqs == 1 || i >= ctlr->channels || (ctlr->ccc && i == ctlr->cccv)) ctlr->irqs[i].mode = AHCI_IRQ_MODE_ALL; else if (i == ctlr->numirqs - 1) ctlr->irqs[i].mode = AHCI_IRQ_MODE_AFTER; else ctlr->irqs[i].mode = AHCI_IRQ_MODE_ONE; if (!(ctlr->irqs[i].r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &ctlr->irqs[i].r_irq_rid, RF_SHAREABLE | RF_ACTIVE))) { device_printf(dev, "unable to map interrupt\n"); return ENXIO; } if ((bus_setup_intr(dev, ctlr->irqs[i].r_irq, ATA_INTR_FLAGS, NULL, (ctlr->irqs[i].mode != AHCI_IRQ_MODE_ONE) ? ahci_intr : ((ctlr->quirks & AHCI_Q_EDGEIS) ? ahci_intr_one_edge : ahci_intr_one), &ctlr->irqs[i], &ctlr->irqs[i].handle))) { /* SOS XXX release r_irq */ device_printf(dev, "unable to setup interrupt\n"); return ENXIO; } if (ctlr->numirqs > 1) { bus_describe_intr(dev, ctlr->irqs[i].r_irq, ctlr->irqs[i].handle, ctlr->irqs[i].mode == AHCI_IRQ_MODE_ONE ? "ch%d" : "%d", i); } } return (0); } /* * Common case interrupt handler. */ static void ahci_intr(void *data) { struct ahci_controller_irq *irq = data; struct ahci_controller *ctlr = irq->ctlr; u_int32_t is, ise = 0; void *arg; int unit; if (irq->mode == AHCI_IRQ_MODE_ALL) { unit = 0; if (ctlr->ccc) is = ctlr->ichannels; else is = ATA_INL(ctlr->r_mem, AHCI_IS); } else { /* AHCI_IRQ_MODE_AFTER */ unit = irq->r_irq_rid - 1; is = ATA_INL(ctlr->r_mem, AHCI_IS); } /* CCC interrupt is edge triggered. */ if (ctlr->ccc) ise = 1 << ctlr->cccv; /* Some controllers have edge triggered IS. */ if (ctlr->quirks & AHCI_Q_EDGEIS) ise |= is; if (ise != 0) ATA_OUTL(ctlr->r_mem, AHCI_IS, ise); for (; unit < ctlr->channels; unit++) { if ((is & (1 << unit)) != 0 && (arg = ctlr->interrupt[unit].argument)) { ctlr->interrupt[unit].function(arg); } } /* AHCI declares level triggered IS. */ if (!(ctlr->quirks & AHCI_Q_EDGEIS)) ATA_OUTL(ctlr->r_mem, AHCI_IS, is); } /* * Simplified interrupt handler for multivector MSI mode. */ static void ahci_intr_one(void *data) { struct ahci_controller_irq *irq = data; struct ahci_controller *ctlr = irq->ctlr; void *arg; int unit; unit = irq->r_irq_rid - 1; if ((arg = ctlr->interrupt[unit].argument)) ctlr->interrupt[unit].function(arg); /* AHCI declares level triggered IS. */ ATA_OUTL(ctlr->r_mem, AHCI_IS, 1 << unit); } static void ahci_intr_one_edge(void *data) { struct ahci_controller_irq *irq = data; struct ahci_controller *ctlr = irq->ctlr; void *arg; int unit; unit = irq->r_irq_rid - 1; /* Some controllers have edge triggered IS. */ ATA_OUTL(ctlr->r_mem, AHCI_IS, 1 << unit); if ((arg = ctlr->interrupt[unit].argument)) ctlr->interrupt[unit].function(arg); } struct resource * ahci_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct ahci_controller *ctlr = device_get_softc(dev); struct resource *res; long st; int offset, size, unit; unit = (intptr_t)device_get_ivars(child); res = NULL; switch (type) { case SYS_RES_MEMORY: if (unit >= 0) { offset = AHCI_OFFSET + (unit << 7); size = 128; } else if (*rid == 0) { offset = AHCI_EM_CTL; size = 4; } else { offset = (ctlr->emloc & 0xffff0000) >> 14; size = (ctlr->emloc & 0x0000ffff) << 2; if (*rid != 1) { if (*rid == 2 && (ctlr->capsem & (AHCI_EM_XMT | AHCI_EM_SMB)) == 0) offset += size; else break; } } st = rman_get_start(ctlr->r_mem); res = rman_reserve_resource(&ctlr->sc_iomem, st + offset, st + offset + size - 1, size, RF_ACTIVE, child); if (res) { bus_space_handle_t bsh; bus_space_tag_t bst; bsh = rman_get_bushandle(ctlr->r_mem); bst = rman_get_bustag(ctlr->r_mem); bus_space_subregion(bst, bsh, offset, 128, &bsh); rman_set_bushandle(res, bsh); rman_set_bustag(res, bst); } break; case SYS_RES_IRQ: if (*rid == ATA_IRQ_RID) res = ctlr->irqs[0].r_irq; break; } return (res); } int ahci_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { switch (type) { case SYS_RES_MEMORY: rman_release_resource(r); return (0); case SYS_RES_IRQ: if (rid != ATA_IRQ_RID) return ENOENT; return (0); } return (EINVAL); } int ahci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *function, void *argument, void **cookiep) { struct ahci_controller *ctlr = device_get_softc(dev); int unit = (intptr_t)device_get_ivars(child); if (filter != NULL) { printf("ahci.c: we cannot use a filter here\n"); return (EINVAL); } ctlr->interrupt[unit].function = function; ctlr->interrupt[unit].argument = argument; return (0); } int ahci_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { struct ahci_controller *ctlr = device_get_softc(dev); int unit = (intptr_t)device_get_ivars(child); ctlr->interrupt[unit].function = NULL; ctlr->interrupt[unit].argument = NULL; return (0); } int ahci_print_child(device_t dev, device_t child) { int retval, channel; retval = bus_print_child_header(dev, child); channel = (int)(intptr_t)device_get_ivars(child); if (channel >= 0) retval += printf(" at channel %d", channel); retval += bus_print_child_footer(dev, child); return (retval); } int ahci_child_location_str(device_t dev, device_t child, char *buf, size_t buflen) { int channel; channel = (int)(intptr_t)device_get_ivars(child); if (channel >= 0) snprintf(buf, buflen, "channel=%d", channel); return (0); } bus_dma_tag_t ahci_get_dma_tag(device_t dev, device_t child) { struct ahci_controller *ctlr = device_get_softc(dev); return (ctlr->dma_tag); } static int ahci_ch_probe(device_t dev) { device_set_desc_copy(dev, "AHCI channel"); return (0); } static int ahci_ch_attach(device_t dev) { struct ahci_controller *ctlr = device_get_softc(device_get_parent(dev)); struct ahci_channel *ch = device_get_softc(dev); struct cam_devq *devq; int rid, error, i, sata_rev = 0; u_int32_t version; ch->dev = dev; ch->unit = (intptr_t)device_get_ivars(dev); ch->caps = ctlr->caps; ch->caps2 = ctlr->caps2; ch->quirks = ctlr->quirks; ch->vendorid = ctlr->vendorid; ch->deviceid = ctlr->deviceid; ch->subvendorid = ctlr->subvendorid; ch->subdeviceid = ctlr->subdeviceid; ch->numslots = ((ch->caps & AHCI_CAP_NCS) >> AHCI_CAP_NCS_SHIFT) + 1; mtx_init(&ch->mtx, "AHCI channel lock", NULL, MTX_DEF); ch->pm_level = 0; resource_int_value(device_get_name(dev), device_get_unit(dev), "pm_level", &ch->pm_level); STAILQ_INIT(&ch->doneq); if (ch->pm_level > 3) callout_init_mtx(&ch->pm_timer, &ch->mtx, 0); callout_init_mtx(&ch->reset_timer, &ch->mtx, 0); /* JMicron external ports (0) sometimes limited */ if ((ctlr->quirks & AHCI_Q_SATA1_UNIT0) && ch->unit == 0) sata_rev = 1; if (ch->quirks & AHCI_Q_SATA2) sata_rev = 2; resource_int_value(device_get_name(dev), device_get_unit(dev), "sata_rev", &sata_rev); for (i = 0; i < 16; i++) { ch->user[i].revision = sata_rev; ch->user[i].mode = 0; ch->user[i].bytecount = 8192; ch->user[i].tags = ch->numslots; ch->user[i].caps = 0; ch->curr[i] = ch->user[i]; if (ch->pm_level) { ch->user[i].caps = CTS_SATA_CAPS_H_PMREQ | CTS_SATA_CAPS_H_APST | CTS_SATA_CAPS_D_PMREQ | CTS_SATA_CAPS_D_APST; } ch->user[i].caps |= CTS_SATA_CAPS_H_DMAAA | CTS_SATA_CAPS_H_AN; } rid = 0; if (!(ch->r_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE))) return (ENXIO); ahci_dmainit(dev); ahci_slotsalloc(dev); ahci_ch_init(dev); mtx_lock(&ch->mtx); rid = ATA_IRQ_RID; if (!(ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE))) { device_printf(dev, "Unable to map interrupt\n"); error = ENXIO; goto err0; } if ((bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL, ctlr->direct ? ahci_ch_intr_direct : ahci_ch_intr, ch, &ch->ih))) { device_printf(dev, "Unable to setup interrupt\n"); error = ENXIO; goto err1; } ch->chcaps = ATA_INL(ch->r_mem, AHCI_P_CMD); version = ATA_INL(ctlr->r_mem, AHCI_VS); if (version < 0x00010200 && (ctlr->caps & AHCI_CAP_FBSS)) ch->chcaps |= AHCI_P_CMD_FBSCP; if (ch->caps2 & AHCI_CAP2_SDS) ch->chscaps = ATA_INL(ch->r_mem, AHCI_P_DEVSLP); if (bootverbose) { device_printf(dev, "Caps:%s%s%s%s%s%s\n", (ch->chcaps & AHCI_P_CMD_HPCP) ? " HPCP":"", (ch->chcaps & AHCI_P_CMD_MPSP) ? " MPSP":"", (ch->chcaps & AHCI_P_CMD_CPD) ? " CPD":"", (ch->chcaps & AHCI_P_CMD_ESP) ? " ESP":"", (ch->chcaps & AHCI_P_CMD_FBSCP) ? " FBSCP":"", (ch->chscaps & AHCI_P_DEVSLP_DSP) ? " DSP":""); } /* Create the device queue for our SIM. */ devq = cam_simq_alloc(ch->numslots); if (devq == NULL) { device_printf(dev, "Unable to allocate simq\n"); error = ENOMEM; goto err1; } /* Construct SIM entry */ ch->sim = cam_sim_alloc(ahciaction, ahcipoll, "ahcich", ch, device_get_unit(dev), (struct mtx *)&ch->mtx, min(2, ch->numslots), (ch->caps & AHCI_CAP_SNCQ) ? ch->numslots : 0, devq); if (ch->sim == NULL) { cam_simq_free(devq); device_printf(dev, "unable to allocate sim\n"); error = ENOMEM; goto err1; } if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) { device_printf(dev, "unable to register xpt bus\n"); error = ENXIO; goto err2; } if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { device_printf(dev, "unable to create path\n"); error = ENXIO; goto err3; } if (ch->pm_level > 3) { callout_reset(&ch->pm_timer, (ch->pm_level == 4) ? hz / 1000 : hz / 8, ahci_ch_pm, ch); } mtx_unlock(&ch->mtx); return (0); err3: xpt_bus_deregister(cam_sim_path(ch->sim)); err2: cam_sim_free(ch->sim, /*free_devq*/TRUE); err1: bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); err0: bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem); mtx_unlock(&ch->mtx); mtx_destroy(&ch->mtx); return (error); } static int ahci_ch_detach(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); xpt_async(AC_LOST_DEVICE, ch->path, NULL); /* Forget about reset. */ if (ch->resetting) { ch->resetting = 0; xpt_release_simq(ch->sim, TRUE); } xpt_free_path(ch->path); xpt_bus_deregister(cam_sim_path(ch->sim)); cam_sim_free(ch->sim, /*free_devq*/TRUE); mtx_unlock(&ch->mtx); if (ch->pm_level > 3) callout_drain(&ch->pm_timer); callout_drain(&ch->reset_timer); bus_teardown_intr(dev, ch->r_irq, ch->ih); bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq); ahci_ch_deinit(dev); ahci_slotsfree(dev); ahci_dmafini(dev); bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem); mtx_destroy(&ch->mtx); return (0); } static int ahci_ch_init(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); uint64_t work; /* Disable port interrupts */ ATA_OUTL(ch->r_mem, AHCI_P_IE, 0); /* Setup work areas */ work = ch->dma.work_bus + AHCI_CL_OFFSET; ATA_OUTL(ch->r_mem, AHCI_P_CLB, work & 0xffffffff); ATA_OUTL(ch->r_mem, AHCI_P_CLBU, work >> 32); work = ch->dma.rfis_bus; ATA_OUTL(ch->r_mem, AHCI_P_FB, work & 0xffffffff); ATA_OUTL(ch->r_mem, AHCI_P_FBU, work >> 32); /* Activate the channel and power/spin up device */ ATA_OUTL(ch->r_mem, AHCI_P_CMD, (AHCI_P_CMD_ACTIVE | AHCI_P_CMD_POD | AHCI_P_CMD_SUD | ((ch->pm_level == 2 || ch->pm_level == 3) ? AHCI_P_CMD_ALPE : 0) | ((ch->pm_level > 2) ? AHCI_P_CMD_ASP : 0 ))); ahci_start_fr(ch); ahci_start(ch, 1); return (0); } static int ahci_ch_deinit(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); /* Disable port interrupts. */ ATA_OUTL(ch->r_mem, AHCI_P_IE, 0); /* Reset command register. */ ahci_stop(ch); ahci_stop_fr(ch); ATA_OUTL(ch->r_mem, AHCI_P_CMD, 0); /* Allow everything, including partial and slumber modes. */ ATA_OUTL(ch->r_mem, AHCI_P_SCTL, 0); /* Request slumber mode transition and give some time to get there. */ ATA_OUTL(ch->r_mem, AHCI_P_CMD, AHCI_P_CMD_SLUMBER); DELAY(100); /* Disable PHY. */ ATA_OUTL(ch->r_mem, AHCI_P_SCTL, ATA_SC_DET_DISABLE); return (0); } static int ahci_ch_suspend(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); xpt_freeze_simq(ch->sim, 1); /* Forget about reset. */ if (ch->resetting) { ch->resetting = 0; callout_stop(&ch->reset_timer); xpt_release_simq(ch->sim, TRUE); } while (ch->oslots) msleep(ch, &ch->mtx, PRIBIO, "ahcisusp", hz/100); ahci_ch_deinit(dev); mtx_unlock(&ch->mtx); return (0); } static int ahci_ch_resume(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); mtx_lock(&ch->mtx); ahci_ch_init(dev); ahci_reset(ch); xpt_release_simq(ch->sim, TRUE); mtx_unlock(&ch->mtx); return (0); } devclass_t ahcich_devclass; static device_method_t ahcich_methods[] = { DEVMETHOD(device_probe, ahci_ch_probe), DEVMETHOD(device_attach, ahci_ch_attach), DEVMETHOD(device_detach, ahci_ch_detach), DEVMETHOD(device_suspend, ahci_ch_suspend), DEVMETHOD(device_resume, ahci_ch_resume), { 0, 0 } }; static driver_t ahcich_driver = { "ahcich", ahcich_methods, sizeof(struct ahci_channel) }; DRIVER_MODULE(ahcich, ahci, ahcich_driver, ahcich_devclass, 0, 0); struct ahci_dc_cb_args { bus_addr_t maddr; int error; }; static void ahci_dmainit(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); struct ahci_dc_cb_args dcba; size_t rfsize; /* Command area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 1024, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, AHCI_WORK_SIZE, 1, AHCI_WORK_SIZE, 0, NULL, NULL, &ch->dma.work_tag)) goto error; if (bus_dmamem_alloc(ch->dma.work_tag, (void **)&ch->dma.work, BUS_DMA_ZERO, &ch->dma.work_map)) goto error; if (bus_dmamap_load(ch->dma.work_tag, ch->dma.work_map, ch->dma.work, AHCI_WORK_SIZE, ahci_dmasetupc_cb, &dcba, 0) || dcba.error) { bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map); goto error; } ch->dma.work_bus = dcba.maddr; /* FIS receive area. */ if (ch->chcaps & AHCI_P_CMD_FBSCP) rfsize = 4096; else rfsize = 256; if (bus_dma_tag_create(bus_get_dma_tag(dev), rfsize, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rfsize, 1, rfsize, 0, NULL, NULL, &ch->dma.rfis_tag)) goto error; if (bus_dmamem_alloc(ch->dma.rfis_tag, (void **)&ch->dma.rfis, 0, &ch->dma.rfis_map)) goto error; if (bus_dmamap_load(ch->dma.rfis_tag, ch->dma.rfis_map, ch->dma.rfis, rfsize, ahci_dmasetupc_cb, &dcba, 0) || dcba.error) { bus_dmamem_free(ch->dma.rfis_tag, ch->dma.rfis, ch->dma.rfis_map); goto error; } ch->dma.rfis_bus = dcba.maddr; /* Data area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, AHCI_SG_ENTRIES * PAGE_SIZE * ch->numslots, AHCI_SG_ENTRIES, AHCI_PRD_MAX, 0, busdma_lock_mutex, &ch->mtx, &ch->dma.data_tag)) { goto error; } return; error: device_printf(dev, "WARNING - DMA initialization failed\n"); ahci_dmafini(dev); } static void ahci_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct ahci_dc_cb_args *dcba = (struct ahci_dc_cb_args *)xsc; if (!