/******************************************************************************* * Copyright (c) 2013, Intel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * * Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************** * * Intel SHA Extensions optimized implementation of a SHA-1 update function * * The function takes a pointer to the current hash values, a pointer to the * input data, and a number of 64 byte blocks to process. Once all blocks have * been processed, the digest pointer is updated with the resulting hash value. * The function only processes complete blocks, there is no functionality to * store partial blocks. All message padding and hash value initialization must * be done outside the update function. * * The indented lines in the loop are instructions related to rounds processing. * The non-indented lines are instructions related to the message schedule. * * Author: Sean Gulley <sean.m.gulley@intel.com> * Date: July 2013 * ******************************************************************************** * * Example complier command line: * icc intel_sha_extensions_sha1_intrinsic.c * gcc -msha -msse4 intel_sha_extensions_sha1_intrinsic.c * *******************************************************************************/ #include <sys/cdefs.h> #include <sys/types.h> #include <crypto/aesni/aesni_os.h> #include <crypto/aesni/sha_sse.h> #include <immintrin.h> void intel_sha1_step(uint32_t *digest, const char *data, uint32_t num_blks) { __m128i abcd, e0, e1; __m128i abcd_save, e_save; __m128i msg0, msg1, msg2, msg3; __m128i shuf_mask, e_mask; #if 0 e_mask = _mm_set_epi64x(0xFFFFFFFF00000000ull, 0x0000000000000000ull); #else (void)e_mask; e0 = _mm_set_epi64x(0, 0); #endif shuf_mask = _mm_set_epi64x(0x0001020304050607ull, 0x08090a0b0c0d0e0full); // Load initial hash values abcd = _mm_loadu_si128((__m128i*) digest); e0 = _mm_insert_epi32(e0, *(digest+4), 3); abcd = _mm_shuffle_epi32(abcd, 0x1B); #if 0 e0 = _mm_and_si128(e0, e_mask); #endif while (num_blks > 0) { // Save hash values for addition after rounds abcd_save = abcd; e_save = e0; // Rounds 0-3 msg0 = _mm_loadu_si128((const __m128i*) data); msg0 = _mm_shuffle_epi8(msg0, shuf_mask); e0 = _mm_add_epi32(e0, msg0); e1 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e0, 0); // Rounds 4-7 msg1 = _mm_loadu_si128((const __m128i*) (data+16)); msg1 = _mm_shuffle_epi8(msg1, shuf_mask); e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e1, 0); msg0 = _mm_sha1msg1_epu32(msg0, msg1); // Rounds 8-11 msg2 = _mm_loadu_si128((const __m128i*) (data+32)); msg2 = _mm_shuffle_epi8(msg2, shuf_mask); e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e0, 0); msg1 = _mm_sha1msg1_epu32(msg1, msg2); msg0 = _mm_xor_si128(msg0, msg2); // Rounds 12-15 msg3 = _mm_loadu_si128((const __m128i*) (data+48)); msg3 = _mm_shuffle_epi8(msg3, shuf_mask); e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; msg0 = _mm_sha1msg2_epu32(msg0, msg3); abcd = _mm_sha1rnds4_epu32(abcd, e1, 0); msg2 = _mm_sha1msg1_epu32(msg2, msg3); msg1 = _mm_xor_si128(msg1, msg3); // Rounds 16-19 e0 = _mm_sha1nexte_epu32(e0, msg0); e1 = abcd; msg1 = _mm_sha1msg2_epu32(msg1, msg0); abcd = _mm_sha1rnds4_epu32(abcd, e0, 0); msg3 = _mm_sha1msg1_epu32(msg3, msg0); msg2 = _mm_xor_si128(msg2, msg0); // Rounds 20-23 e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; msg2 = _mm_sha1msg2_epu32(msg2, msg1); abcd = _mm_sha1rnds4_epu32(abcd, e1, 1); msg0 = _mm_sha1msg1_epu32(msg0, msg1); msg3 = _mm_xor_si128(msg3, msg1); // Rounds 24-27 e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; msg3 = _mm_sha1msg2_epu32(msg3, msg2); abcd = _mm_sha1rnds4_epu32(abcd, e0, 1); msg1 = _mm_sha1msg1_epu32(msg1, msg2); msg0 = _mm_xor_si128(msg0, msg2); // Rounds 28-31 e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; msg0 = _mm_sha1msg2_epu32(msg0, msg3); abcd = _mm_sha1rnds4_epu32(abcd, e1, 1); msg2 = _mm_sha1msg1_epu32(msg2, msg3); msg1 = _mm_xor_si128(msg1, msg3); // Rounds 32-35 e0 = _mm_sha1nexte_epu32(e0, msg0); e1 = abcd; msg1 = _mm_sha1msg2_epu32(msg1, msg0); abcd = _mm_sha1rnds4_epu32(abcd, e0, 1); msg3 = _mm_sha1msg1_epu32(msg3, msg0); msg2 = _mm_xor_si128(msg2, msg0); // Rounds 36-39 e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; msg2 = _mm_sha1msg2_epu32(msg2, msg1); abcd = _mm_sha1rnds4_epu32(abcd, e1, 1); msg0 = _mm_sha1msg1_epu32(msg0, msg1); msg3 = _mm_xor_si128(msg3, msg1); // Rounds 40-43 e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; msg3 = _mm_sha1msg2_epu32(msg3, msg2); abcd = _mm_sha1rnds4_epu32(abcd, e0, 2); msg1 = _mm_sha1msg1_epu32(msg1, msg2); msg0 = _mm_xor_si128(msg0, msg2); // Rounds 44-47 e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; msg0 = _mm_sha1msg2_epu32(msg0, msg3); abcd = _mm_sha1rnds4_epu32(abcd, e1, 2); msg2 = _mm_sha1msg1_epu32(msg2, msg3); msg1 = _mm_xor_si128(msg1, msg3); // Rounds 48-51 e0 = _mm_sha1nexte_epu32(e0, msg0); e1 = abcd; msg1 = _mm_sha1msg2_epu32(msg1, msg0); abcd = _mm_sha1rnds4_epu32(abcd, e0, 2); msg3 = _mm_sha1msg1_epu32(msg3, msg0); msg2 = _mm_xor_si128(msg2, msg0); // Rounds 52-55 e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; msg2 = _mm_sha1msg2_epu32(msg2, msg1); abcd = _mm_sha1rnds4_epu32(abcd, e1, 2); msg0 = _mm_sha1msg1_epu32(msg0, msg1); msg3 = _mm_xor_si128(msg3, msg1); // Rounds 56-59 e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; msg3 = _mm_sha1msg2_epu32(msg3, msg2); abcd = _mm_sha1rnds4_epu32(abcd, e0, 2); msg1 = _mm_sha1msg1_epu32(msg1, msg2); msg0 = _mm_xor_si128(msg0, msg2); // Rounds 60-63 e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; msg0 = _mm_sha1msg2_epu32(msg0, msg3); abcd = _mm_sha1rnds4_epu32(abcd, e1, 3); msg2 = _mm_sha1msg1_epu32(msg2, msg3); msg1 = _mm_xor_si128(msg1, msg3); // Rounds 64-67 e0 = _mm_sha1nexte_epu32(e0, msg0); e1 = abcd; msg1 = _mm_sha1msg2_epu32(msg1, msg0); abcd = _mm_sha1rnds4_epu32(abcd, e0, 3); msg3 = _mm_sha1msg1_epu32(msg3, msg0); msg2 = _mm_xor_si128(msg2, msg0); // Rounds 68-71 e1 = _mm_sha1nexte_epu32(e1, msg1); e0 = abcd; msg2 = _mm_sha1msg2_epu32(msg2, msg1); abcd = _mm_sha1rnds4_epu32(abcd, e1, 3); msg3 = _mm_xor_si128(msg3, msg1); // Rounds 72-75 e0 = _mm_sha1nexte_epu32(e0, msg2); e1 = abcd; msg3 = _mm_sha1msg2_epu32(msg3, msg2); abcd = _mm_sha1rnds4_epu32(abcd, e0, 3); // Rounds 76-79 e1 = _mm_sha1nexte_epu32(e1, msg3); e0 = abcd; abcd = _mm_sha1rnds4_epu32(abcd, e1, 3); // Add current hash values with previously saved e0 = _mm_sha1nexte_epu32(e0, e_save); abcd = _mm_add_epi32(abcd, abcd_save); data += 64; num_blks--; } abcd = _mm_shuffle_epi32(abcd, 0x1B); _mm_store_si128((__m128i*) digest, abcd); *(digest+4) = _mm_extract_epi32(e0, 3); }