/*- * Copyright 2005 Colin Percival * Copyright (c) 2015 Allan Jude <allanjude@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include <sys/endian.h> #include <sys/types.h> #ifdef _KERNEL #include <sys/systm.h> #else #include <string.h> #endif #include "sha512.h" #include "sha512t.h" #include "sha384.h" #include "sha512c_impl.h" #if defined(ARM64_SHA512) #include <sys/auxv.h> #include <machine/ifunc.h> #endif #if BYTE_ORDER == BIG_ENDIAN /* Copy a vector of big-endian uint64_t into a vector of bytes */ #define be64enc_vect(dst, src, len) \ memcpy((void *)dst, (const void *)src, (size_t)len) /* Copy a vector of bytes into a vector of big-endian uint64_t */ #define be64dec_vect(dst, src, len) \ memcpy((void *)dst, (const void *)src, (size_t)len) #else /* BYTE_ORDER != BIG_ENDIAN */ /* * Encode a length len/4 vector of (uint64_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 8. */ static void be64enc_vect(unsigned char *dst, const uint64_t *src, size_t len) { size_t i; for (i = 0; i < len / 8; i++) be64enc(dst + i * 8, src[i]); } /* * Decode a big-endian length len vector of (unsigned char) into a length * len/4 vector of (uint64_t). Assumes len is a multiple of 8. */ static void be64dec_vect(uint64_t *dst, const unsigned char *src, size_t len) { size_t i; for (i = 0; i < len / 8; i++) dst[i] = be64dec(src + i * 8); } #endif /* BYTE_ORDER != BIG_ENDIAN */ /* SHA512 round constants. */ static const uint64_t K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Elementary functions used by SHA512 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (64 - n))) #define S0(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39)) #define S1(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41)) #define s0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7)) #define s1(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHR(x, 6)) /* SHA512 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ h += S1(e) + Ch(e, f, g) + k; \ d += h; \ h += S0(a) + Maj(a, b, c); /* Adjusted round function for rotating state */ #define RNDr(S, W, i, ii) \ RND(S[(80 - i) % 8], S[(81 - i) % 8], \ S[(82 - i) % 8], S[(83 - i) % 8], \ S[(84 - i) % 8], S[(85 - i) % 8], \ S[(86 - i) % 8], S[(87 - i) % 8], \ W[i + ii] + K[i + ii]) /* Message schedule computation */ #define MSCH(W, ii, i) \ W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii] /* * SHA512 block compression function. The 512-bit state is transformed via * the 512-bit input block to produce a new state. */ static void #if defined(ARM64_SHA512) SHA512_Transform_c(uint64_t * state, const unsigned char block[SHA512_BLOCK_LENGTH]) #else SHA512_Transform(uint64_t * state, const unsigned char block[SHA512_BLOCK_LENGTH]) #endif { uint64_t W[80]; uint64_t S[8]; int i; /* 1. Prepare the first part of the message schedule W. */ be64dec_vect(W, block, SHA512_BLOCK_LENGTH); /* 2. Initialize working variables. */ memcpy(S, state, SHA512_DIGEST_LENGTH); /* 3. Mix. */ for (i = 0; i < 80; i += 16) { RNDr(S, W, 0, i); RNDr(S, W, 1, i); RNDr(S, W, 2, i); RNDr(S, W, 3, i); RNDr(S, W, 4, i); RNDr(S, W, 5, i); RNDr(S, W, 6, i); RNDr(S, W, 7, i); RNDr(S, W, 8, i); RNDr(S, W, 9, i); RNDr(S, W, 10, i); RNDr(S, W, 11, i); RNDr(S, W, 12, i); RNDr(S, W, 13, i); RNDr(S, W, 14, i); RNDr(S, W, 15, i); if (i == 64) break; MSCH(W, 0, i); MSCH(W, 1, i); MSCH(W, 2, i); MSCH(W, 3, i); MSCH(W, 4, i); MSCH(W, 5, i); MSCH(W, 6, i); MSCH(W, 7, i); MSCH(W, 8, i); MSCH(W, 9, i); MSCH(W, 10, i); MSCH(W, 11, i); MSCH(W, 12, i); MSCH(W, 13, i); MSCH(W, 14, i); MSCH(W, 15, i); } /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } #if defined(ARM64_SHA512) static void SHA512_Transform_arm64(uint64_t * state, const unsigned char block[SHA512_BLOCK_LENGTH]) { SHA512_Transform_arm64_impl(state, block, K); } DEFINE_UIFUNC(static, void, SHA512_Transform, (uint64_t * state, const unsigned char block[SHA512_BLOCK_LENGTH])) { u_long hwcap; if (elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap)) == 0) { if ((hwcap & HWCAP_SHA512) != 0) { return (SHA512_Transform_arm64); } } return (SHA512_Transform_c); } #endif static unsigned char PAD[SHA512_BLOCK_LENGTH] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* Add padding and terminating bit-count. */ static void SHA512_Pad(SHA512_CTX * ctx) { size_t r; /* Figure out how many bytes we have buffered. */ r = (ctx->count[1] >> 3) & 0x7f; /* Pad to 112 mod 128, transforming if we finish a block en route. */ if (r < 112) { /* Pad to 112 mod 128. */ memcpy(&ctx->buf[r], PAD, 112 - r); } else { /* Finish the current block and mix. */ memcpy(&ctx->buf[r], PAD, 128 - r); SHA512_Transform(ctx->state, ctx->buf); /* The start of the final block is all zeroes. */ memset(&ctx->buf[0], 0, 112); } /* Add the terminating bit-count. */ be64enc_vect(&ctx->buf[112], ctx->count, 16); /* Mix in the final block. */ SHA512_Transform(ctx->state, ctx->buf); } /* SHA-512 initialization. Begins a SHA-512 operation. */ void SHA512_Init(SHA512_CTX * ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x6a09e667f3bcc908ULL; ctx->state[1] = 0xbb67ae8584caa73bULL; ctx->state[2] = 0x3c6ef372fe94f82bULL; ctx->state[3] = 0xa54ff53a5f1d36f1ULL; ctx->state[4] = 0x510e527fade682d1ULL; ctx->state[5] = 0x9b05688c2b3e6c1fULL; ctx->state[6] = 0x1f83d9abfb41bd6bULL; ctx->state[7] = 0x5be0cd19137e2179ULL; } /* Add bytes into the hash */ void SHA512_Update(SHA512_CTX * ctx, const void *in, size_t len) { uint64_t bitlen[2]; uint64_t r; const unsigned char *src = in; /* Number of bytes left in the buffer from previous updates */ r = (ctx->count[1] >> 3) & 0x7f; /* Convert the length into a number of bits */ bitlen[1] = ((uint64_t)len) << 3; bitlen[0] = ((uint64_t)len) >> 61; /* Update number of bits */ if ((ctx->count[1] += bitlen[1]) < bitlen[1]) ctx->count[0]++; ctx->count[0] += bitlen[0]; /* Handle the case where we don't need to perform any transforms */ if (len < SHA512_BLOCK_LENGTH - r) { memcpy(&ctx->buf[r], src, len); return; } /* Finish the current block */ memcpy(&ctx->buf[r], src, SHA512_BLOCK_LENGTH - r); SHA512_Transform(ctx->state, ctx->buf); src += SHA512_BLOCK_LENGTH - r; len -= SHA512_BLOCK_LENGTH - r; /* Perform complete blocks */ while (len >= SHA512_BLOCK_LENGTH) { SHA512_Transform(ctx->state, src); src += SHA512_BLOCK_LENGTH; len -= SHA512_BLOCK_LENGTH; } /* Copy left over data into buffer */ memcpy(ctx->buf, src, len); } /* * SHA-512 finalization. Pads the input data, exports the hash value, * and clears the context state. */ void SHA512_Final(unsigned char digest[static SHA512_DIGEST_LENGTH], SHA512_CTX *ctx) { /* Add padding */ SHA512_Pad(ctx); /* Write the hash */ be64enc_vect(digest, ctx->state, SHA512_DIGEST_LENGTH); /* Clear the context state */ explicit_bzero(ctx, sizeof(*ctx)); } /*** SHA-512t: *********************************************************/ /* * the SHA512t transforms are identical to SHA512 so reuse the existing function */ void SHA512_224_Init(SHA512_CTX * ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x8c3d37c819544da2ULL; ctx->state[1] = 0x73e1996689dcd4d6ULL; ctx->state[2] = 0x1dfab7ae32ff9c82ULL; ctx->state[3] = 0x679dd514582f9fcfULL; ctx->state[4] = 0x0f6d2b697bd44da8ULL; ctx->state[5] = 