/*- * Copyright (c) 2006 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #if defined(__amd64__) || defined(__i386__) #include #include #include #include #endif #include #include #include #include /* * Implementation notes. * * Some VIA CPUs provides SHA1 and SHA256 acceleration. * We implement all HMAC algorithms provided by crypto(9) framework, but we do * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and * our CPU can accelerate it. * * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot * functions - we have only one chance to give the data, CPU itself will add * the padding and calculate hash automatically. * This means, it is not possible to implement common init(), update(), final() * methods. * The way I've choosen is to keep adding data to the buffer on update() * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on * final(). */ struct padlock_sha_ctx { uint8_t *psc_buf; int psc_offset; int psc_size; }; CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx)); static void padlock_sha_init(void *vctx); static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize); static void padlock_sha1_final(uint8_t *hash, void *vctx); static void padlock_sha256_final(uint8_t *hash, void *vctx); static const struct auth_hash padlock_hmac_sha1 = { .type = CRYPTO_SHA1_HMAC, .name = "HMAC-SHA1", .keysize = SHA1_BLOCK_LEN, .hashsize = SHA1_HASH_LEN, .ctxsize = sizeof(struct padlock_sha_ctx), .blocksize = SHA1_BLOCK_LEN, .Init = padlock_sha_init, .Update = padlock_sha_update, .Final = padlock_sha1_final, }; static const struct auth_hash padlock_hmac_sha256 = { .type = CRYPTO_SHA2_256_HMAC, .name = "HMAC-SHA2-256", .keysize = SHA2_256_BLOCK_LEN, .hashsize = SHA2_256_HASH_LEN, .ctxsize = sizeof(struct padlock_sha_ctx), .blocksize = SHA2_256_BLOCK_LEN, .Init = padlock_sha_init, .Update = padlock_sha_update, .Final = padlock_sha256_final, }; MALLOC_DECLARE(M_PADLOCK); static __inline void padlock_output_block(uint32_t *src, uint32_t *dst, size_t count) { while (count-- > 0) *dst++ = bswap32(*src++); } static void padlock_do_sha1(const u_char *in, u_char *out, int count) { u_char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */ u_char *result = PADLOCK_ALIGN(buf); ((uint32_t *)result)[0] = 0x67452301; ((uint32_t *)result)[1] = 0xEFCDAB89; ((uint32_t *)result)[2] = 0x98BADCFE; ((uint32_t *)result)[3] = 0x10325476; ((uint32_t *)result)[4] = 0xC3D2E1F0; #ifdef __GNUCLIKE_ASM __asm __volatile( ".byte 0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */ : "+S"(in), "+D"(result) : "c"(count), "a"(0) ); #endif padlock_output_block((uint32_t *)result, (uint32_t *)out, SHA1_HASH_LEN / sizeof(uint32_t)); } static void padlock_do_sha256(const char *in, char *out, int count) { char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */ char *result = PADLOCK_ALIGN(buf); ((uint32_t *)result)[0] = 0x6A09E667; ((uint32_t *)result)[1] = 0xBB67AE85; ((uint32_t *)result)[2] = 0x3C6EF372; ((uint32_t *)result)[3] = 0xA54FF53A; ((uint32_t *)result)[4] = 0x510E527F; ((uint32_t *)result)[5] = 0x9B05688C; ((uint32_t *)result)[6] = 0x1F83D9AB; ((uint32_t *)result)[7] = 0x5BE0CD19; #ifdef __GNUCLIKE_ASM __asm __volatile( ".byte 0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */ : "+S"(in), "+D"(result) : "c"(count), "a"(0) ); #endif padlock_output_block((uint32_t *)result, (uint32_t *)out, SHA2_256_HASH_LEN / sizeof(uint32_t)); } static void padlock_sha_init(void *vctx) { struct padlock_sha_ctx *ctx; ctx = vctx; ctx->psc_buf = NULL; ctx->psc_offset = 0; ctx->psc_size = 0; } static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize) { struct padlock_sha_ctx *ctx; ctx = vctx; if (ctx->psc_size - ctx->psc_offset < bufsize) { ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize); ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK, M_NOWAIT); if(ctx->psc_buf == NULL) return (ENOMEM); } bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize); ctx->psc_offset += bufsize; return (0); } static void padlock_sha_free(void *vctx) { struct padlock_sha_ctx *ctx; ctx = vctx; if (ctx->psc_buf != NULL) { zfree(ctx->psc_buf, M_PADLOCK); ctx->psc_buf = NULL; ctx->psc_offset = 0; ctx->psc_size = 0; } } static void padlock_sha1_final(uint8_t *hash, void *vctx) { struct padlock_sha_ctx *ctx; ctx = vctx; padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset); padlock_sha_free(ctx); } static void padlock_sha256_final(uint8_t *hash, void *vctx) { struct padlock_sha_ctx *ctx; ctx = vctx; padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset); padlock_sha_free(ctx); } static void padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx) { if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 && (axf->type == CRYPTO_SHA1_HMAC || axf->type == CRYPTO_SHA2_256_HMAC)) { struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx; dpctx->psc_offset = spctx->psc_offset; dpctx->psc_size = spctx->psc_size; dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK); bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size); } else { bcopy(sctx, dctx, axf->ctxsize); } } static void padlock_free_ctx(const struct auth_hash *axf, void *ctx) { if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 && (axf->type == CRYPTO_SHA1_HMAC || axf->type == CRYPTO_SHA2_256_HMAC)) { padlock_sha_free(ctx); } } static void padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key, int klen) { const struct auth_hash *axf; axf = ses->ses_axf; /* * Try to free contexts before using them, because * padlock_hash_key_setup() can be called twice - once from * padlock_newsession() and again from padlock_process(). */ padlock_free_ctx(axf, ses->ses_ictx); padlock_free_ctx(axf, ses->ses_octx); hmac_init_ipad(axf, key, klen, ses->ses_ictx); hmac_init_opad(axf, key, klen, ses->ses_octx); } /* * Compute keyed-hash authenticator. */ static int padlock_authcompute(struct padlock_session *ses, struct cryptop *crp) { u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN]; const struct auth_hash *axf; union authctx ctx; int error; axf = ses->ses_axf; padlock_copy_ctx(axf, ses->ses_ictx, &ctx); error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, axf->Update, &ctx); if (error != 0) { padlock_free_ctx(axf, &ctx); return (error); } error = crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length, axf->Update, &ctx); if (error != 0) { padlock_free_ctx(axf, &ctx); return (error); } axf->Final(hash, &ctx); padlock_copy_ctx(axf, ses->ses_octx, &ctx); axf->Update(&ctx, hash, axf->hashsize); axf->Final(hash, &ctx); if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen, hash2); if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0) return (EBADMSG); } else crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen, hash); return (0); } /* Find software structure which describes HMAC algorithm. */ static const struct auth_hash * padlock_hash_lookup(int alg) { const struct auth_hash *axf; switch (alg) { case CRYPTO_NULL_HMAC: axf = &auth_hash_null; break; case CRYPTO_SHA1_HMAC: if ((via_feature_xcrypt & VIA_HAS_SHA) != 0) axf = &padlock_hmac_sha1; else axf = &auth_hash_hmac_sha1; break; case CRYPTO_RIPEMD160_HMAC: axf = &auth_hash_hmac_ripemd_160; break; case CRYPTO_SHA2_256_HMAC: if ((via_feature_xcrypt & VIA_HAS_SHA) != 0) axf = &padlock_hmac_sha256; else axf = &auth_hash_hmac_sha2_256; break; case CRYPTO_SHA2_384_HMAC: axf = &auth_hash_hmac_sha2_384; break; case CRYPTO_SHA2_512_HMAC: axf = &auth_hash_hmac_sha2_512; break; default: axf = NULL; break; } return (axf); } bool padlock_hash_check(const struct crypto_session_params *csp) { return (padlock_hash_lookup(csp->csp_auth_alg) != NULL); } int padlock_hash_setup(struct padlock_session *ses, const struct crypto_session_params *csp) { ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg); if (csp->csp_auth_mlen == 0) ses->ses_mlen = ses->ses_axf->hashsize; else ses->ses_mlen = csp->csp_auth_mlen; /* Allocate memory for HMAC inner and outer contexts. */ ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK, M_ZERO | M_NOWAIT); ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK, M_ZERO | M_NOWAIT); if (ses->ses_ictx == NULL || ses->ses_octx == NULL) return (ENOMEM); /* Setup key if given. */ if (csp->csp_auth_key != NULL) { padlock_hash_key_setup(ses, csp->csp_auth_key, csp->csp_auth_klen); } return (0); } int padlock_hash_process(struct padlock_session *ses, struct cryptop *crp, const struct crypto_session_params *csp) { struct thread *td; int error; td = curthread; fpu_kern_enter(td, ses->ses_fpu_ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); if (crp->crp_auth_key != NULL) padlock_hash_key_setup(ses, crp->crp_auth_key, csp->csp_auth_klen); error = padlock_authcompute(ses, crp); fpu_kern_leave(td, ses->ses_fpu_ctx); return (error); } void padlock_hash_free(struct padlock_session *ses) { if (ses->ses_ictx != NULL) { padlock_free_ctx(ses->ses_axf, ses->ses_ictx); zfree(ses->ses_ictx, M_PADLOCK); ses->ses_ictx = NULL; } if (ses->ses_octx != NULL) { padlock_free_ctx(ses->ses_axf, ses->ses_octx); zfree(ses->ses_octx, M_PADLOCK); ses->ses_octx = NULL; } }