/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2015 by Chunwei Chen. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Enables access to the block cloning feature. If this setting is 0, then even * if feature@block_cloning is enabled, using functions and system calls that * attempt to clone blocks will act as though the feature is disabled. */ int zfs_bclone_enabled = 1; /* * When set zfs_clone_range() waits for dirty data to be written to disk. * This allows the clone operation to reliably succeed when a file is modified * and then immediately cloned. For small files this may be slower than making * a copy of the file and is therefore not the default. However, in certain * scenarios this behavior may be desirable so a tunable is provided. */ static int zfs_bclone_wait_dirty = 0; /* * Enable Direct I/O. If this setting is 0, then all I/O requests will be * directed through the ARC acting as though the dataset property direct was * set to disabled. * * Disabled by default on FreeBSD until a potential range locking issue in * zfs_getpages() can be resolved. */ #ifdef __FreeBSD__ static int zfs_dio_enabled = 0; #else static int zfs_dio_enabled = 1; #endif /* * Maximum bytes to read per chunk in zfs_read(). */ static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; int zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) { int error = 0; zfsvfs_t *zfsvfs = ZTOZSB(zp); if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); atomic_inc_32(&zp->z_sync_writes_cnt); zil_commit(zfsvfs->z_log, zp->z_id); atomic_dec_32(&zp->z_sync_writes_cnt); zfs_exit(zfsvfs, FTAG); } return (error); } #if defined(SEEK_HOLE) && defined(SEEK_DATA) /* * Lseek support for finding holes (cmd == SEEK_HOLE) and * data (cmd == SEEK_DATA). "off" is an in/out parameter. */ static int zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) { zfs_locked_range_t *lr; uint64_t noff = (uint64_t)*off; /* new offset */ uint64_t file_sz; int error; boolean_t hole; file_sz = zp->z_size; if (noff >= file_sz) { return (SET_ERROR(ENXIO)); } if (cmd == F_SEEK_HOLE) hole = B_TRUE; else hole = B_FALSE; /* Flush any mmap()'d data to disk */ if (zn_has_cached_data(zp, 0, file_sz - 1)) zn_flush_cached_data(zp, B_TRUE); lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER); error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); zfs_rangelock_exit(lr); if (error == ESRCH) return (SET_ERROR(ENXIO)); /* File was dirty, so fall back to using generic logic */ if (error == EBUSY) { if (hole) *off = file_sz; return (0); } /* * We could find a hole that begins after the logical end-of-file, * because dmu_offset_next() only works on whole blocks. If the * EOF falls mid-block, then indicate that the "virtual hole" * at the end of the file begins at the logical EOF, rather than * at the end of the last block. */ if (noff > file_sz) { ASSERT(hole); noff = file_sz; } if (noff < *off) return (error); *off = noff; return (error); } int zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_holey_common(zp, cmd, off); zfs_exit(zfsvfs, FTAG); return (error); } #endif /* SEEK_HOLE && SEEK_DATA */ int zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (flag & V_ACE_MASK) #if defined(__linux__) error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, zfs_init_idmap); #else error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, NULL); #endif else #if defined(__linux__) error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap); #else error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); #endif zfs_exit(zfsvfs, FTAG); return (error); } /* * Determine if Direct I/O has been requested (either via the O_DIRECT flag or * the "direct" dataset property). When inherited by the property only apply * the O_DIRECT flag to correctly aligned IO requests. The rational for this * is it allows the property to be safely set on a dataset without forcing * all of the applications to be aware of the alignment restrictions. When * O_DIRECT is explicitly requested by an application return EINVAL if the * request is unaligned. In all cases, if the range for this request has * been mmap'ed then we will perform buffered I/O to keep the mapped region * synhronized with the ARC. * * It is possible that a file's pages could be mmap'ed after it is checked * here. If so, that is handled coorarding in zfs_write(). See comments in the * following area for how this is handled: * zfs_write() -> update_pages() */ static int zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw, int *ioflagp) { zfsvfs_t *zfsvfs = ZTOZSB(zp); objset_t *os = zfsvfs->z_os; int ioflag = *ioflagp; int error = 0; if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED || zn_has_cached_data(zp, zfs_uio_offset(uio), zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) { /* * Direct I/O is disabled or the region is mmap'ed. In either * case the I/O request will just directed through the ARC. */ ioflag &= ~O_DIRECT; goto out; } else if (os->os_direct == ZFS_DIRECT_ALWAYS && zfs_uio_page_aligned(uio) && zfs_uio_aligned(uio, PAGE_SIZE)) { if ((rw == UIO_WRITE && zfs_uio_resid(uio) >= zp->z_blksz) || (rw == UIO_READ)) { ioflag |= O_DIRECT; } } else if (os->os_direct == ZFS_DIRECT_ALWAYS && (ioflag & O_DIRECT)) { /* * Direct I/O was requested through the direct=always, but it * is not properly PAGE_SIZE aligned. The request will be * directed through the ARC. */ ioflag &= ~O_DIRECT; } if (ioflag & O_DIRECT) { if (!zfs_uio_page_aligned(uio) || !zfs_uio_aligned(uio, PAGE_SIZE)) { error = SET_ERROR(EINVAL); goto out; } error = zfs_uio_get_dio_pages_alloc(uio, rw); if (error) { goto out; } } IMPLY(ioflag & O_DIRECT, uio->uio_extflg & UIO_DIRECT); ASSERT0(error); out: *ioflagp = ioflag; return (error); } /* * Read bytes from specified file into supplied buffer. * * IN: zp - inode of file to be read from. * uio - structure supplying read location, range info, * and return buffer. * ioflag - O_SYNC flags; used to provide FRSYNC semantics. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range, buffer filled. * * RETURN: 0 on success, error code on failure. * * Side Effects: * inode - atime updated if byte count > 0 */ int zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) { (void) cr; int error = 0; boolean_t frsync = B_FALSE; boolean_t dio_checksum_failure = B_FALSE; zfsvfs_t *zfsvfs = ZTOZSB(zp); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (zp->z_pflags & ZFS_AV_QUARANTINED) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EACCES)); } /* We don't copy out anything useful for directories. */ if (Z_ISDIR(ZTOTYPE(zp))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EISDIR)); } /* * Validate file offset */ if (zfs_uio_offset(uio) < (offset_t)0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Fasttrack empty reads */ if (zfs_uio_resid(uio) == 0) { zfs_exit(zfsvfs, FTAG); return (0); } #ifdef FRSYNC /* * If we're in FRSYNC mode, sync out this znode before reading it. * Only do this for non-snapshots. * * Some platforms do not support FRSYNC and instead map it * to O_SYNC, which results in unnecessary calls to zil_commit. We * only honor FRSYNC requests on platforms which support it. */ frsync = !!(ioflag & FRSYNC); #endif if (zfsvfs->z_log && (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) zil_commit(zfsvfs->z_log, zp->z_id); /* * Lock the range against changes. */ zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); /* * If we are reading past end-of-file we can skip * to the end; but we might still need to set atime. */ if (zfs_uio_offset(uio) >= zp->z_size) { error = 0; goto out; } ASSERT(zfs_uio_offset(uio) < zp->z_size); /* * Setting up Direct I/O if requested. */ error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag); if (error) { goto out; } #if defined(__linux__) ssize_t start_offset = zfs_uio_offset(uio); #endif ssize_t chunk_size = zfs_vnops_read_chunk_size; ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); ssize_t start_resid = n; ssize_t dio_remaining_resid = 0; if (uio->uio_extflg & UIO_DIRECT) { /* * All pages for an O_DIRECT request ahve already been mapped * so there's no compelling reason to handle this uio in * smaller chunks. */ chunk_size = DMU_MAX_ACCESS; /* * In the event that the O_DIRECT request is reading the entire * file, it is possible file's length is not page sized * aligned. However, lower layers expect that the Direct I/O * request is page-aligned. In this case, as much of the file * that can be read using Direct I/O happens and the remaining * amount will be read through the ARC. * * This is still consistent with the semantics of Direct I/O in * ZFS as at a minimum the I/O request must be page-aligned. */ dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t); if (dio_remaining_resid != 0) n -= dio_remaining_resid; } while (n > 0) { ssize_t nbytes = MIN(n, chunk_size - P2PHASE(zfs_uio_offset(uio), chunk_size)); #ifdef UIO_NOCOPY if (zfs_uio_segflg(uio) == UIO_NOCOPY) error = mappedread_sf(zp, nbytes, uio); else #endif if (zn_has_cached_data(zp, zfs_uio_offset(uio), zfs_uio_offset(uio) + nbytes - 1)) { error = mappedread(zp, nbytes, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes); } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) { /* * If a Direct I/O read returned a checksum * verify error, then it must be treated as * suspicious. The contents of the buffer could * have beeen manipulated while the I/O was in * flight. In this case, the remainder of I/O * request will just be reissued through the * ARC. */ if (uio->uio_extflg & UIO_DIRECT) { dio_checksum_failure = B_TRUE; uio->uio_extflg &= ~UIO_DIRECT; n += dio_remaining_resid; dio_remaining_resid = 0; continue; } else { error = SET_ERROR(EIO); } } #if defined(__linux__) /* * if we actually read some bytes, bubbling EFAULT * up to become EAGAIN isn't what we want here... * * ...on Linux, at least. On FBSD, doing this breaks. */ if (error == EFAULT && (zfs_uio_offset(uio) - start_offset) != 0) error = 0; #endif break; } n -= nbytes; } if (error == 0 && (uio->uio_extflg & UIO_DIRECT) && dio_remaining_resid != 0) { /* * Temporarily remove the UIO_DIRECT flag from the UIO so the * remainder of the file can be