/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2016 by Delphix. All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. */ #include #include #include #include #include #include #include #include /* * Checksum vectors. * * In the SPA, everything is checksummed. We support checksum vectors * for three distinct reasons: * * 1. Different kinds of data need different levels of protection. * For SPA metadata, we always want a very strong checksum. * For user data, we let users make the trade-off between speed * and checksum strength. * * 2. Cryptographic hash and MAC algorithms are an area of active research. * It is likely that in future hash functions will be at least as strong * as current best-of-breed, and may be substantially faster as well. * We want the ability to take advantage of these new hashes as soon as * they become available. * * 3. If someone develops hardware that can compute a strong hash quickly, * we want the ability to take advantage of that hardware. * * Of course, we don't want a checksum upgrade to invalidate existing * data, so we store the checksum *function* in eight bits of the bp. * This gives us room for up to 256 different checksum functions. * * When writing a block, we always checksum it with the latest-and-greatest * checksum function of the appropriate strength. When reading a block, * we compare the expected checksum against the actual checksum, which we * compute via the checksum function specified by BP_GET_CHECKSUM(bp). * * SALTED CHECKSUMS * * To enable the use of less secure hash algorithms with dedup, we * introduce the notion of salted checksums (MACs, really). A salted * checksum is fed both a random 256-bit value (the salt) and the data * to be checksummed. This salt is kept secret (stored on the pool, but * never shown to the user). Thus even if an attacker knew of collision * weaknesses in the hash algorithm, they won't be able to mount a known * plaintext attack on the DDT, since the actual hash value cannot be * known ahead of time. How the salt is used is algorithm-specific * (some might simply prefix it to the data block, others might need to * utilize a full-blown HMAC). On disk the salt is stored in a ZAP * object in the MOS (DMU_POOL_CHECKSUM_SALT). * * CONTEXT TEMPLATES * * Some hashing algorithms need to perform a substantial amount of * initialization work (e.g. salted checksums above may need to pre-hash * the salt) before being able to process data. Performing this * redundant work for each block would be wasteful, so we instead allow * a checksum algorithm to do the work once (the first time it's used) * and then keep this pre-initialized context as a template inside the * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to * construct and destruct the pre-initialized checksum context. The * pre-initialized context is then reused during each checksum * invocation and passed to the checksum function. */ static void abd_checksum_off(abd_t *abd, uint64_t size, const void *ctx_template, zio_cksum_t *zcp) { (void) abd, (void) size, (void) ctx_template; ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); } static void abd_fletcher_2_native(abd_t *abd, uint64_t size, const void *ctx_template, zio_cksum_t *zcp) { (void) ctx_template; fletcher_init(zcp); (void) abd_iterate_func(abd, 0, size, fletcher_2_incremental_native, zcp); } static void abd_fletcher_2_byteswap(abd_t *abd, uint64_t size, const void *ctx_template, zio_cksum_t *zcp) { (void) ctx_template; fletcher_init(zcp); (void) abd_iterate_func(abd, 0, size, fletcher_2_incremental_byteswap, zcp); } static inline void abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp) { fletcher_4_abd_ops.acf_init(acdp); abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp); fletcher_4_abd_ops.acf_fini(acdp); } void abd_fletcher_4_native(abd_t *abd, uint64_t size, const void *ctx_template, zio_cksum_t *zcp) { (void) ctx_template; fletcher_4_ctx_t ctx; zio_abd_checksum_data_t acd = { .acd_byteorder = ZIO_CHECKSUM_NATIVE, .acd_zcp = zcp, .acd_ctx = &ctx }; abd_fletcher_4_impl(abd, size, &acd); } void abd_fletcher_4_byteswap(abd_t *abd, uint64_t size, const void *ctx_template, zio_cksum_t *zcp) { (void) ctx_template; fletcher_4_ctx_t ctx; zio_abd_checksum_data_t acd = { .acd_byteorder = ZIO_CHECKSUM_BYTESWAP, .acd_zcp = zcp, .acd_ctx = &ctx }; abd_fletcher_4_impl(abd, size, &acd); } const zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { {{NULL, NULL}, NULL, NULL, 0, "inherit"}, {{NULL, NULL}, NULL, NULL, 0, "on"}, {{abd_checksum_off, abd_checksum_off}, NULL, NULL, 0, "off"}, {{abd_checksum_SHA256, abd_checksum_SHA256}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "label"}, {{abd_checksum_SHA256, abd_checksum_SHA256}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "gang_header"}, {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, NULL, NULL, 