/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 * Copyright (c) 2019 Datto Inc.
 * Copyright (c) 2019, 2023, Klara Inc.
 * Copyright (c) 2019, Allan Jude
 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
 */

#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_prop.h>
#include <sys/dmu_zfetch.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/sa.h>
#include <sys/zfeature.h>
#include <sys/abd.h>
#include <sys/brt.h>
#include <sys/trace_zfs.h>
#include <sys/zfs_racct.h>
#include <sys/zfs_rlock.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <sys/zfs_znode.h>
#endif

/*
 * Enable/disable nopwrite feature.
 */
static int zfs_nopwrite_enabled = 1;

/*
 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
 * one TXG. After this threshold is crossed, additional dirty blocks from frees
 * will wait until the next TXG.
 * A value of zero will disable this throttle.
 */
static uint_t zfs_per_txg_dirty_frees_percent = 30;

/*
 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
 * By default this is enabled to ensure accurate hole reporting, it can result
 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
 * Disabling this option will result in holes never being reported in dirty
 * files which is always safe.
 */
static int zfs_dmu_offset_next_sync = 1;

/*
 * Limit the amount we can prefetch with one call to this amount.  This
 * helps to limit the amount of memory that can be used by prefetching.
 * Larger objects should be prefetched a bit at a time.
 */
#ifdef _ILP32
uint_t dmu_prefetch_max = 8 * 1024 * 1024;
#else
uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
#endif

/*
 * Override copies= for dedup state objects. 0 means the traditional behaviour
 * (ie the default for the containing objset ie 3 for the MOS).
 */
uint_t dmu_ddt_copies = 0;

const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
};

dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
	{	byteswap_uint8_array,	"uint8"		},
	{	byteswap_uint16_array,	"uint16"	},
	{	byteswap_uint32_array,	"uint32"	},
	{	byteswap_uint64_array,	"uint64"	},
	{	zap_byteswap,		"zap"		},
	{	dnode_buf_byteswap,	"dnode"		},
	{	dmu_objset_byteswap,	"objset"	},
	{	zfs_znode_byteswap,	"znode"		},
	{	zfs_oldacl_byteswap,	"oldacl"	},
	{	zfs_acl_byteswap,	"acl"		}
};

int
dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
    const void *tag, dmu_buf_t **dbp)
{
	uint64_t blkid;
	dmu_buf_impl_t *db;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, tag);
	rw_exit(&dn->dn_struct_rwlock);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}

	*dbp = &db->db;
	return (0);
}

int
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
    const void *tag, dmu_buf_t **dbp)
{
	dnode_t *dn;
	uint64_t blkid;
	dmu_buf_impl_t *db;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, tag);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}

	*dbp = &db->db;
	return (err);
}

int
dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
    const void *tag, dmu_buf_t **dbp, int flags)
{
	int err;
	int db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
	if (err == 0) {
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
		err = dbuf_read(db, NULL, db_flags);
		if (err != 0) {
			dbuf_rele(db, tag);
			*dbp = NULL;
		}
	}

	return (err);
}

int
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
    const void *tag, dmu_buf_t **dbp, int flags)
{
	int err;
	int db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
	if (err == 0) {
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
		err = dbuf_read(db, NULL, db_flags);
		if (err != 0) {
			dbuf_rele(db, tag);
			*dbp = NULL;
		}
	}

	return (err);
}

int
dmu_bonus_max(void)
{
	return (DN_OLD_MAX_BONUSLEN);
}

int
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	int error;

	if (newsize < 0 || newsize > db_fake->db_size)
		return (SET_ERROR(EINVAL));

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (dn->dn_bonus != db) {
		error = SET_ERROR(EINVAL);
	} else {
		dnode_setbonuslen(dn, newsize, tx);
		error = 0;
	}

	DB_DNODE_EXIT(db);
	return (error);
}

int
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	int error;

	if (!DMU_OT_IS_VALID(type))
		return (SET_ERROR(EINVAL));