read using the ARC. */ uio->uio_extflg &= ~UIO_DIRECT; if (zn_has_cached_data(zp, zfs_uio_offset(uio), zfs_uio_offset(uio) + dio_remaining_resid - 1)) { error = mappedread(zp, dio_remaining_resid, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, dio_remaining_resid); } uio->uio_extflg |= UIO_DIRECT; if (error != 0) n += dio_remaining_resid; } else if (error && (uio->uio_extflg & UIO_DIRECT)) { n += dio_remaining_resid; } int64_t nread = start_resid - n; dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); out: zfs_rangelock_exit(lr); if (dio_checksum_failure == B_TRUE) uio->uio_extflg |= UIO_DIRECT; /* * Cleanup for Direct I/O if requested. */ if (uio->uio_extflg & UIO_DIRECT) zfs_uio_free_dio_pages(uio, UIO_READ); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); zfs_exit(zfsvfs, FTAG); return (error); } static void zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) { zilog_t *zilog = zfsvfs->z_log; const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); ASSERT(clear_setid_bits_txgp != NULL); ASSERT(tx != NULL); /* * Clear Set-UID/Set-GID bits on successful write if not * privileged and at least one of the execute bits is set. * * It would be nice to do this after all writes have * been done, but that would still expose the ISUID/ISGID * to another app after the partial write is committed. * * Note: we don't call zfs_fuid_map_id() here because * user 0 is not an ephemeral uid. */ mutex_enter(&zp->z_acl_lock); if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && secpolicy_vnode_setid_retain(zp, cr, ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { uint64_t newmode; zp->z_mode &= ~(S_ISUID | S_ISGID); newmode = zp->z_mode; (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), (void *)&newmode, sizeof (uint64_t), tx); mutex_exit(&zp->z_acl_lock); /* * Make sure SUID/SGID bits will be removed when we replay the * log. If the setid bits are keep coming back, don't log more * than one TX_SETATTR per transaction group. */ if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { vattr_t va = {0}; va.va_mask = ATTR_MODE; va.va_nodeid = zp->z_id; va.va_mode = newmode; zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, ATTR_MODE, NULL); *clear_setid_bits_txgp = dmu_tx_get_txg(tx); } } else { mutex_exit(&zp->z_acl_lock); } } /* * Write the bytes to a file. * * IN: zp - znode of file to be written to. * uio - structure supplying write location, range info, * and data buffer. * ioflag - O_APPEND flag set if in append mode. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime|mtime updated if byte count > 0 */ int zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) { int error = 0, error1; ssize_t start_resid = zfs_uio_resid(uio); uint64_t clear_setid_bits_txg = 0; boolean_t o_direct_defer = B_FALSE; /* * Fasttrack empty write */ ssize_t n = start_resid; if (n == 0) return (0); zfsvfs_t *zfsvfs = ZTOZSB(zp); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); sa_bulk_attr_t bulk[4]; int count = 0; uint64_t mtime[2], ctime[2]; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(zfsvfs)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } /* * If immutable or not appending then return EPERM. * Intentionally allow ZFS_READONLY through here. * See zfs_zaccess_common() */ if ((zp->z_pflags & ZFS_IMMUTABLE) || ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && (zfs_uio_offset(uio) < zp->z_size))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* * Validate file offset */ offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); if (woff < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Setting up Direct I/O if requested. */ error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag); if (error) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(error)); } /* * Pre-fault the pages to ensure slow (eg NFS) pages * don't hold up txg. */ ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1); if (zfs_uio_prefaultpages(pfbytes, uio)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFAULT)); } /* * If in append mode, set the io offset pointer to eof. */ zfs_locked_range_t *lr; if (ioflag & O_APPEND) { /* * Obtain an appending range lock to guarantee file append * semantics. We reset the write offset once we have the lock. */ lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); woff = lr->lr_offset; if (lr->lr_length == UINT64_MAX) { /* * We overlocked the file because this write will cause * the file block size to increase. * Note that zp_size cannot change with this lock held. */ woff = zp->z_size; } zfs_uio_setoffset(uio, woff); /* * We need to update the starting offset as well because it is * set previously in the ZPL (Linux) and VNOPS (FreeBSD) * layers. */ zfs_uio_setsoffset(uio, woff); } else { /* * Note that if the file block size will change as a result of * this write, then this range lock will lock the entire file * so that we can re-write the block safely. */ lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); } if (zn_rlimit_fsize_uio(zp, uio)) { zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFBIG)); } const