(dcba->error = error)) dcba->maddr = segs[0].ds_addr; } static void ahci_dmafini(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); if (ch->dma.data_tag) { bus_dma_tag_destroy(ch->dma.data_tag); ch->dma.data_tag = NULL; } if (ch->dma.rfis_bus) { bus_dmamap_unload(ch->dma.rfis_tag, ch->dma.rfis_map); bus_dmamem_free(ch->dma.rfis_tag, ch->dma.rfis, ch->dma.rfis_map); ch->dma.rfis_bus = 0; ch->dma.rfis = NULL; } if (ch->dma.work_bus) { bus_dmamap_unload(ch->dma.work_tag, ch->dma.work_map); bus_dmamem_free(ch->dma.work_tag, ch->dma.work, ch->dma.work_map); ch->dma.work_bus = 0; ch->dma.work = NULL; } if (ch->dma.work_tag) { bus_dma_tag_destroy(ch->dma.work_tag); ch->dma.work_tag = NULL; } } static void ahci_slotsalloc(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); int i; /* Alloc and setup command/dma slots */ bzero(ch->slot, sizeof(ch->slot)); for (i = 0; i < ch->numslots; i++) { struct ahci_slot *slot = &ch->slot[i]; slot->ch = ch; slot->slot = i; slot->state = AHCI_SLOT_EMPTY; slot->ccb = NULL; callout_init_mtx(&slot->timeout, &ch->mtx, 0); if (bus_dmamap_create(ch->dma.data_tag, 0, &slot->dma.data_map)) device_printf(ch->dev, "FAILURE - create data_map\n"); } } static void ahci_slotsfree(device_t dev) { struct ahci_channel *ch = device_get_softc(dev); int i; /* Free all dma slots */ for (i = 0; i < ch->numslots; i++) { struct ahci_slot *slot = &ch->slot[i]; callout_drain(&slot->timeout); if (slot->dma.data_map) { bus_dmamap_destroy(ch->dma.data_tag, slot->dma.data_map); slot->dma.data_map = NULL; } } } static int ahci_phy_check_events(struct ahci_channel *ch, u_int32_t serr) { if (((ch->pm_level == 0) && (serr & ATA_SE_PHY_CHANGED)) || ((ch->pm_level != 0 || ch->listening) && (serr & ATA_SE_EXCHANGED))) { u_int32_t status = ATA_INL(ch->r_mem, AHCI_P_SSTS); union ccb *ccb; if (bootverbose) { if ((status & ATA_SS_DET_MASK) != ATA_SS_DET_NO_DEVICE) device_printf(ch->dev, "CONNECT requested\n"); else device_printf(ch->dev, "DISCONNECT requested\n"); } ahci_reset(ch); if ((ccb = xpt_alloc_ccb_nowait()) == NULL) return (0); if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_free_ccb(ccb); return (0); } xpt_rescan(ccb); return (1); } return (0); } static void ahci_cpd_check_events(struct ahci_channel *ch) { u_int32_t status; union ccb *ccb; device_t dev; if (ch->pm_level == 0) return; status = ATA_INL(ch->r_mem, AHCI_P_CMD); if ((status & AHCI_P_CMD_CPD) == 0) return; if (bootverbose) { dev = ch->dev; if (status & AHCI_P_CMD_CPS) { device_printf(dev, "COLD CONNECT requested\n"); } else device_printf(dev, "COLD DISCONNECT requested\n"); } ahci_reset(ch); if ((ccb = xpt_alloc_ccb_nowait()) == NULL) return; if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(ch->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_free_ccb(ccb); return; } xpt_rescan(ccb); } static void ahci_notify_events(struct ahci_channel *ch, u_int32_t status) { struct cam_path *dpath; int i; if (ch->caps & AHCI_CAP_SSNTF) ATA_OUTL(ch->r_mem, AHCI_P_SNTF, status); if (bootverbose) device_printf(ch->dev, "SNTF 0x%04x\n", status); for (i = 0; i < 16; i++) { if ((status & (1 << i)) == 0) continue; if (xpt_create_path(&dpath, NULL, xpt_path_path_id(ch->path), i, 0) == CAM_REQ_CMP) { xpt_async(AC_SCSI_AEN, dpath, NULL); xpt_free_path(dpath); } } } static void ahci_done(struct ahci_channel *ch, union ccb *ccb) { mtx_assert(&ch->mtx, MA_OWNED); if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 || ch->batch == 0) { xpt_done(ccb); return; } STAILQ_INSERT_TAIL(&ch->doneq, &ccb->ccb_h, sim_links.stqe); } static void ahci_ch_intr(void *arg) { struct ahci_channel *ch = (struct ahci_channel *)arg; uint32_t istatus; /* Read interrupt statuses. */ istatus = ATA_INL(ch->r_mem, AHCI_P_IS); if (istatus == 0) return; mtx_lock(&ch->mtx); ahci_ch_intr_main(ch, istatus); mtx_unlock(&ch->mtx); } static void ahci_ch_intr_direct(void *arg) { struct ahci_channel *ch = (struct ahci_channel *)arg; struct ccb_hdr *ccb_h; uint32_t istatus; STAILQ_HEAD(, ccb_hdr) tmp_doneq = STAILQ_HEAD_INITIALIZER(tmp_doneq); /* Read interrupt statuses. */ istatus = ATA_INL(ch->r_mem, AHCI_P_IS); if (istatus == 0) return; mtx_lock(&ch->mtx); ch->batch = 1; ahci_ch_intr_main(ch, istatus); ch->batch = 0; /* * Prevent the possibility of issues caused by processing the queue * while unlocked below by moving the contents to a local queue. */ STAILQ_CONCAT(&tmp_doneq, &ch->doneq); mtx_unlock(&ch->mtx); while ((ccb_h = STAILQ_FIRST(&tmp_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&tmp_doneq, sim_links.stqe); xpt_done_direct((union ccb *)ccb_h); } } static void ahci_ch_pm(void *arg) { struct ahci_channel *ch = (struct ahci_channel *)arg; uint32_t work; if (ch->numrslots != 0) return; work = ATA_INL(ch->r_mem, AHCI_P_CMD); if (ch->pm_level == 4) work |= AHCI_P_CMD_PARTIAL; else work |= AHCI_P_CMD_SLUMBER; ATA_OUTL(ch->r_mem, AHCI_P_CMD, work); } static void ahci_ch_intr_main(struct ahci_channel *ch, uint32_t istatus) { uint32_t cstatus, serr = 0, sntf = 0, ok, err; enum ahci_err_type et; int i, ccs, port, reset = 0; /* Clear interrupt statuses. */ ATA_OUTL(ch->r_mem, AHCI_P_IS, istatus); /* Read command statuses. */ if (ch->numtslots != 0) cstatus = ATA_INL(ch->r_mem, AHCI_P_SACT); else cstatus = 0; if (ch->numrslots != ch->numtslots) cstatus |= ATA_INL(ch->r_mem, AHCI_P_CI); /* Read SNTF in one of possible ways. */ if ((istatus & AHCI_P_IX_SDB) && (ch->pm_present || ch->curr[0].atapi != 0)) { if (ch->caps & AHCI_CAP_SSNTF) sntf = ATA_INL(ch->r_mem, AHCI_P_SNTF); else if (ch->fbs_enabled) { u_int8_t *fis = ch->dma.rfis + 0x58; for (i = 0; i < 16; i++) { if (fis[1] & 0x80) { fis[1] &= 0x7f; sntf |= 1 << i; } fis += 256; } } else { u_int8_t *fis = ch->dma.rfis + 0x58; if (fis[1] & 0x80) sntf = (1 << (fis[1] & 0x0f)); } } /* Process PHY events */ if (istatus & (AHCI_P_IX_PC | AHCI_P_IX_PRC | AHCI_P_IX_OF | AHCI_P_IX_IF | AHCI_P_IX_HBD | AHCI_P_IX_HBF | AHCI_P_IX_TFE)) { serr = ATA_INL(ch->r_mem, AHCI_P_SERR); if (serr) { ATA_OUTL(ch->r_mem, AHCI_P_SERR, serr); reset = ahci_phy_check_events(ch, serr); } } /* Process cold presence detection events */ if ((istatus & AHCI_P_IX_CPD) && !reset) ahci_cpd_check_events(ch); /* Process command errors */ if (istatus & (AHCI_P_IX_OF | AHCI_P_IX_IF | AHCI_P_IX_HBD | AHCI_P_IX_HBF | AHCI_P_IX_TFE)) { ccs = (ATA_INL(ch->r_mem, AHCI_P_CMD) & AHCI_P_CMD_CCS_MASK) >> AHCI_P_CMD_CCS_SHIFT; //device_printf(dev, "%s ERROR is %08x cs %08x ss %08x rs %08x tfd %02x serr %08x fbs %08x ccs %d\n", // __func__, istatus, cstatus, sstatus, ch->rslots, ATA_INL(ch->r_mem, AHCI_P_TFD), // serr, ATA_INL(ch->r_mem, AHCI_P_FBS), ccs); port = -1; if (ch->fbs_enabled) { uint32_t fbs = ATA_INL(ch->r_mem, AHCI_P_FBS); if (fbs & AHCI_P_FBS_SDE) { port = (fbs & AHCI_P_FBS_DWE) >> AHCI_P_FBS_DWE_SHIFT; } else { for (i = 0; i < 16; i++) { if (ch->numrslotspd[i] == 0) continue; if (port == -1) port = i; else if (port != i) { port = -2; break; } } } } err = ch->rslots & cstatus; } else { ccs = 0; err = 0; port = -1; } /* Complete all successfull commands. */ ok = ch->rslots & ~cstatus; for (i = 0; i < ch->numslots; i++) { if ((ok >> i) & 1) ahci_end_transaction(&ch->slot[i], AHCI_ERR_NONE); } /* On error, complete the rest of commands with error statuses. */ if (err) { if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } ahci_done(ch, fccb); } for (i = 0; i < ch->numslots; i++) { /* XXX: reqests in loading state. */ if (((err >> i) & 1) == 0) continue; if (port >= 0 && ch->slot[i].ccb->ccb_h.target_id != port) continue; if (istatus & AHCI_P_IX_TFE) { if (port != -2) { /* Task File Error */ if (ch->numtslotspd[ ch->slot[i].ccb->ccb_h.target_id] == 0) { /* Untagged operation. */ if (i == ccs) et = AHCI_ERR_TFE; else et = AHCI_ERR_INNOCENT; } else { /* Tagged operation. */ et = AHCI_ERR_NCQ; } } else { et = AHCI_ERR_TFE; ch->fatalerr = 1; } } else if (istatus & AHCI_P_IX_IF) { if (ch->numtslots == 0 && i != ccs && port != -2) et = AHCI_ERR_INNOCENT; else et = AHCI_ERR_SATA; } else et = AHCI_ERR_INVALID; ahci_end_transaction(&ch->slot[i], et); } /* * We can't reinit port if there are some other * commands active, use resume to complete them. */ if (ch->rslots != 0 && !ch->recoverycmd) ATA_OUTL(ch->r_mem, AHCI_P_FBS, AHCI_P_FBS_EN | AHCI_P_FBS_DEC); } /* Process NOTIFY events */ if (sntf) ahci_notify_events(ch, sntf); } /* Must be called with channel locked. */ static int ahci_check_collision(struct ahci_channel *ch, union ccb *ccb) { int t = ccb->ccb_h.target_id; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { /* Tagged command while we have no supported tag free. */ if (((~ch->oslots) & (0xffffffff >> (32 - ch->curr[t].tags))) == 0) return (1); /* If we have FBS */ if (ch->fbs_enabled) { /* Tagged command while untagged are active. */ if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] == 0) return (1); } else { /* Tagged command while untagged are active. */ if (ch->numrslots != 0 && ch->numtslots == 0) return (1); /* Tagged command while tagged to other target is active. */ if (ch->numtslots != 0 && ch->taggedtarget != ccb->ccb_h.target_id) return (1); } } else { /* If we have FBS */ if (ch->fbs_enabled) { /* Untagged command while tagged are active. */ if (ch->numrslotspd[t] != 0 && ch->numtslotspd[t] != 0) return (1); } else { /* Untagged command while tagged are active. */ if (ch->numrslots != 0 && ch->numtslots != 0) return (1); } } if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT))) { /* Atomic command while anything active. */ if (ch->numrslots != 0) return (1); } /* We have some atomic command running. */ if (ch->aslots != 0) return (1); return (0); } /* Must be called with channel locked. */ static void ahci_begin_transaction(struct ahci_channel *ch, union ccb *ccb) { struct ahci_slot *slot; int tag, tags; /* Choose empty slot. */ tags = ch->numslots; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) tags = ch->curr[ccb->ccb_h.target_id].tags; if (ch->lastslot + 1 < tags) tag = ffs(~(ch->oslots >> (ch->lastslot + 1))); else tag = 0; if (tag == 0 || tag + ch->lastslot >= tags) tag = ffs(~ch->oslots) - 1; else tag += ch->lastslot; ch->lastslot = tag; /* Occupy chosen slot. */ slot = &ch->slot[tag]; slot->ccb = ccb; /* Stop PM timer. */ if (ch->numrslots == 0 && ch->pm_level > 3) callout_stop(&ch->pm_timer); /* Update channel stats. */ ch->oslots |= (1 << tag); ch->numrslots++; ch->numrslotspd[ccb->ccb_h.target_id]++; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { ch->numtslots++; ch->numtslotspd[ccb->ccb_h.target_id]++; ch->taggedtarget = ccb->ccb_h.target_id; } if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT))) ch->aslots |= (1 << tag); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { slot->state = AHCI_SLOT_LOADING; bus_dmamap_load_ccb(ch->dma.data_tag, slot->dma.data_map, ccb, ahci_dmasetprd, slot, 0); } else { slot->dma.nsegs = 0; ahci_execute_transaction(slot); } } /* Locked by busdma engine. */ static void ahci_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct ahci_slot *slot = arg; struct ahci_channel *ch = slot->ch; struct ahci_cmd_tab *ctp; struct ahci_dma_prd *prd; int i; if (error) { device_printf(ch->dev, "DMA load error\n"); ahci_end_transaction(slot, AHCI_ERR_INVALID); return; } KASSERT(nsegs <= AHCI_SG_ENTRIES, ("too many DMA segment entries\n")); /* Get a piece of the workspace for this request */ ctp = (struct ahci_cmd_tab *) (ch->dma.work + AHCI_CT_OFFSET + (AHCI_CT_SIZE * slot->slot)); /* Fill S/G table */ prd = &ctp->prd_tab[0]; for (i = 0; i < nsegs; i++) { prd[i].dba = htole64(segs[i].ds_addr); prd[i].dbc = htole32((segs[i].ds_len - 1) & AHCI_PRD_MASK); } slot->dma.nsegs = nsegs; bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map, ((slot->ccb->ccb_h.flags & CAM_DIR_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); ahci_execute_transaction(slot); } /* Must be called with channel locked. */ static void ahci_execute_transaction(struct ahci_slot *slot) { struct ahci_channel *ch = slot->ch; struct ahci_cmd_tab *ctp; struct ahci_cmd_list *clp; union ccb *ccb = slot->ccb; int port = ccb->ccb_h.target_id & 0x0f; int fis_size, i, softreset; uint8_t *fis = ch->dma.rfis + 0x40; uint8_t val; /* Get a piece of the workspace for this request */ ctp = (struct ahci_cmd_tab *) (ch->dma.work + AHCI_CT_OFFSET + (AHCI_CT_SIZE * slot->slot)); /* Setup the FIS for this request */ if (!(fis_size = ahci_setup_fis(ch, ctp, ccb, slot->slot))) { device_printf(ch->dev, "Setting up SATA FIS failed\n"); ahci_end_transaction(slot, AHCI_ERR_INVALID); return; } /* Setup the command list entry */ clp = (struct ahci_cmd_list *) (ch->dma.work + AHCI_CL_OFFSET + (AHCI_CL_SIZE * slot->slot)); clp->cmd_flags = htole16( (ccb->ccb_h.flags & CAM_DIR_OUT ? AHCI_CMD_WRITE : 0) | (ccb->ccb_h.func_code == XPT_SCSI_IO ? (AHCI_CMD_ATAPI | AHCI_CMD_PREFETCH) : 0) | (fis_size / sizeof(u_int32_t)) | (port << 12)); clp->prd_length = htole16(slot->dma.nsegs); /* Special handling for Soft Reset command. */ if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL)) { if (ccb->ataio.cmd.control & ATA_A_RESET) { softreset = 1; /* Kick controller into sane state */ ahci_stop(ch); ahci_clo(ch); ahci_start(ch, 0); clp->cmd_flags |= AHCI_CMD_RESET | AHCI_CMD_CLR_BUSY; } else { softreset = 2; /* Prepare FIS receive area for check. */ for (i = 0; i < 20; i++) fis[i] = 0xff; } } else softreset = 0; clp->bytecount = 0; clp->cmd_table_phys = htole64(ch->dma.work_bus + AHCI_CT_OFFSET + (AHCI_CT_SIZE * slot->slot)); bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ch->dma.rfis_tag, ch->dma.rfis_map, BUS_DMASYNC_PREREAD); /* Set ACTIVE bit for NCQ commands. */ if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { ATA_OUTL(ch->r_mem, AHCI_P_SACT, 1 << slot->slot); } /* If FBS is enabled, set PMP port. */ if (ch->fbs_enabled) { ATA_OUTL(ch->r_mem, AHCI_P_FBS, AHCI_P_FBS_EN | (port << AHCI_P_FBS_DEV_SHIFT)); } /* Issue command to the controller. */ slot->state = AHCI_SLOT_RUNNING; ch->rslots |= (1 << slot->slot); ATA_OUTL(ch->r_mem, AHCI_P_CI, (1 << slot->slot)); /* Device reset commands doesn't interrupt. Poll them. */ if (ccb->ccb_h.func_code == XPT_ATA_IO && (ccb->ataio.cmd.command == ATA_DEVICE_RESET || softreset)) { int count, timeout = ccb->ccb_h.timeout * 100; enum ahci_err_type et = AHCI_ERR_NONE; for (count = 0; count < timeout; count++) { DELAY(10); if (!