/*- * Copyright (c) 2005-2008 Pawel Jakub Dawidek * Copyright (c) 2010 Konstantin Belousov * Copyright (c) 2014,2016 The FreeBSD Foundation * Copyright (c) 2020 Ampere Computing * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This is based on the aesni code. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct armv8_crypto_softc { int dieing; int32_t cid; struct rwlock lock; bool has_pmul; }; static struct mtx *ctx_mtx; static struct fpu_kern_ctx **ctx_vfp; #define AQUIRE_CTX(i, ctx) \ do { \ (i) = PCPU_GET(cpuid); \ mtx_lock(&ctx_mtx[(i)]); \ (ctx) = ctx_vfp[(i)]; \ } while (0) #define RELEASE_CTX(i, ctx) \ do { \ mtx_unlock(&ctx_mtx[(i)]); \ (i) = -1; \ (ctx) = NULL; \ } while (0) static int armv8_crypto_cipher_process(struct armv8_crypto_session *, struct cryptop *); MALLOC_DEFINE(M_ARMV8_CRYPTO, "armv8_crypto", "ARMv8 Crypto Data"); static void armv8_crypto_identify(driver_t *drv, device_t parent) { /* NB: order 10 is so we get attached after h/w devices */ if (device_find_child(parent, "armv8crypto", -1) == NULL && BUS_ADD_CHILD(parent, 10, "armv8crypto", -1) == 0) panic("ARMv8 crypto: could not attach"); } static int armv8_crypto_probe(device_t dev) { uint64_t reg; int ret = ENXIO; reg = READ_SPECIALREG(id_aa64isar0_el1); switch (ID_AA64ISAR0_AES_VAL(reg)) { case ID_AA64ISAR0_AES_BASE: ret = 0; device_set_desc(dev, "AES-CBC,AES-XTS"); break; case ID_AA64ISAR0_AES_PMULL: ret = 0; device_set_desc(dev, "AES-CBC,AES-XTS,AES-GCM"); break; default: break; case ID_AA64ISAR0_AES_NONE: device_printf(dev, "CPU lacks AES instructions"); break; } /* TODO: Check more fields as we support more features */ return (ret); } static int armv8_crypto_attach(device_t dev) { struct armv8_crypto_softc *sc; uint64_t reg; int i; sc = device_get_softc(dev); sc->dieing = 0; reg = READ_SPECIALREG(id_aa64isar0_el1); if (ID_AA64ISAR0_AES_VAL(reg) == ID_AA64ISAR0_AES_PMULL) sc->has_pmul = true; sc->cid = crypto_get_driverid(dev, sizeof(struct armv8_crypto_session), CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC | CRYPTOCAP_F_ACCEL_SOFTWARE); if (sc->cid < 0) { device_printf(dev, "Could not get crypto driver id.\n"); return (ENOMEM); } rw_init(&sc->lock, "armv8crypto"); ctx_mtx = malloc(sizeof(*ctx_mtx) * (mp_maxid + 1), M_ARMV8_CRYPTO, M_WAITOK|M_ZERO); ctx_vfp = malloc(sizeof(*ctx_vfp) * (mp_maxid + 1), M_ARMV8_CRYPTO, M_WAITOK|M_ZERO); CPU_FOREACH(i) { ctx_vfp[i] = fpu_kern_alloc_ctx(0); mtx_init(&ctx_mtx[i], "armv8cryptoctx", NULL, MTX_DEF|MTX_NEW); } return (0); } static int armv8_crypto_detach(device_t dev) { struct armv8_crypto_softc *sc; int i; sc = device_get_softc(dev); rw_wlock(&sc->lock); sc->dieing = 1; rw_wunlock(&sc->lock); crypto_unregister_all(sc->cid); rw_destroy(&sc->lock); CPU_FOREACH(i) { if (ctx_vfp[i] != NULL) { mtx_destroy(&ctx_mtx[i]); fpu_kern_free_ctx(ctx_vfp[i]); } ctx_vfp[i] = NULL; } free(ctx_mtx, M_ARMV8_CRYPTO); ctx_mtx = NULL; free(ctx_vfp, M_ARMV8_CRYPTO); ctx_vfp = NULL; return (0); } #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD) static int armv8_crypto_probesession(device_t dev, const struct crypto_session_params *csp) { struct armv8_crypto_softc *sc; sc = device_get_softc(dev); if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) return (EINVAL); switch (csp->csp_mode) { case CSP_MODE_AEAD: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: if (!sc->has_pmul) return (EINVAL); if (csp->csp_ivlen != AES_GCM_IV_LEN) return (EINVAL); if (csp->csp_auth_mlen != 0 && csp->csp_auth_mlen != GMAC_DIGEST_LEN) return (EINVAL); switch (csp->csp_cipher_klen * 8) { case 128: case 192: case 256: break; default: return (EINVAL); } break; default: return (EINVAL); } break; case CSP_MODE_CIPHER: switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: if (csp->csp_ivlen != AES_BLOCK_LEN) return (EINVAL); switch (csp->csp_cipher_klen * 8) { case 128: case 192: case 256: break; default: return (EINVAL); } break; case CRYPTO_AES_XTS: if (csp->csp_ivlen != AES_XTS_IV_LEN) return (EINVAL); switch (csp->csp_cipher_klen * 8) { case 256: case 512: break; default: return (EINVAL); } break; default: return (EINVAL); } break; default: return (EINVAL); } return (CRYPTODEV_PROBE_ACCEL_SOFTWARE); } static int armv8_crypto_cipher_setup(struct armv8_crypto_session *ses, const struct crypto_session_params *csp, const uint8_t *key, int keylen) { __uint128_val_t H; struct fpu_kern_ctx *ctx; int kt, i; if (csp->csp_cipher_alg == CRYPTO_AES_XTS) keylen /= 2; switch (keylen * 8) { case 128: case 192: case 256: break; default: return (EINVAL); } kt = is_fpu_kern_thread(0); if (!kt) { AQUIRE_CTX(i, ctx); fpu_kern_enter(curthread, ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); } aes_v8_set_encrypt_key(key, keylen * 8, &ses->enc_schedule); if ((csp->csp_cipher_alg == CRYPTO_AES_XTS) || (csp->csp_cipher_alg == CRYPTO_AES_CBC)) aes_v8_set_decrypt_key(key, keylen * 8, &ses->dec_schedule); if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) { memset(H.c, 0, sizeof(H.c)); aes_v8_encrypt(H.c, H.c, &ses->enc_schedule); H.u[0] = bswap64(H.u[0]); H.u[1] = bswap64(H.u[1]); gcm_init_v8(ses->Htable, H.u); } if (!kt) { fpu_kern_leave(curthread, ctx); RELEASE_CTX(i, ctx); } return (0); } static int armv8_crypto_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct armv8_crypto_softc *sc; struct armv8_crypto_session *ses; int error; sc = device_get_softc(dev); rw_wlock(&sc->lock); if (sc->dieing) { rw_wunlock(&sc->lock); return (EINVAL); } ses = crypto_get_driver_session(cses); error = armv8_crypto_cipher_setup(ses, csp, csp->csp_cipher_key, csp->csp_cipher_klen); rw_wunlock(&sc->lock); return (error); } static int armv8_crypto_process(device_t dev, struct cryptop *crp, int hint __unused) { struct armv8_crypto_session *ses; ses = crypto_get_driver_session(crp->crp_session); crp->crp_etype = armv8_crypto_cipher_process(ses, crp); crypto_done(crp); return (0); } static uint8_t * armv8_crypto_cipher_alloc(struct cryptop *crp, int start, int length, int *allocated) { uint8_t *addr; addr = crypto_contiguous_subsegment(crp, start, length); if (addr != NULL) { *allocated = 0; return (addr); } addr = malloc(crp->crp_payload_length, M_ARMV8_CRYPTO, M_NOWAIT); if (addr != NULL) { *allocated = 1; crypto_copydata(crp, start, length, addr); } else *allocated = 0; return (addr); } static int armv8_crypto_cipher_process(struct armv8_crypto_session *ses, struct cryptop *crp) { const struct crypto_session_params *csp; struct fpu_kern_ctx *ctx; uint8_t *buf, *authbuf, *outbuf; uint8_t iv[AES_BLOCK_LEN], tag[GMAC_DIGEST_LEN]; int allocated, authallocated, outallocated, i; int encflag; int kt; int error; bool outcopy; csp = crypto_get_params(crp->crp_session); encflag = CRYPTO_OP_IS_ENCRYPT(crp->crp_op); allocated = 0; outallocated = 0; authallocated = 0; authbuf = NULL; kt = 1; buf = armv8_crypto_cipher_alloc(crp, crp->crp_payload_start, crp->crp_payload_length, &allocated); if (buf == NULL) return (ENOMEM); if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) { if (crp->crp_aad != NULL) authbuf = crp->crp_aad; else authbuf = armv8_crypto_cipher_alloc(crp, crp->crp_aad_start, crp->crp_aad_length, &authallocated); if (authbuf == NULL) { error = ENOMEM; goto out; } } if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) { outbuf = crypto_buffer_contiguous_subsegment(&crp->crp_obuf, crp->crp_payload_output_start, crp->crp_payload_length); if (outbuf == NULL) { outcopy = true; if (allocated) outbuf = buf; else { outbuf = malloc(crp->crp_payload_length, M_ARMV8_CRYPTO, M_NOWAIT); if (outbuf == NULL) { error = ENOMEM; goto out; } outallocated = true; } } else outcopy = false; } else { outbuf = buf; outcopy = allocated; } kt = is_fpu_kern_thread(0); if (!kt) { AQUIRE_CTX(i, ctx); fpu_kern_enter(curthread, ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); } if (crp->crp_cipher_key != NULL) { armv8_crypto_cipher_setup(ses, csp, crp->crp_cipher_key, csp->csp_cipher_klen); } crypto_read_iv(crp, iv); /* Do work */ switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: if ((crp->crp_payload_length % AES_BLOCK_LEN) != 0) { error = EINVAL; goto out; } if (encflag) armv8_aes_encrypt_cbc(&ses->enc_schedule, crp->crp_payload_length, buf, buf, iv); else armv8_aes_decrypt_cbc(&ses->dec_schedule, crp->crp_payload_length, buf, iv); break; case CRYPTO_AES_XTS: if (encflag) armv8_aes_encrypt_xts(&ses->enc_schedule, &ses->xts_schedule.aes_key, crp->crp_payload_length, buf, buf, iv); else armv8_aes_decrypt_xts(&ses->dec_schedule, &ses->xts_schedule.aes_key, crp->crp_payload_length, buf, buf, iv); break; case CRYPTO_AES_NIST_GCM_16: if (encflag) { memset(tag, 0, sizeof(tag)); armv8_aes_encrypt_gcm(&ses->enc_schedule, crp->crp_payload_length, buf, outbuf, crp->crp_aad_length, authbuf, tag, iv, ses->Htable); crypto_copyback(crp, crp->crp_digest_start, sizeof(tag), tag); } else { crypto_copydata(crp, crp->crp_digest_start, sizeof(tag), tag); if (armv8_aes_decrypt_gcm(&ses->enc_schedule, crp->crp_payload_length, buf, outbuf, crp->crp_aad_length, authbuf, tag, iv, ses->Htable) != 0) { error = EBADMSG; goto out; } } break; } if (outcopy) crypto_copyback(crp, CRYPTO_HAS_OUTPUT_BUFFER(crp) ? crp->crp_payload_output_start : crp->crp_payload_start, crp->crp_payload_length, outbuf); error = 0; out: if (!kt) { fpu_kern_leave(curthread, ctx); RELEASE_CTX(i, ctx); } if (allocated) zfree(buf, M_ARMV8_CRYPTO); if (authallocated) zfree(authbuf, M_ARMV8_CRYPTO); if (outallocated) zfree(outbuf, M_ARMV8_CRYPTO); explicit_bzero(iv, sizeof(iv)); explicit_bzero(tag, sizeof(tag)); return (error); } static device_method_t armv8_crypto_methods[] = { DEVMETHOD(device_identify, armv8_crypto_identify), DEVMETHOD(device_probe, armv8_crypto_probe), DEVMETHOD(device_attach, armv8_crypto_attach), DEVMETHOD(device_detach, armv8_crypto_detach), DEVMETHOD(cryptodev_probesession, armv8_crypto_probesession), DEVMETHOD(cryptodev_newsession, armv8_crypto_newsession), DEVMETHOD(cryptodev_process, armv8_crypto_process), DEVMETHOD_END, }; static DEFINE_CLASS_0(armv8crypto, armv8_crypto_driver, armv8_crypto_methods, sizeof(struct armv8_crypto_softc)); static devclass_t armv8_crypto_devclass; DRIVER_MODULE(armv8crypto, nexus, armv8_crypto_driver, armv8_crypto_devclass, 0, 0);