rlim64_t limit = MAXOFFSET_T; if (woff >= limit) { zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EFBIG)); } if (n > limit - woff) n = limit - woff; uint64_t end_size = MAX(zp->z_size, woff + n); zilog_t *zilog = zfsvfs->z_log; boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) || (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS); const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); const uint64_t projid = zp->z_projid; /* * In the event we are increasing the file block size * (lr_length == UINT64_MAX), we will direct the write to the ARC. * Because zfs_grow_blocksize() will read from the ARC in order to * grow the dbuf, we avoid doing Direct I/O here as that would cause * data written to disk to be overwritten by data in the ARC during * the sync phase. Besides writing data twice to disk, we also * want to avoid consistency concerns between data in the the ARC and * on disk while growing the file's blocksize. * * We will only temporarily remove Direct I/O and put it back after * we have grown the blocksize. We do this in the event a request * is larger than max_blksz, so further requests to * dmu_write_uio_dbuf() will still issue the requests using Direct * IO. * * As an example: * The first block to file is being written as a 4k request with * a recorsize of 1K. The first 1K issued in the loop below will go * through the ARC; however, the following 3 1K requests will * use Direct I/O. */ if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) { uio->uio_extflg &= ~UIO_DIRECT; o_direct_defer = B_TRUE; } /* * Write the file in reasonable size chunks. Each chunk is written * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (n > 0) { woff = zfs_uio_offset(uio); if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || (projid != ZFS_DEFAULT_PROJID && zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid))) { error = SET_ERROR(EDQUOT); break; } uint64_t blksz; if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) { if (zp->z_blksz > zfsvfs->z_max_blksz && !ISP2(zp->z_blksz)) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ blksz = 1 << highbit64(zp->z_blksz); } else { blksz = zfsvfs->z_max_blksz; } blksz = MIN(blksz, P2ROUNDUP(end_size, SPA_MINBLOCKSIZE)); blksz = MAX(blksz, zp->z_blksz); } else { blksz = zp->z_blksz; } arc_buf_t *abuf = NULL; ssize_t nbytes = n; if (n >= blksz && woff >= zp->z_size && P2PHASE(woff, blksz) == 0 && !(uio->uio_extflg & UIO_DIRECT) && (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) { /* * This write covers a full block. "Borrow" a buffer * from the dmu so that we can fill it before we enter * a transaction. This avoids the possibility of * holding up the transaction if the data copy hangs * up on a pagefault (e.g., from an NFS server mapping). */ abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz); ASSERT(abuf != NULL); ASSERT(arc_buf_size(abuf) == blksz); if ((error = zfs_uiocopy(abuf->b_data, blksz, UIO_WRITE, uio, &nbytes))) { dmu_return_arcbuf(abuf); break; } ASSERT3S(nbytes, ==, blksz); } else { nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) - P2PHASE(woff, blksz)); if (pfbytes < nbytes) { if (zfs_uio_prefaultpages(nbytes, uio)) { error = SET_ERROR(EFAULT); break; } pfbytes = nbytes; } } /* * Start a transaction. */ dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); DB_DNODE_ENTER(db); dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes); DB_DNODE_EXIT(db); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); if (abuf != NULL) dmu_return_arcbuf(abuf); break; } /* * NB: We must call zfs_clear_setid_bits_if_necessary before * committing the transaction! */ /* * If rangelock_enter() over-locked we grow the blocksize * and then reduce the lock range. This will only happen * on the first iteration since rangelock_reduce() will * shrink down lr_length to the appropriate size. */ if (lr->lr_length == UINT64_MAX) { zfs_grow_blocksize(zp, blksz, tx); zfs_rangelock_reduce(lr, woff, n); } ssize_t tx_bytes; if (abuf == NULL) { tx_bytes = zfs_uio_resid(uio); zfs_uio_fault_disable(uio, B_TRUE); error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes, tx); zfs_uio_fault_disable(uio, B_FALSE); #ifdef __linux__ if (error == EFAULT) { zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_tx_commit(tx); /* * Account for partial writes before * continuing the loop. * Update needs to occur before the next * zfs_uio_prefaultpages, or prefaultpages may * error, and we may break the loop early. */ n -= tx_bytes - zfs_uio_resid(uio); pfbytes -= tx_bytes - zfs_uio_resid(uio); continue; } #endif /* * On FreeBSD, EFAULT should be propagated back to the * VFS, which will handle faulting and will retry. */ if (error != 0 && error != EFAULT) { zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_tx_commit(tx); break; } tx_bytes -= zfs_uio_resid(uio); } else { /* * Thus, we're writing a full block at a block-aligned * offset and extending the file past EOF. * * dmu_assign_arcbuf_by_dbuf() will directly assign the * arc buffer to a dbuf. */ error = dmu_assign_arcbuf_by_dbuf( sa_get_db(zp->z_sa_hdl), woff, abuf, tx); if (error != 0) { /* * XXX This might not be necessary if * dmu_assign_arcbuf_by_dbuf is guaranteed * to be atomic. */ zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); dmu_return_arcbuf(abuf); dmu_tx_commit(tx); break; } ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); zfs_uioskip(uio, nbytes); tx_bytes = nbytes; } /* * There is a window where a file's pages can be mmap'ed after * zfs_setup_direct() is called. This is due to the fact that * the rangelock in this function is acquired after calling * zfs_setup_direct(). This is done so that * zfs_uio_prefaultpages() does not attempt to fault in pages * on Linux for Direct I/O requests. This is not necessary as * the pages are pinned in memory and can not be faulted out. * Ideally, the rangelock would be held before calling * zfs_setup_direct() and zfs_uio_prefaultpages(); however, * this can lead to a deadlock as zfs_getpage() also acquires * the rangelock as a RL_WRITER and prefaulting the pages can * lead to zfs_getpage() being called. * * In the case of the pages being mapped after * zfs_setup_direct() is called, the call to update_pages() * will still be made to make sure there is consistency between * the ARC and the Linux page cache. This is an ufortunate * situation as the data will be read back into the ARC after * the Direct I/O write has completed, but this is the penality * for writing to a mmap'ed region of a file using Direct I/O. */ if (tx_bytes && zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) { update_pages(zp, woff, tx_bytes, zfsvfs->z_os); } /* * If we made no progress, we're done. If we made even * partial progress, update the znode and ZIL accordingly. */ if (tx_bytes == 0) { (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); dmu_tx_commit(tx); ASSERT(error != 0); break; } zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, &clear_setid_bits_txg, tx); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { (void) atomic_cas_64(&zp->z_size, end_size, zfs_uio_offset(uio)); ASSERT(error == 0 || error == EFAULT); } /* * If we are replaying and eof is non zero then force * the file size to the specified eof. Note, there's no * concurrency during replay. */ if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) zp->z_size = zfsvfs->z_replay_eof; error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); if (error1 != 0) /* Avoid clobbering EFAULT. */ error = error1; /* * NB: During replay, the TX_SETATTR record logged by * zfs_clear_setid_bits_if_necessary must precede any of * the TX_WRITE records logged here. */ zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit, uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL, NULL); dmu_tx_commit(tx); /* * Direct I/O was deferred in order to grow the first block. * At this point it can be re-enabled for subsequent writes. */ if (o_direct_defer) { ASSERT(ioflag & O_DIRECT); uio->uio_extflg |= UIO_DIRECT; o_direct_defer = B_FALSE; } if (error != 0) break; ASSERT3S(tx_bytes, ==, nbytes); n -= nbytes; pfbytes -= nbytes; } if (o_direct_defer) { ASSERT(ioflag & O_DIRECT); uio->uio_extflg |= UIO_DIRECT; o_direct_defer = B_FALSE; } zfs_znode_update_vfs(zp); zfs_rangelock_exit(lr); /* * Cleanup for Direct I/O if requested. */ if (uio->uio_extflg & UIO_DIRECT) zfs_uio_free_dio_pages(uio, UIO_WRITE); /* * If we're in replay mode, or we made no progress, or the * uio data is inaccessible return an error. Otherwise, it's * at least a partial write, so it's successful. */ if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || error == EFAULT) { zfs_exit(zfsvfs, FTAG); return (error); } if (commit) zil_commit(zilog, zp->z_id); int64_t nwritten = start_resid - zfs_uio_resid(uio); dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); zfs_exit(zfsvfs, FTAG); return (0); } int zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_getacl(zp, vsecp, skipaclchk, cr); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) { zfsvfs_t *zfsvfs = ZTOZSB(zp); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; zilog_t *zilog; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; error = zfs_setacl(zp, vsecp, skipaclchk, cr); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } #ifdef ZFS_DEBUG static int zil_fault_io = 0; #endif static void zfs_get_done(zgd_t *zgd, int error); /* * Get data to generate a TX_WRITE intent log record. */ int zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zfsvfs_t *zfsvfs = arg; objset_t *os = zfsvfs->z_os; znode_t *zp; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; zgd_t *zgd; int error = 0; uint64_t zp_gen; ASSERT3P(lwb, !=, NULL); ASSERT3U(size, !