(ATA_INL(ch->r_mem, AHCI_P_CI) & (1 << slot->slot))) break; if ((ATA_INL(ch->r_mem, AHCI_P_TFD) & ATA_S_ERROR) && softreset != 1) { #if 0 device_printf(ch->dev, "Poll error on slot %d, TFD: %04x\n", slot->slot, ATA_INL(ch->r_mem, AHCI_P_TFD)); #endif et = AHCI_ERR_TFE; break; } /* Workaround for ATI SB600/SB700 chipsets. */ if (ccb->ccb_h.target_id == 15 && (ch->quirks & AHCI_Q_ATI_PMP_BUG) && (ATA_INL(ch->r_mem, AHCI_P_IS) & AHCI_P_IX_IPM)) { et = AHCI_ERR_TIMEOUT; break; } } /* * Marvell HBAs with non-RAID firmware do not wait for * readiness after soft reset, so we have to wait here. * Marvell RAIDs do not have this problem, but instead * sometimes forget to update FIS receive area, breaking * this wait. */ if ((ch->quirks & AHCI_Q_NOBSYRES) == 0 && (ch->quirks & AHCI_Q_ATI_PMP_BUG) == 0 && softreset == 2 && et == AHCI_ERR_NONE) { while ((val = fis[2]) & ATA_S_BUSY) { DELAY(10); if (count++ >= timeout) break; } } if (timeout && (count >= timeout)) { device_printf(ch->dev, "Poll timeout on slot %d port %d\n", slot->slot, port); device_printf(ch->dev, "is %08x cs %08x ss %08x " "rs %08x tfd %02x serr %08x cmd %08x\n", ATA_INL(ch->r_mem, AHCI_P_IS), ATA_INL(ch->r_mem, AHCI_P_CI), ATA_INL(ch->r_mem, AHCI_P_SACT), ch->rslots, ATA_INL(ch->r_mem, AHCI_P_TFD), ATA_INL(ch->r_mem, AHCI_P_SERR), ATA_INL(ch->r_mem, AHCI_P_CMD)); et = AHCI_ERR_TIMEOUT; } /* Kick controller into sane state and enable FBS. */ if (softreset == 2) ch->eslots |= (1 << slot->slot); ahci_end_transaction(slot, et); return; } /* Start command execution timeout */ callout_reset(&slot->timeout, (int)ccb->ccb_h.timeout * hz / 2000, (timeout_t*)ahci_timeout, slot); return; } /* Must be called with channel locked. */ static void ahci_process_timeout(struct ahci_channel *ch) { int i; mtx_assert(&ch->mtx, MA_OWNED); /* Handle the rest of commands. */ for (i = 0; i < ch->numslots; i++) { /* Do we have a running request on slot? */ if (ch->slot[i].state < AHCI_SLOT_RUNNING) continue; ahci_end_transaction(&ch->slot[i], AHCI_ERR_TIMEOUT); } } /* Must be called with channel locked. */ static void ahci_rearm_timeout(struct ahci_channel *ch) { int i; mtx_assert(&ch->mtx, MA_OWNED); for (i = 0; i < ch->numslots; i++) { struct ahci_slot *slot = &ch->slot[i]; /* Do we have a running request on slot? */ if (slot->state < AHCI_SLOT_RUNNING) continue; if ((ch->toslots & (1 << i)) == 0) continue; callout_reset(&slot->timeout, (int)slot->ccb->ccb_h.timeout * hz / 2000, (timeout_t*)ahci_timeout, slot); } } /* Locked by callout mechanism. */ static void ahci_timeout(struct ahci_slot *slot) { struct ahci_channel *ch = slot->ch; device_t dev = ch->dev; uint32_t sstatus; int ccs; int i; /* Check for stale timeout. */ if (slot->state < AHCI_SLOT_RUNNING) return; /* Check if slot was not being executed last time we checked. */ if (slot->state < AHCI_SLOT_EXECUTING) { /* Check if slot started executing. */ sstatus = ATA_INL(ch->r_mem, AHCI_P_SACT); ccs = (ATA_INL(ch->r_mem, AHCI_P_CMD) & AHCI_P_CMD_CCS_MASK) >> AHCI_P_CMD_CCS_SHIFT; if ((sstatus & (1 << slot->slot)) != 0 || ccs == slot->slot || ch->fbs_enabled || ch->wrongccs) slot->state = AHCI_SLOT_EXECUTING; else if ((ch->rslots & (1 << ccs)) == 0) { ch->wrongccs = 1; slot->state = AHCI_SLOT_EXECUTING; } callout_reset(&slot->timeout, (int)slot->ccb->ccb_h.timeout * hz / 2000, (timeout_t*)ahci_timeout, slot); return; } device_printf(dev, "Timeout on slot %d port %d\n", slot->slot, slot->ccb->ccb_h.target_id & 0x0f); device_printf(dev, "is %08x cs %08x ss %08x rs %08x tfd %02x " "serr %08x cmd %08x\n", ATA_INL(ch->r_mem, AHCI_P_IS), ATA_INL(ch->r_mem, AHCI_P_CI), ATA_INL(ch->r_mem, AHCI_P_SACT), ch->rslots, ATA_INL(ch->r_mem, AHCI_P_TFD), ATA_INL(ch->r_mem, AHCI_P_SERR), ATA_INL(ch->r_mem, AHCI_P_CMD)); /* Handle frozen command. */ if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } ahci_done(ch, fccb); } if (!ch->fbs_enabled && !ch->wrongccs) { /* Without FBS we know real timeout source. */ ch->fatalerr = 1; /* Handle command with timeout. */ ahci_end_transaction(&ch->slot[slot->slot], AHCI_ERR_TIMEOUT); /* Handle the rest of commands. */ for (i = 0; i < ch->numslots; i++) { /* Do we have a running request on slot? */ if (ch->slot[i].state < AHCI_SLOT_RUNNING) continue; ahci_end_transaction(&ch->slot[i], AHCI_ERR_INNOCENT); } } else { /* With FBS we wait for other commands timeout and pray. */ if (ch->toslots == 0) xpt_freeze_simq(ch->sim, 1); ch->toslots |= (1 << slot->slot); if ((ch->rslots & ~ch->toslots) == 0) ahci_process_timeout(ch); else device_printf(dev, " ... waiting for slots %08x\n", ch->rslots & ~ch->toslots); } } /* Must be called with channel locked. */ static void ahci_end_transaction(struct ahci_slot *slot, enum ahci_err_type et) { struct ahci_channel *ch = slot->ch; union ccb *ccb = slot->ccb; struct ahci_cmd_list *clp; int lastto; uint32_t sig; bus_dmamap_sync(ch->dma.work_tag, ch->dma.work_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); clp = (struct ahci_cmd_list *) (ch->dma.work + AHCI_CL_OFFSET + (AHCI_CL_SIZE * slot->slot)); /* Read result registers to the result struct * May be incorrect if several commands finished same time, * so read only when sure or have to. */ if (ccb->ccb_h.func_code == XPT_ATA_IO) { struct ata_res *res = &ccb->ataio.res; if ((et == AHCI_ERR_TFE) || (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT)) { u_int8_t *fis = ch->dma.rfis + 0x40; bus_dmamap_sync(ch->dma.rfis_tag, ch->dma.rfis_map, BUS_DMASYNC_POSTREAD); if (ch->fbs_enabled) { fis += ccb->ccb_h.target_id * 256; res->status = fis[2]; res->error = fis[3]; } else { uint16_t tfd = ATA_INL(ch->r_mem, AHCI_P_TFD); res->status = tfd; res->error = tfd >> 8; } res->lba_low = fis[4]; res->lba_mid = fis[5]; res->lba_high = fis[6]; res->device = fis[7]; res->lba_low_exp = fis[8]; res->lba_mid_exp = fis[9]; res->lba_high_exp = fis[10]; res->sector_count = fis[12]; res->sector_count_exp = fis[13]; /* * Some weird controllers do not return signature in * FIS receive area. Read it from PxSIG register. */ if ((ch->quirks & AHCI_Q_ALTSIG) && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET) == 0) { sig = ATA_INL(ch->r_mem, AHCI_P_SIG); res->lba_high = sig >> 24; res->lba_mid = sig >> 16; res->lba_low = sig >> 8; res->sector_count = sig; } } else bzero(res, sizeof(*res)); if ((ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) == 0 && (ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && (ch->quirks & AHCI_Q_NOCOUNT) == 0) { ccb->ataio.resid = ccb->ataio.dxfer_len - le32toh(clp->bytecount); } } else { if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && (ch->quirks & AHCI_Q_NOCOUNT) == 0) { ccb->csio.resid = ccb->csio.dxfer_len - le32toh(clp->bytecount); } } if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map, (ccb->ccb_h.flags & CAM_DIR_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ch->dma.data_tag, slot->dma.data_map); } if (et != AHCI_ERR_NONE) ch->eslots |= (1 << slot->slot); /* In case of error, freeze device for proper recovery. */ if ((et != AHCI_ERR_NONE) && (!ch->recoverycmd) && !(ccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(ccb->ccb_h.path, 1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } /* Set proper result status. */ ccb->ccb_h.status &= ~CAM_STATUS_MASK; switch (et) { case AHCI_ERR_NONE: ccb->ccb_h.status |= CAM_REQ_CMP; if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.scsi_status = SCSI_STATUS_OK; break; case AHCI_ERR_INVALID: ch->fatalerr = 1; ccb->ccb_h.status |= CAM_REQ_INVALID; break; case AHCI_ERR_INNOCENT: ccb->ccb_h.status |= CAM_REQUEUE_REQ; break; case AHCI_ERR_TFE: case AHCI_ERR_NCQ: if (ccb->ccb_h.func_code == XPT_SCSI_IO) { ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND; } else { ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR; } break; case AHCI_ERR_SATA: ch->fatalerr = 1; if (!ch->recoverycmd) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_RELEASE_SIMQ; } ccb->ccb_h.status |= CAM_UNCOR_PARITY; break; case AHCI_ERR_TIMEOUT: if (!ch->recoverycmd) { xpt_freeze_simq(ch->sim, 1); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_RELEASE_SIMQ; } ccb->ccb_h.status |= CAM_CMD_TIMEOUT; break; default: ch->fatalerr = 1; ccb->ccb_h.status |= CAM_REQ_CMP_ERR; } /* Free slot. */ ch->oslots &= ~(1 << slot->slot); ch->rslots &= ~(1 << slot->slot); ch->aslots &= ~(1 << slot->slot); slot->state = AHCI_SLOT_EMPTY; slot->ccb = NULL; /* Update channel stats. */ ch->numrslots--; ch->numrslotspd[ccb->ccb_h.target_id]--; if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) { ch->numtslots--; ch->numtslotspd[ccb->ccb_h.target_id]--; } /* Cancel timeout state if request completed normally. */ if (et != AHCI_ERR_TIMEOUT) { lastto = (ch->toslots == (1 << slot->slot)); ch->toslots &= ~(1 << slot->slot); if (lastto) xpt_release_simq(ch->sim, TRUE); } /* If it was first request of reset sequence and there is no error, * proceed to second request. */ if ((ccb->ccb_h.func_code == XPT_ATA_IO) && (ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) && (ccb->ataio.cmd.control & ATA_A_RESET) && et == AHCI_ERR_NONE) { ccb->ataio.cmd.control &= ~ATA_A_RESET; ahci_begin_transaction(ch, ccb); return; } /* If it was our READ LOG command - process it. */ if (ccb->ccb_h.recovery_type == RECOVERY_READ_LOG) { ahci_process_read_log(ch, ccb); /* If it was our REQUEST SENSE command - process it. */ } else if (ccb->ccb_h.recovery_type == RECOVERY_REQUEST_SENSE) { ahci_process_request_sense(ch, ccb); /* If it was NCQ or ATAPI command error, put result on hold. */ } else if (et == AHCI_ERR_NCQ || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR && (ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)) { ch->hold[slot->slot] = ccb; ch->numhslots++; } else ahci_done(ch, ccb); /* If we have no other active commands, ... */ if (ch->rslots == 0) { /* if there was fatal error - reset port. */ if (ch->toslots != 0 || ch->fatalerr) { ahci_reset(ch); } else { /* if we have slots in error, we can reinit port. */ if (ch->eslots != 0) { ahci_stop(ch); ahci_clo(ch); ahci_start(ch, 1); } /* if there commands on hold, we can do READ LOG. */ if (!ch->recoverycmd && ch->numhslots) ahci_issue_recovery(ch); } /* If all the rest of commands are in timeout - give them chance. */ } else if ((ch->rslots & ~ch->toslots) == 0 && et != AHCI_ERR_TIMEOUT) ahci_rearm_timeout(ch); /* Unfreeze frozen command. */ if (ch->frozen && !ahci_check_collision(ch, ch->frozen)) { union ccb *fccb = ch->frozen; ch->frozen = NULL; ahci_begin_transaction(ch, fccb); xpt_release_simq(ch->sim, TRUE); } /* Start PM timer. */ if (ch->numrslots == 0 && ch->pm_level > 3 && (ch->curr[ch->pm_present ? 15 : 0].caps & CTS_SATA_CAPS_D_PMREQ)) { callout_schedule(&ch->pm_timer, (ch->pm_level == 4) ? hz / 1000 : hz / 8); } } static void ahci_issue_recovery(struct ahci_channel *ch) { union ccb *ccb; struct ccb_ataio *ataio; struct ccb_scsiio *csio; int i; /* Find some held command. */ for (i = 0; i < ch->numslots; i++) { if (ch->hold[i]) break; } ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { device_printf(ch->dev, "Unable to allocate recovery command\n"); completeall: /* We can't do anything -- complete held commands. */ for (i = 0; i < ch->numslots; i++) { if (ch->hold[i] == NULL) continue; ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_RESRC_UNAVAIL; ahci_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } ahci_reset(ch); return; } ccb->ccb_h = ch->hold[i]->ccb_h; /* Reuse old header. */ if (ccb->ccb_h.func_code == XPT_ATA_IO) { /* READ LOG */ ccb->ccb_h.recovery_type = RECOVERY_READ_LOG; ccb->ccb_h.func_code = XPT_ATA_IO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->ccb_h.timeout = 1000; /* 1s should be enough. */ ataio = &ccb->ataio; ataio->data_ptr = malloc(512, M_AHCI, M_NOWAIT); if (ataio->data_ptr == NULL) { xpt_free_ccb(ccb); device_printf(ch->dev, "Unable to allocate memory for READ LOG command\n"); goto completeall; } ataio->dxfer_len = 512; bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_48BIT; ataio->cmd.command = 0x2F; /* READ LOG EXT */ ataio->cmd.sector_count = 1; ataio->cmd.sector_count_exp = 0; ataio->cmd.lba_low = 0x10; ataio->cmd.lba_mid = 0; ataio->cmd.lba_mid_exp = 0; } else { /* REQUEST SENSE */ ccb->ccb_h.recovery_type = RECOVERY_REQUEST_SENSE; ccb->ccb_h.recovery_slot = i; ccb->ccb_h.func_code = XPT_SCSI_IO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->ccb_h.status = 0; ccb->ccb_h.timeout = 1000; /* 1s should be enough. */ csio = &ccb->csio; csio->data_ptr = (void *)&ch->hold[i]->csio.sense_data; csio->dxfer_len = ch->hold[i]->csio.sense_len; csio->cdb_len = 6; bzero(&csio->cdb_io, sizeof(csio->cdb_io)); csio->cdb_io.cdb_bytes[0] = 0x03; csio->cdb_io.cdb_bytes[4] = csio->dxfer_len; } /* Freeze SIM while doing recovery. */ ch->recoverycmd = 1; xpt_freeze_simq(ch->sim, 1); ahci_begin_transaction(ch, ccb); } static void ahci_process_read_log(struct ahci_channel *ch, union ccb *ccb) { uint8_t *data; struct ata_res *res; int i; ch->recoverycmd = 0; data = ccb->ataio.data_ptr; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP && (data[0] & 0x80) == 0) { for (i = 0; i < ch->numslots; i++) { if (!ch->hold[i]) continue; if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO) continue; if ((data[0] & 0x1F) == i) { res = &ch->hold[i]->ataio.res; res->status = data[2]; res->error = data[3]; res->lba_low = data[4]; res->lba_mid = data[5]; res->lba_high = data[6]; res->device = data[7]; res->lba_low_exp = data[8]; res->lba_mid_exp = data[9]; res->lba_high_exp = data[10]; res->sector_count = data[12]; res->sector_count_exp = data[13]; } else { ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_REQUEUE_REQ; } ahci_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } } else { if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) device_printf(ch->dev, "Error while READ LOG EXT\n"); else if ((data[0] & 0x80) == 0) { device_printf(ch->dev, "Non-queued command error in READ LOG EXT\n"); } for (i = 0; i < ch->numslots; i++) { if (!ch->hold[i]) continue; if (ch->hold[i]->ccb_h.func_code != XPT_ATA_IO) continue; ahci_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } } free(ccb->ataio.data_ptr, M_AHCI); xpt_free_ccb(ccb); xpt_release_simq(ch->sim, TRUE); } static void ahci_process_request_sense(struct ahci_channel *ch, union ccb *ccb) { int i; ch->recoverycmd = 0; i = ccb->ccb_h.recovery_slot; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { ch->hold[i]->ccb_h.status |= CAM_AUTOSNS_VALID; } else { ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK; ch->hold[i]->ccb_h.status |= CAM_AUTOSENSE_FAIL; } ahci_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; xpt_free_ccb(ccb); xpt_release_simq(ch->sim, TRUE); } static void ahci_start(struct ahci_channel *ch, int fbs) { u_int32_t cmd; /* Clear SATA error register */ ATA_OUTL(ch->r_mem, AHCI_P_SERR, 0xFFFFFFFF); /* Clear any interrupts pending on this channel */ ATA_OUTL(ch->r_mem, AHCI_P_IS, 0xFFFFFFFF); /* Configure FIS-based switching if supported. */ if (ch->chcaps & AHCI_P_CMD_FBSCP) { ch->fbs_enabled = (fbs && ch->pm_present) ? 