0x77e36f7304c48942ULL; ctx->state[6] = 0x3f9d85a86a1d36c8ULL; ctx->state[7] = 0x1112e6ad91d692a1ULL; } void SHA512_224_Update(SHA512_CTX * ctx, const void *in, size_t len) { SHA512_Update(ctx, in, len); } void SHA512_224_Final(unsigned char digest[static SHA512_224_DIGEST_LENGTH], SHA512_CTX * ctx) { /* Add padding */ SHA512_Pad(ctx); /* Write the hash */ be64enc_vect(digest, ctx->state, SHA512_224_DIGEST_LENGTH); /* Clear the context state */ explicit_bzero(ctx, sizeof(*ctx)); } void SHA512_256_Init(SHA512_CTX * ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x22312194fc2bf72cULL; ctx->state[1] = 0x9f555fa3c84c64c2ULL; ctx->state[2] = 0x2393b86b6f53b151ULL; ctx->state[3] = 0x963877195940eabdULL; ctx->state[4] = 0x96283ee2a88effe3ULL; ctx->state[5] = 0xbe5e1e2553863992ULL; ctx->state[6] = 0x2b0199fc2c85b8aaULL; ctx->state[7] = 0x0eb72ddc81c52ca2ULL; } void SHA512_256_Update(SHA512_CTX * ctx, const void *in, size_t len) { SHA512_Update(ctx, in, len); } void SHA512_256_Final(unsigned char digest[static SHA512_256_DIGEST_LENGTH], SHA512_CTX * ctx) { /* Add padding */ SHA512_Pad(ctx); /* Write the hash */ be64enc_vect(digest, ctx->state, SHA512_256_DIGEST_LENGTH); /* Clear the context state */ explicit_bzero(ctx, sizeof(*ctx)); } /*** SHA-384: *********************************************************/ /* * the SHA384 and SHA512 transforms are identical, so SHA384 is skipped */ /* SHA-384 initialization. Begins a SHA-384 operation. */ void SHA384_Init(SHA384_CTX * ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0xcbbb9d5dc1059ed8ULL; ctx->state[1] = 0x629a292a367cd507ULL; ctx->state[2] = 0x9159015a3070dd17ULL; ctx->state[3] = 0x152fecd8f70e5939ULL; ctx->state[4] = 0x67332667ffc00b31ULL; ctx->state[5] = 0x8eb44a8768581511ULL; ctx->state[6] = 0xdb0c2e0d64f98fa7ULL; ctx->state[7] = 0x47b5481dbefa4fa4ULL; } /* Add bytes into the SHA-384 hash */ void SHA384_Update(SHA384_CTX * ctx, const void *in, size_t len) { SHA512_Update((SHA512_CTX *)ctx, in, len); } /* * SHA-384 finalization. Pads the input data, exports the hash value, * and clears the context state. */ void SHA384_Final(unsigned char digest[static SHA384_DIGEST_LENGTH], SHA384_CTX *ctx) { /* Add padding */ SHA512_Pad((SHA512_CTX *)ctx); /* Write the hash */ be64enc_vect(digest, ctx->state, SHA384_DIGEST_LENGTH); /* Clear the context state */ explicit_bzero(ctx, sizeof(*ctx)); } #ifdef WEAK_REFS /* When building libmd, provide weak references. Note: this is not activated in the context of compiling these sources for internal use in libcrypt. */ #undef SHA512_Init __weak_reference(_libmd_SHA512_Init, SHA512_Init); #undef SHA512_Update __weak_reference(_libmd_SHA512_Update, SHA512_Update); #undef SHA512_Final __weak_reference(_libmd_SHA512_Final, SHA512_Final); #undef SHA512_Transform __weak_reference(_libmd_SHA512_Transform, SHA512_Transform); #undef SHA512_224_Init __weak_reference(_libmd_SHA512_224_Init, SHA512_224_Init); #undef SHA512_224_Update __weak_reference(_libmd_SHA512_224_Update, SHA512_224_Update); #undef SHA512_224_Final __weak_reference(_libmd_SHA512_224_Final, SHA512_224_Final); #undef SHA512_256_Init __weak_reference(_libmd_SHA512_256_Init, SHA512_256_Init); #undef SHA512_256_Update __weak_reference(_libmd_SHA512_256_Update, SHA512_256_Update); #undef SHA512_256_Final __weak_reference(_libmd_SHA512_256_Final, SHA512_256_Final); #undef SHA384_Init __weak_reference(_libmd_SHA384_Init, SHA384_Init); #undef SHA384_Update __weak_reference(_libmd_SHA384_Update, SHA384_Update); #undef SHA384_Final __weak_reference(_libmd_SHA384_Final, SHA384_Final); #endif