=, 0); /* * Nothing to do if the file has been removed */ if (zfs_zget(zfsvfs, object, &zp) != 0) return (SET_ERROR(ENOENT)); if (zp->z_unlinked) { /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_zrele_async(zp); return (SET_ERROR(ENOENT)); } /* check if generation number matches */ if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (zp_gen)) != 0) { zfs_zrele_async(zp); return (SET_ERROR(EIO)); } if (zp_gen != gen) { zfs_zrele_async(zp); return (SET_ERROR(ENOENT)); } zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; zgd->zgd_private = zp; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset, size, RL_READER); /* test for truncation needs to be done while range locked */ if (offset >= zp->z_size) { error = SET_ERROR(ENOENT); } else { error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } ASSERT(error == 0 || error == ENOENT); } else { /* indirect write */ ASSERT3P(zio, !=, NULL); /* * Have to lock the whole block to ensure when it's * written out and its checksum is being calculated * that no one can change the data. We need to re-check * blocksize after we get the lock in case it's changed! */ for (;;) { uint64_t blkoff; size = zp->z_blksz; blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; offset -= blkoff; zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset, size, RL_READER); if (zp->z_blksz == size) break; offset += blkoff; zfs_rangelock_exit(zgd->zgd_lr); } /* test for truncation needs to be done while range locked */ if (lr->lr_offset >= zp->z_size) error = SET_ERROR(ENOENT); #ifdef ZFS_DEBUG if (zil_fault_io) { error = SET_ERROR(EIO); zil_fault_io = 0; } #endif dmu_buf_t *dbp; if (error == 0) error = dmu_buf_hold_noread(os, object, offset, zgd, &dbp); if (error == 0) { zgd->zgd_db = dbp; dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp; boolean_t direct_write = B_FALSE; mutex_enter(&db->db_mtx); dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg); if (dr != NULL && dr->dt.dl.dr_diowrite) direct_write = B_TRUE; mutex_exit(&db->db_mtx); /* * All Direct I/O writes will have already completed and * the block pointer can be immediately stored in the * log record. */ if (direct_write) { /* * A Direct I/O write always covers an entire * block. */ ASSERT3U(dbp->db_size, ==, zp->z_blksz); lr->lr_blkptr = dr->dt.dl.dr_overridden_by; zfs_get_done(zgd, 0); return (0); } blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_bp = bp; ASSERT3U(dbp->db_offset, ==, offset); ASSERT3U(dbp->db_size, ==, size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zfs_get_done, zgd); ASSERT(error || lr->lr_length <= size); /* * On success, we need to wait for the write I/O * initiated by dmu_sync() to complete before we can * release this dbuf. We will finish everything up * in the zfs_get_done() callback. */ if (error == 0) return (0); if (error == EALREADY) { lr->lr_common.lrc_txtype = TX_WRITE2; /* * TX_WRITE2 relies on the data previously * written by the TX_WRITE that caused * EALREADY. We zero out the BP because * it is the old, currently-on-disk BP. */ zgd->zgd_bp = NULL; BP_ZERO(bp); error = 0; } } } zfs_get_done(zgd, error); return (error); } static void zfs_get_done(zgd_t *zgd, int error) { (void) error; znode_t *zp = zgd->zgd_private; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_rangelock_exit(zgd->zgd_lr); /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_zrele_async(zp); kmem_free(zgd, sizeof (zgd_t)); } static int zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) { int error; /* Swap. Not sure if the order of zfs_enter()s is important. */ if (zfsvfs1 > zfsvfs2) { zfsvfs_t *tmpzfsvfs; tmpzfsvfs = zfsvfs2; zfsvfs2 = zfsvfs1; zfsvfs1 = tmpzfsvfs; } error = zfs_enter(zfsvfs1, tag); if (error != 0) return (error); if (zfsvfs1 != zfsvfs2) { error = zfs_enter(zfsvfs2, tag); if (error != 0) { zfs_exit(zfsvfs1, tag); return (error); } } return (0); } static void zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) { zfs_exit(zfsvfs1, tag); if (zfsvfs1 != zfsvfs2) zfs_exit(zfsvfs2, tag); } /* * We split each clone request in chunks that can fit into a single ZIL * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives * us room for storing 1022 block pointers. * * On success, the function return the number of bytes copied in *lenp. * Note, it doesn't return how much bytes are left to be copied. * On errors which are caused by any file system limitations or * brt limitations `EINVAL` is returned. In the most cases a user * requested bad parameters, it could be possible to clone the file but * some parameters don't match the requirements. */ int zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp, uint64_t *outoffp, uint64_t *lenp, cred_t *cr) { zfsvfs_t *inzfsvfs, *outzfsvfs; objset_t *inos, *outos; zfs_locked_range_t *inlr, *outlr; dmu_buf_impl_t *db; dmu_tx_t *tx; zilog_t *zilog; uint64_t inoff, outoff, len, done; uint64_t outsize, size; int error; int count = 0; sa_bulk_attr_t bulk[3]; uint64_t mtime[2], ctime[2]; uint64_t uid, gid, projid; blkptr_t *bps; size_t maxblocks, nbps; uint_t inblksz; uint64_t clear_setid_bits_txg = 0; uint64_t last_synced_txg = 0; inoff = *inoffp; outoff = *outoffp; len = *lenp; done = 0; inzfsvfs = ZTOZSB(inzp); outzfsvfs = ZTOZSB(outzp); /* * We need to call zfs_enter() potentially on two different datasets, * so we need a dedicated function for that. */ error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG); if (error != 0) return (error); inos = inzfsvfs->z_os; outos = outzfsvfs->z_os; /* * Both source and destination have