1 : 0; ATA_OUTL(ch->r_mem, AHCI_P_FBS, ch->fbs_enabled ? AHCI_P_FBS_EN : 0); } /* Start operations on this channel */ cmd = ATA_INL(ch->r_mem, AHCI_P_CMD); cmd &= ~AHCI_P_CMD_PMA; ATA_OUTL(ch->r_mem, AHCI_P_CMD, cmd | AHCI_P_CMD_ST | (ch->pm_present ? AHCI_P_CMD_PMA : 0)); } static void ahci_stop(struct ahci_channel *ch) { u_int32_t cmd; int timeout; /* Kill all activity on this channel */ cmd = ATA_INL(ch->r_mem, AHCI_P_CMD); ATA_OUTL(ch->r_mem, AHCI_P_CMD, cmd & ~AHCI_P_CMD_ST); /* Wait for activity stop. */ timeout = 0; do { DELAY(10); if (timeout++ > 50000) { device_printf(ch->dev, "stopping AHCI engine failed\n"); break; } } while (ATA_INL(ch->r_mem, AHCI_P_CMD) & AHCI_P_CMD_CR); ch->eslots = 0; } static void ahci_clo(struct ahci_channel *ch) { u_int32_t cmd; int timeout; /* Issue Command List Override if supported */ if (ch->caps & AHCI_CAP_SCLO) { cmd = ATA_INL(ch->r_mem, AHCI_P_CMD); cmd |= AHCI_P_CMD_CLO; ATA_OUTL(ch->r_mem, AHCI_P_CMD, cmd); timeout = 0; do { DELAY(10); if (timeout++ > 50000) { device_printf(ch->dev, "executing CLO failed\n"); break; } } while (ATA_INL(ch->r_mem, AHCI_P_CMD) & AHCI_P_CMD_CLO); } } static void ahci_stop_fr(struct ahci_channel *ch) { u_int32_t cmd; int timeout; /* Kill all FIS reception on this channel */ cmd = ATA_INL(ch->r_mem, AHCI_P_CMD); ATA_OUTL(ch->r_mem, AHCI_P_CMD, cmd & ~AHCI_P_CMD_FRE); /* Wait for FIS reception stop. */ timeout = 0; do { DELAY(10); if (timeout++ > 50000) { device_printf(ch->dev, "stopping AHCI FR engine failed\n"); break; } } while (ATA_INL(ch->r_mem, AHCI_P_CMD) & AHCI_P_CMD_FR); } static void ahci_start_fr(struct ahci_channel *ch) { u_int32_t cmd; /* Start FIS reception on this channel */ cmd = ATA_INL(ch->r_mem, AHCI_P_CMD); ATA_OUTL(ch->r_mem, AHCI_P_CMD, cmd | AHCI_P_CMD_FRE); } static int ahci_wait_ready(struct ahci_channel *ch, int t, int t0) { int timeout = 0; uint32_t val; while ((val = ATA_INL(ch->r_mem, AHCI_P_TFD)) & (ATA_S_BUSY | ATA_S_DRQ)) { if (timeout > t) { if (t != 0) { device_printf(ch->dev, "AHCI reset: device not ready after %dms " "(tfd = %08x)\n", MAX(t, 0) + t0, val); } return (EBUSY); } DELAY(1000); timeout++; } if (bootverbose) device_printf(ch->dev, "AHCI reset: device ready after %dms\n", timeout + t0); return (0); } static void ahci_reset_to(void *arg) { struct ahci_channel *ch = arg; if (ch->resetting == 0) return; ch->resetting--; if (ahci_wait_ready(ch, ch->resetting == 0 ? -1 : 0, (310 - ch->resetting) * 100) == 0) { ch->resetting = 0; ahci_start(ch, 1); xpt_release_simq(ch->sim, TRUE); return; } if (ch->resetting == 0) { ahci_clo(ch); ahci_start(ch, 1); xpt_release_simq(ch->sim, TRUE); return; } callout_schedule(&ch->reset_timer, hz / 10); } static void ahci_reset(struct ahci_channel *ch) { struct ahci_controller *ctlr = device_get_softc(device_get_parent(ch->dev)); int i; xpt_freeze_simq(ch->sim, 1); if (bootverbose) device_printf(ch->dev, "AHCI reset...\n"); /* Forget about previous reset. */ if (ch->resetting) { ch->resetting = 0; callout_stop(&ch->reset_timer); xpt_release_simq(ch->sim, TRUE); } /* Requeue freezed command. */ if (ch->frozen) { union ccb *fccb = ch->frozen; ch->frozen = NULL; fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ; if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) { xpt_freeze_devq(fccb->ccb_h.path, 1); fccb->ccb_h.status |= CAM_DEV_QFRZN; } ahci_done(ch, fccb); } /* Kill the engine and requeue all running commands. */ ahci_stop(ch); for (i = 0; i < ch->numslots; i++) { /* Do we have a running request on slot? */ if (ch->slot[i].state < AHCI_SLOT_RUNNING) continue; /* XXX; Commands in loading state. */ ahci_end_transaction(&ch->slot[i], AHCI_ERR_INNOCENT); } for (i = 0; i < ch->numslots; i++) { if (!ch->hold[i]) continue; ahci_done(ch, ch->hold[i]); ch->hold[i] = NULL; ch->numhslots--; } if (ch->toslots != 0) xpt_release_simq(ch->sim, TRUE); ch->eslots = 0; ch->toslots = 0; ch->wrongccs = 0; ch->fatalerr = 0; /* Tell the XPT about the event */ xpt_async(AC_BUS_RESET, ch->path, NULL); /* Disable port interrupts */ ATA_OUTL(ch->r_mem, AHCI_P_IE, 0); /* Reset and reconnect PHY, */ if (!ahci_sata_phy_reset(ch)) { if (bootverbose) device_printf(ch->dev, "AHCI reset: device not found\n"); ch->devices = 0; /* Enable wanted port interrupts */ ATA_OUTL(ch->r_mem, AHCI_P_IE, (((ch->pm_level != 0) ? AHCI_P_IX_CPD | AHCI_P_IX_MP : 0) | AHCI_P_IX_PRC | AHCI_P_IX_PC)); xpt_release_simq(ch->sim, TRUE); return; } if (bootverbose) device_printf(ch->dev, "AHCI reset: device found\n"); /* Wait for clearing busy status. */ if (ahci_wait_ready(ch, dumping ? 31000 : 0, 0)) { if (dumping) ahci_clo(ch); else ch->resetting = 310; } ch->devices = 1; /* Enable wanted port interrupts */ ATA_OUTL(ch->r_mem, AHCI_P_IE, (((ch->pm_level != 0) ? AHCI_P_IX_CPD | AHCI_P_IX_MP : 0) | AHCI_P_IX_TFE | AHCI_P_IX_HBF | AHCI_P_IX_HBD | AHCI_P_IX_IF | AHCI_P_IX_OF | ((ch->pm_level == 0) ? AHCI_P_IX_PRC : 0) | AHCI_P_IX_PC | AHCI_P_IX_DP | AHCI_P_IX_UF | (ctlr->ccc ? 0 : AHCI_P_IX_SDB) | AHCI_P_IX_DS | AHCI_P_IX_PS | (ctlr->ccc ? 0 : AHCI_P_IX_DHR))); if (ch->resetting) callout_reset(&ch->reset_timer, hz / 10, ahci_reset_to, ch); else { ahci_start(ch, 1); xpt_release_simq(ch->sim, TRUE); } } static int ahci_setup_fis(struct ahci_channel *ch, struct ahci_cmd_tab *ctp, union ccb *ccb, int tag) { u_int8_t *fis = &ctp->cfis[0]; bzero(fis, 20); fis[0] = 0x27; /* host to device */ fis[1] = (ccb->ccb_h.target_id & 0x0f); if (ccb->ccb_h.func_code == XPT_SCSI_IO) { fis[1] |= 0x80; fis[2] = ATA_PACKET_CMD; if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE && ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA) fis[3] = ATA_F_DMA; else { fis[5] = ccb->csio.dxfer_len; fis[6] = ccb->csio.dxfer_len >> 8; } fis[7] = ATA_D_LBA; fis[15] = ATA_A_4BIT; bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ? ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes, ctp->acmd, ccb->csio.cdb_len); bzero(ctp->acmd + ccb->csio.cdb_len, 32 - ccb->csio.cdb_len); } else if ((ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) == 0) { fis[1] |= 0x80; fis[2] = ccb->ataio.cmd.command; fis[3] = ccb->ataio.cmd.features; fis[4] = ccb->ataio.cmd.lba_low; fis[5] = ccb->ataio.cmd.lba_mid; fis[6] = ccb->ataio.cmd.lba_high; fis[7] = ccb->ataio.cmd.device; fis[8] = ccb->ataio.cmd.lba_low_exp; fis[9] = ccb->ataio.cmd.lba_mid_exp; fis[10] = ccb->ataio.cmd.lba_high_exp; fis[11] = ccb->ataio.cmd.features_exp; if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) { fis[12] = tag << 3; fis[13] = 0; } else { fis[12] = ccb->ataio.cmd.sector_count; fis[13] = ccb->ataio.cmd.sector_count_exp; } fis[15] = ATA_A_4BIT; } else { fis[15] = ccb->ataio.cmd.control; } return (20); } static int ahci_sata_connect(struct ahci_channel *ch) { u_int32_t status; int timeout, found = 0; /* Wait up to 100ms for "connect well" */ for (timeout = 0; timeout < 1000 ; timeout++) { status = ATA_INL(ch->r_mem, AHCI_P_SSTS); if ((status & ATA_SS_DET_MASK) != ATA_SS_DET_NO_DEVICE) found = 1; if (((status & ATA_SS_DET_MASK) == ATA_SS_DET_PHY_ONLINE) && ((status & ATA_SS_SPD_MASK) != ATA_SS_SPD_NO_SPEED) && ((status & ATA_SS_IPM_MASK) == ATA_SS_IPM_ACTIVE)) break; if ((status & ATA_SS_DET_MASK) == ATA_SS_DET_PHY_OFFLINE) { if (bootverbose) { device_printf(ch->dev, "SATA offline status=%08x\n", status); } return (0); } if (found == 0 && timeout >= 100) break; DELAY(100); } if (timeout >= 1000 || !found) { if (bootverbose) { device_printf(ch->dev, "SATA connect timeout time=%dus status=%08x\n", timeout * 100, status); } return (0); } if (bootverbose) { device_printf(ch->dev, "SATA connect time=%dus status=%08x\n", timeout * 100, status); } /* Clear SATA error register */ ATA_OUTL(ch->r_mem, AHCI_P_SERR, 0xffffffff); return (1); } static int ahci_sata_phy_reset(struct ahci_channel *ch) { int sata_rev; uint32_t val; if (ch->listening) { val = ATA_INL(ch->r_mem, AHCI_P_CMD); val |= AHCI_P_CMD_SUD; ATA_OUTL(ch->r_mem, AHCI_P_CMD, val); ch->listening = 0; } sata_rev = ch->user[ch->pm_present ? 