0, "fletcher2"}, {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"}, {{abd_checksum_SHA256, abd_checksum_SHA256}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | ZCHECKSUM_FLAG_NOPWRITE, "sha256"}, {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"}, {{abd_checksum_off, abd_checksum_off}, NULL, NULL, 0, "noparity"}, {{abd_checksum_SHA512_native, abd_checksum_SHA512_byteswap}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | ZCHECKSUM_FLAG_NOPWRITE, "sha512"}, {{abd_checksum_skein_native, abd_checksum_skein_byteswap}, abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"}, {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap}, abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, {{abd_checksum_blake3_native, abd_checksum_blake3_byteswap}, abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"}, }; /* * The flag corresponding to the "verify" in dedup=[checksum,]verify * must be cleared first, so callers should use ZIO_CHECKSUM_MASK. */ spa_feature_t zio_checksum_to_feature(enum zio_checksum cksum) { VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0); switch (cksum) { case ZIO_CHECKSUM_BLAKE3: return (SPA_FEATURE_BLAKE3); case ZIO_CHECKSUM_SHA512: return (SPA_FEATURE_SHA512); case ZIO_CHECKSUM_SKEIN: return (SPA_FEATURE_SKEIN); case ZIO_CHECKSUM_EDONR: return (SPA_FEATURE_EDONR); default: return (SPA_FEATURE_NONE); } } enum zio_checksum zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) { ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); if (child == ZIO_CHECKSUM_INHERIT) return (parent); if (child == ZIO_CHECKSUM_ON) return (ZIO_CHECKSUM_ON_VALUE); return (child); } enum zio_checksum zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, enum zio_checksum parent) { ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); if (child == ZIO_CHECKSUM_INHERIT) return (parent); if (child == ZIO_CHECKSUM_ON) return (spa_dedup_checksum(spa)); if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags & ZCHECKSUM_FLAG_DEDUP) || (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); return (child); } /* * Set the external verifier for a gang block based on , * a tuple which is guaranteed to be unique for the life of the pool. */ static void zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) { const dva_t *dva = BP_IDENTITY(bp); uint64_t txg = BP_PHYSICAL_BIRTH(bp); ASSERT(BP_IS_GANG(bp)); ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); } /* * Set the external verifier for a label block based on its offset. * The vdev is implicit, and the txg is unknowable at pool open time -- * hence the logic in vdev_uberblock_load() to find the most recent copy. */ static void zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) { ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); } /* * Calls the template init function of a checksum which supports context * templates and installs the template into the spa_t. */ static void zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) { zio_checksum_info_t *ci = &zio_checksum_table[checksum]; if (ci->ci_tmpl_init == NULL) return; if (spa->spa_cksum_tmpls[checksum] != NULL) return; VERIFY(ci->ci_tmpl_free != NULL); mutex_enter(&spa->spa_cksum_tmpls_lock); if (spa->spa_cksum_tmpls[checksum] == NULL) { spa->spa_cksum_tmpls[checksum] = ci->ci_tmpl_init(&spa->spa_cksum_salt); VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); } mutex_exit(&spa->spa_cksum_tmpls_lock); } /* convenience function to update a checksum to accommodate an encryption MAC */ static void zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor) { /* * Weak checksums do not have their entropy spread evenly * across the bits of the checksum. Therefore, when truncating * a weak checksum we XOR the first 2 words with the last 2 so * that we don't "lose" any entropy unnecessarily. */ if (xor) { cksum->zc_word[0] ^= cksum->zc_word[2]; cksum->zc_word[1] ^= cksum->zc_word[3]; } cksum->zc_word[2] = saved->zc_word[2]; cksum->zc_word[3] = saved->zc_word[3]; } /* * Generate the checksum. */ void zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, abd_t *abd, uint64_t size) { static const uint64_t zec_magic = ZEC_MAGIC; blkptr_t *bp = zio->io_bp; uint64_t offset = zio->io_offset; zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t cksum, saved; spa_t *spa = zio->io_spa; boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0; ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); ASSERT(ci->ci_func[0] != NULL); zio_checksum_template_init(checksum, spa); if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { zio_eck_t eck; size_t eck_offset; memset(&saved, 0, sizeof (zio_cksum_t)); if (checksum == ZIO_CHECKSUM_ZILOG2) { zil_chain_t zilc; abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ, uint64_t); eck = zilc.zc_eck; eck_offset = offsetof(zil_chain_t, zc_eck); } else { eck_offset = size - sizeof (zio_eck_t); abd_copy_to_buf_off(&eck, abd, eck_offset, sizeof (zio_eck_t)); } if (checksum == ZIO_CHECKSUM_GANG_HEADER) { zio_checksum_gang_verifier(&eck.zec_cksum, bp); } else if (checksum == ZIO_CHECKSUM_LABEL) { zio_checksum_label_verifier(&eck.zec_cksum, offset); } else { saved = eck.zec_cksum; eck.zec_cksum = bp->blk_cksum; } abd_copy_from_buf_off(abd, &zec_magic, eck_offset + offsetof(zio_eck_t, zec_magic), sizeof (zec_magic)); abd_copy_from_buf_off(abd, &eck.zec_cksum, eck_offset + offsetof(zio_eck_t, zec_cksum), sizeof (zio_cksum_t)); ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], &cksum); if (bp != NULL && BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) zio_checksum_handle_crypt(&cksum, &saved, insecure); abd_copy_from_buf_off(abd, &cksum, eck_offset + offsetof(zio_eck_t, zec_cksum), sizeof (zio_cksum_t)); } else { saved = bp->blk_cksum; ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], &cksum); if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) zio_checksum_handle_crypt(&cksum, &saved, insecure); bp->blk_cksum = cksum; } } int zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp, enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset, zio_bad_cksum_t *info) { zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t actual_cksum, expected_cksum; zio_eck_t eck; int byteswap; if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) return (SET_ERROR(EINVAL)); zio_checksum_template_init(checksum, spa); if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { zio_cksum_t verifier; size_t eck_offset; if (checksum == ZIO_CHECKSUM_ZILOG2) { zil_chain_t zilc; uint64_t nused; abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); eck = zilc.zc_eck; eck_offset = offsetof(zil_chain_t, zc_eck) + offsetof(zio_eck_t, zec_cksum); if (eck.zec_magic == ZEC_MAGIC) { nused = zilc.zc_nused; } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) { nused = BSWAP_64(zilc.zc_nused); } else { return (SET_ERROR(ECKSUM)); } if (nused > size) { return (SET_ERROR(ECKSUM)); } size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); } else { eck_offset = size - sizeof (zio_eck_t); abd_copy_to_buf_off(&eck, abd, eck_offset, sizeof (zio_eck_t)); eck_offset += offsetof(zio_eck_t, zec_cksum); } if (checksum == ZIO_CHECKSUM_GANG_HEADER) zio_checksum_gang_verifier(&verifier, bp); else if (checksum == ZIO_CHECKSUM_LABEL) zio_checksum_label_verifier(&verifier, offset); else verifier = bp->blk_cksum; byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC)); if (byteswap) byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); expected_cksum = eck.zec_cksum; abd_copy_from_buf_off(abd, &verifier, eck_offset, sizeof (zio_cksum_t)); ci->ci_func[byteswap](abd, size, spa->spa_cksum_tmpls[checksum], &actual_cksum); abd_copy_from_buf_off(abd, &expected_cksum, eck_offset, sizeof (zio_cksum_t)); if (byteswap) { byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); } } else { byteswap = BP_SHOULD_BYTESWAP(bp); expected_cksum = bp->blk_cksum; ci->ci_func[byteswap](abd, size, spa->spa_cksum_tmpls[checksum], &actual_cksum); } /* * MAC checksums are a special case since half of this checksum will * actually be the encryption MAC. This will be verified by the * decryption process, so we just check the truncated checksum now. * Objset blocks use embedded MACs so we don't truncate the checksum * for them. */ if (bp != NULL && BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) { if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) { actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2]; actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3]; } actual_cksum.zc_word[2] = 0; actual_cksum.zc_word[3] = 0; expected_cksum.zc_word[2] = 0; expected_cksum.zc_word[3] = 0; } if (info != NULL) { info->zbc_expected = expected_cksum; info->zbc_actual = actual_cksum; info->zbc_checksum_name = ci->ci_name; info->zbc_byteswapped = byteswap; info->zbc_injected = 0; info->zbc_has_cksum = 1; } if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) return (SET_ERROR(ECKSUM)); return (0); } int zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) { blkptr_t *bp = zio->io_bp; uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); int error; uint64_t size = (bp == NULL ? zio->io_size : (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); uint64_t offset = zio->io_offset; abd_t *data = zio->io_abd; spa_t *spa = zio->io_spa; error = zio_checksum_error_impl(spa, bp, checksum, data, size, offset, info); if (zio_injection_enabled && error == 0 && zio->io_error == 0) { error = zio_handle_fault_injection(zio, ECKSUM); if (error != 0) info->zbc_injected = 1; } return (error); } /* * Called by a spa_t that's about to be deallocated. This steps through * all of the checksum context templates and deallocates any that were * initialized using the algorithm-specific template init function. */ void zio_checksum_templates_free(spa_t *spa) { for (enum zio_checksum checksum = 0; checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { if (spa->spa_cksum_tmpls[checksum] != NULL) { zio_checksum_info_t *ci = &zio_checksum_table[checksum]; VERIFY(ci->ci_tmpl_free != NULL); ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); spa->spa_cksum_tmpls[checksum] = NULL; } } }