to belong to the same storage pool. */ if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EXDEV)); } /* * outos and inos belongs to the same storage pool. * see a few lines above, only one check. */ if (!spa_feature_is_enabled(dmu_objset_spa(outos), SPA_FEATURE_BLOCK_CLONING)) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EOPNOTSUPP)); } ASSERT(!outzfsvfs->z_replay); /* * Block cloning from an unencrypted dataset into an encrypted * dataset and vice versa is not supported. */ if (inos->os_encrypted != outos->os_encrypted) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EXDEV)); } /* * Cloning across encrypted datasets is possible only if they * share the same master key. */ if (inos != outos && inos->os_encrypted && !dmu_objset_crypto_key_equal(inos, outos)) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EXDEV)); } error = zfs_verify_zp(inzp); if (error == 0) error = zfs_verify_zp(outzp); if (error != 0) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (error); } /* * We don't copy source file's flags that's why we don't allow to clone * files that are in quarantine. */ if (inzp->z_pflags & ZFS_AV_QUARANTINED) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EACCES)); } if (inoff >= inzp->z_size) { *lenp = 0; zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (0); } if (len > inzp->z_size - inoff) { len = inzp->z_size - inoff; } if (len == 0) { *lenp = 0; zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (0); } /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(outzfsvfs)) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EROFS)); } /* * If immutable or not appending then return EPERM. * Intentionally allow ZFS_READONLY through here. * See zfs_zaccess_common() */ if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* * No overlapping if we are cloning within the same file. */ if (inzp == outzp) { if (inoff < outoff + len && outoff < inoff + len) { zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (SET_ERROR(EINVAL)); } } /* Flush any mmap()'d data to disk */ if (zn_has_cached_data(inzp, inoff, inoff + len - 1)) zn_flush_cached_data(inzp, B_TRUE); /* * Maintain predictable lock order. */ if (inzp < outzp || (inzp == outzp && inoff < outoff)) { inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, RL_READER); outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, RL_WRITER); } else { outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, RL_WRITER); inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, RL_READER); } inblksz = inzp->z_blksz; /* * We cannot clone into a file with different block size if we can't * grow it (block size is already bigger, has more than one block, or * not locked for growth). There are other possible reasons for the * grow to fail, but we cover what we can before opening transaction * and the rest detect after we try to do it. */ if (inblksz < outzp->z_blksz) { error = SET_ERROR(EINVAL); goto unlock; } if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz || outlr->lr_length != UINT64_MAX)) { error = SET_ERROR(EINVAL); goto unlock; } /* * Block size must be power-of-2 if destination offset != 0. * There can be no multiple blocks of non-power-of-2 size. */ if (outoff != 0 && !ISP2(inblksz)) { error = SET_ERROR(EINVAL); goto unlock; } /* * Offsets and len must be at block boundries. */ if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) { error = SET_ERROR(EINVAL); goto unlock; } /* * Length must be multipe of blksz, except for the end of the file. */ if ((len % inblksz) != 0 && (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) { error = SET_ERROR(EINVAL); goto unlock; } /* * If we are copying only one block and it is smaller than recordsize * property, do not allow destination to grow beyond one block if it * is not there yet. Otherwise the destination will get stuck with * that block size forever, that can be as small as 512 bytes, no * matter how big the destination grow later. */ if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz && outzp->z_size <= inblksz && outoff + len > inblksz) { error = SET_ERROR(EINVAL); goto unlock; } error = zn_rlimit_fsize(outoff + len); if (error != 0) { goto unlock; } if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) { error = SET_ERROR(EFBIG); goto unlock; } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL, &outzp->z_size, 8); zilog = outzfsvfs->z_log; maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) / sizeof (bps[0]); uid = KUID_TO_SUID(ZTOUID(outzp)); gid = KGID_TO_SGID(ZTOGID(outzp)); projid = outzp->z_projid; bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); /* * Clone the file in reasonable size chunks. Each chunk is cloned * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (len > 0) { size = MIN(inblksz * maxblocks, len); if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT, uid) || zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT, gid) || (projid != ZFS_DEFAULT_PROJID && zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT, projid))) { error = SET_ERROR(EDQUOT); break; } nbps = maxblocks; last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos)); error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps, &nbps); if (error != 0) { /* * If we are trying to clone a block that was created * in the current transaction group, the error will be * EAGAIN here. Based on zfs_bclone_wait_dirty either * return a shortened range to the caller so it can * fallback, or wait for the next TXG and check again. */ if (error == EAGAIN && zfs_bclone_wait_dirty) { txg_wait_synced(dmu_objset_pool(inos), last_synced_txg + 1); continue; } break; } /* * Start a transaction. */ tx = dmu_tx_create(outos); dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE); db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl); DB_DNODE_ENTER(db); dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size); DB_DNODE_EXIT(db); zfs_sa_upgrade_txholds(tx, outzp); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); break; } /* * Copy source znode's block size. This is done only if the * whole znode is locked (see zfs_rangelock_cb()) and only * on the first iteration since zfs_rangelock_reduce() will * shrink down lr_length to the appropriate size. */ if (outlr->lr_length == UINT64_MAX) { zfs_grow_blocksize(outzp, inblksz, tx); /* * Block growth may fail for many reasons we can not * predict here. If it happen the cloning is doomed. */ if (inblksz != outzp->z_blksz) { error = SET_ERROR(EINVAL); dmu_tx_abort(tx); break; } /* * Round range lock up to the block boundary, so we * prevent appends until we are done. */ zfs_rangelock_reduce(outlr, outoff, ((len - 1) / inblksz + 1) * inblksz); } error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, bps, nbps); if (error != 0) { dmu_tx_commit(tx); break; } if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) { update_pages(outzp, outoff, size, outos); } zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr, &clear_setid_bits_txg, tx); zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((outsize = outzp->z_size) < outoff + size) { (void) atomic_cas_64(&outzp->z_size, outsize, outoff + size); } error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx); zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff, size, inblksz, bps, nbps); dmu_tx_commit(tx); if (error != 0) break; inoff += size; outoff += size; len -= size; done += size; if (issig()) { error = SET_ERROR(EINTR); break; } } vmem_free(bps, sizeof (bps[0]) * maxblocks); zfs_znode_update_vfs(outzp); unlock: zfs_rangelock_exit(outlr); zfs_rangelock_exit(inlr); if (done > 0) { /* * If we have made at least partial progress, reset the error. */ error = 0; ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp); if (outos->os_sync == ZFS_SYNC_ALWAYS) { zil_commit(zilog, outzp->z_id); } *inoffp += done; *outoffp += done; *lenp = done; } else { /* * If we made no progress, there must be a good reason. * EOF is handled explicitly above, before the loop. */ ASSERT3S(error, !=, 0); } zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); return (error); } /* * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(), * but we cannot do that, because when replaying we don't have source znode * available. This is why we need a dedicated replay function. */ int zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps) { zfsvfs_t *zfsvfs; dmu_buf_impl_t *db; dmu_tx_t *tx; int error; int count = 0; sa_bulk_attr_t bulk[3]; uint64_t mtime[2], ctime[2]; ASSERT3U(off, <, MAXOFFSET_T); ASSERT3U(len, >, 0); ASSERT3U(nbps, >, 0); zfsvfs = ZTOZSB(zp); ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os), SPA_FEATURE_BLOCK_CLONING)); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); ASSERT(zfsvfs->z_replay); ASSERT(!zfs_is_readonly(zfsvfs)); if ((off % blksz) != 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); /* * Start a transaction. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); DB_DNODE_ENTER(db); dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len); DB_DNODE_EXIT(db); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } if (zp->z_blksz < blksz) zfs_grow_blocksize(zp, blksz, tx); dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); if (zp->z_size < off + len) zp->z_size = off + len; error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); /* * zil_replaying() not only check if we are replaying ZIL, but also * updates the ZIL header to record replay progress. */ VERIFY(zil_replaying(zfsvfs->z_log, tx)); dmu_tx_commit(tx); zfs_znode_update_vfs(zp); zfs_exit(zfsvfs, FTAG); return (error); } EXPORT_SYMBOL(zfs_access); EXPORT_SYMBOL(zfs_fsync); EXPORT_SYMBOL(zfs_holey); EXPORT_SYMBOL(zfs_read); EXPORT_SYMBOL(zfs_write); EXPORT_SYMBOL(zfs_getsecattr); EXPORT_SYMBOL(zfs_setsecattr); EXPORT_SYMBOL(zfs_clone_range); EXPORT_SYMBOL(zfs_clone_range_replay); ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, "Bytes to read per chunk"); ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW, "Enable block cloning"); ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW, "Wait for dirty blocks when cloning"); ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW, "Enable Direct I/O");