15 : 0].revision; if (sata_rev == 1) val = ATA_SC_SPD_SPEED_GEN1; else if (sata_rev == 2) val = ATA_SC_SPD_SPEED_GEN2; else if (sata_rev == 3) val = ATA_SC_SPD_SPEED_GEN3; else val = 0; ATA_OUTL(ch->r_mem, AHCI_P_SCTL, ATA_SC_DET_RESET | val | ATA_SC_IPM_DIS_PARTIAL | ATA_SC_IPM_DIS_SLUMBER); DELAY(1000); ATA_OUTL(ch->r_mem, AHCI_P_SCTL, ATA_SC_DET_IDLE | val | ((ch->pm_level > 0) ? 0 : (ATA_SC_IPM_DIS_PARTIAL | ATA_SC_IPM_DIS_SLUMBER))); if (!ahci_sata_connect(ch)) { if (ch->caps & AHCI_CAP_SSS) { val = ATA_INL(ch->r_mem, AHCI_P_CMD); val &= ~AHCI_P_CMD_SUD; ATA_OUTL(ch->r_mem, AHCI_P_CMD, val); ch->listening = 1; } else if (ch->pm_level > 0) ATA_OUTL(ch->r_mem, AHCI_P_SCTL, ATA_SC_DET_DISABLE); return (0); } return (1); } static int ahci_check_ids(struct ahci_channel *ch, union ccb *ccb) { if (ccb->ccb_h.target_id > ((ch->caps & AHCI_CAP_SPM) ? 15 : 0)) { ccb->ccb_h.status = CAM_TID_INVALID; ahci_done(ch, ccb); return (-1); } if (ccb->ccb_h.target_lun != 0) { ccb->ccb_h.status = CAM_LUN_INVALID; ahci_done(ch, ccb); return (-1); } return (0); } static void ahciaction(struct cam_sim *sim, union ccb *ccb) { struct ahci_channel *ch; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahciaction func_code=%x\n", ccb->ccb_h.func_code)); ch = (struct ahci_channel *)cam_sim_softc(sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_ATA_IO: /* Execute the requested I/O operation */ case XPT_SCSI_IO: if (ahci_check_ids(ch, ccb)) return; if (ch->devices == 0 || (ch->pm_present == 0 && ccb->ccb_h.target_id > 0 && ccb->ccb_h.target_id < 15)) { ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; } ccb->ccb_h.recovery_type = RECOVERY_NONE; /* Check for command collision. */ if (ahci_check_collision(ch, ccb)) { /* Freeze command. */ ch->frozen = ccb; /* We have only one frozen slot, so freeze simq also. */ xpt_freeze_simq(ch->sim, 1); return; } ahci_begin_transaction(ch, ccb); return; case XPT_EN_LUN: /* Enable LUN as a target */ case XPT_TARGET_IO: /* Execute target I/O request */ case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/ case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ahci_device *d; if (ahci_check_ids(ch, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION) d->revision = cts->xport_specific.sata.revision; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) d->mode = cts->xport_specific.sata.mode; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT) d->bytecount = min(8192, cts->xport_specific.sata.bytecount); if (cts->xport_specific.sata.valid & CTS_SATA_VALID_TAGS) d->tags = min(ch->numslots, cts->xport_specific.sata.tags); if (cts->xport_specific.sata.valid & CTS_SATA_VALID_PM) ch->pm_present = cts->xport_specific.sata.pm_present; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI) d->atapi = cts->xport_specific.sata.atapi; if (cts->xport_specific.sata.valid & CTS_SATA_VALID_CAPS) d->caps = cts->xport_specific.sata.caps; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { struct ccb_trans_settings *cts = &ccb->cts; struct ahci_device *d; uint32_t status; if (ahci_check_ids(ch, ccb)) return; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) d = &ch->curr[ccb->ccb_h.target_id]; else d = &ch->user[ccb->ccb_h.target_id]; cts->protocol = PROTO_UNSPECIFIED; cts->protocol_version = PROTO_VERSION_UNSPECIFIED; cts->transport = XPORT_SATA; cts->transport_version = XPORT_VERSION_UNSPECIFIED; cts->proto_specific.valid = 0; cts->xport_specific.sata.valid = 0; if (cts->type == CTS_TYPE_CURRENT_SETTINGS && (ccb->ccb_h.target_id == 15 || (ccb->ccb_h.target_id == 0 && !ch->pm_present))) { status = ATA_INL(ch->r_mem, AHCI_P_SSTS) & ATA_SS_SPD_MASK; if (status & 0x0f0) { cts->xport_specific.sata.revision = (status & 0x0f0) >> 4; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; } cts->xport_specific.sata.caps = d->caps & CTS_SATA_CAPS_D; if (ch->pm_level) { if (ch->caps & (AHCI_CAP_PSC | AHCI_CAP_SSC)) cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_PMREQ; if (ch->caps2 & AHCI_CAP2_APST) cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_APST; } if ((ch->caps & AHCI_CAP_SNCQ) && (ch->quirks & AHCI_Q_NOAA) == 0) cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_DMAAA; cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_AN; cts->xport_specific.sata.caps &= ch->user[ccb->ccb_h.target_id].caps; cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; } else { cts->xport_specific.sata.revision = d->revision; cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION; cts->xport_specific.sata.caps = d->caps; cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS; } cts->xport_specific.sata.mode = d->mode; cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE; cts->xport_specific.sata.bytecount = d->bytecount; cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT; cts->xport_specific.sata.pm_present = ch->pm_present; cts->xport_specific.sata.valid |= CTS_SATA_VALID_PM; cts->xport_specific.sata.tags = d->tags; cts->xport_specific.sata.valid |= CTS_SATA_VALID_TAGS; cts->xport_specific.sata.atapi = d->atapi; cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ ahci_reset(ch); ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE; if (ch->caps & AHCI_CAP_SNCQ) cpi->hba_inquiry |= PI_TAG_ABLE; if (ch->caps & AHCI_CAP_SPM) cpi->hba_inquiry |= PI_SATAPM; cpi->target_sprt = 0; cpi->hba_misc = PIM_SEQSCAN | PIM_UNMAPPED; cpi->hba_eng_cnt = 0; if (ch->caps & AHCI_CAP_SPM) cpi->max_target = 15; else cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 150000; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "AHCI", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->transport = XPORT_SATA; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->protocol = PROTO_ATA; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->maxio = MAXPHYS; /* ATI SB600 can't handle 256 sectors with FPDMA (NCQ). */ if (ch->quirks & AHCI_Q_MAXIO_64K) cpi->maxio = min(cpi->maxio, 128 * 512); cpi->hba_vendor = ch->vendorid; cpi->hba_device = ch->deviceid; cpi->hba_subvendor = ch->subvendorid; cpi->hba_subdevice = ch->subdeviceid; cpi->ccb_h.status = CAM_REQ_CMP; break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } ahci_done(ch, ccb); } static void ahcipoll(struct cam_sim *sim) { struct ahci_channel *ch = (struct ahci_channel *)cam_sim_softc(sim); uint32_t istatus; /* Read interrupt statuses and process if any. */ istatus = ATA_INL(ch->r_mem, AHCI_P_IS); if (istatus != 0) ahci_ch_intr_main(ch, istatus); if (ch->resetting != 0 && (--ch->resetpolldiv <= 0 || !callout_pending(&ch->reset_timer))) { ch->resetpolldiv = 1000; ahci_reset_to(ch); } } MODULE_VERSION(ahci, 1); MODULE_DEPEND(ahci, cam, 1, 1, 1);