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (dn->dn_bonus != db) {
		error = SET_ERROR(EINVAL);
	} else {
		dnode_setbonus_type(dn, type, tx);
		error = 0;
	}

	DB_DNODE_EXIT(db);
	return (error);
}

dmu_object_type_t
dmu_get_bonustype(dmu_buf_t *db_fake)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dmu_object_type_t type;

	DB_DNODE_ENTER(db);
	type = DB_DNODE(db)->dn_bonustype;
	DB_DNODE_EXIT(db);

	return (type);
}

int
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
{
	dnode_t *dn;
	int error;

	error = dnode_hold(os, object, FTAG, &dn);
	dbuf_rm_spill(dn, tx);
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
	dnode_rm_spill(dn, tx);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);
	return (error);
}

/*
 * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
 * has not yet been allocated a new bonus dbuf a will be allocated.
 * Returns ENOENT, EIO, or 0.
 */
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
    uint32_t flags)
{
	dmu_buf_impl_t *db;
	int error;
	uint32_t db_flags = DB_RF_MUST_SUCCEED;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (dn->dn_bonus == NULL) {
		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
			rw_exit(&dn->dn_struct_rwlock);
			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
		}
		if (dn->dn_bonus == NULL)
			dbuf_create_bonus(dn);
	}
	db = dn->dn_bonus;

	/* as long as the bonus buf is held, the dnode will be held */
	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
		VERIFY(dnode_add_ref(dn, db));
		atomic_inc_32(&dn->dn_dbufs_count);
	}

	/*
	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
	 * a dnode hold for every dbuf.
	 */
	rw_exit(&dn->dn_struct_rwlock);

	error = dbuf_read(db, NULL, db_flags);
	if (error) {
		dnode_evict_bonus(dn);
		dbuf_rele(db, tag);
		*dbp = NULL;
		return (error);
	}

	*dbp = &db->db;
	return (0);
}

int
dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
{
	dnode_t *dn;
	int error;

	error = dnode_hold(os, object, FTAG, &dn);
	if (error)
		return (error);

	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
	dnode_rele(dn, FTAG);

	return (error);
}

/*
 * returns ENOENT, EIO, or 0.
 *
 * This interface will allocate a blank spill dbuf when a spill blk
 * doesn't already exist on the dnode.
 *
 * if you only want to find an already existing spill db, then
 * dmu_spill_hold_existing() should be used.
 */
int
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
    dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = NULL;
	int err;

	if ((flags & DB_RF_HAVESTRUCT) == 0)
		rw_enter(&dn->dn_struct_rwlock, RW_READER);

	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);

	if ((flags & DB_RF_HAVESTRUCT) == 0)
		rw_exit(&dn->dn_struct_rwlock);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}
	err = dbuf_read(db, NULL, flags);
	if (err == 0)
		*dbp = &db->db;
	else {
		dbuf_rele(db, tag);
		*dbp = NULL;
	}
	return (err);
}

int
dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
	dnode_t *dn;
	int err;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
		err = SET_ERROR(EINVAL);
	} else {
		rw_enter(&dn->dn_struct_rwlock, RW_READER);

		if (!dn->dn_have_spill) {
			err = SET_ERROR(ENOENT);
		} else {
			err = dmu_spill_hold_by_dnode(dn,
			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
		}

		rw_exit(&dn->dn_struct_rwlock);
	}

	DB_DNODE_EXIT(db);
	return (err);
}

int
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
    dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
	int err;
	uint32_t db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	DB_DNODE_ENTER(db);
	err = dmu_spill_hold_by_dnode(DB_DNODE(db), db_flags, tag, dbp);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 * and can induce severe lock contention when writing to several files
 * whose dnodes are in the same block.
 */
int
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
    boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
    uint32_t flags)
{
	dmu_buf_t **dbp;
	zstream_t *zs = NULL;
	uint64_t blkid, nblks, i;
	uint32_t dbuf_flags;
	int err;
	zio_t *zio = NULL;
	boolean_t missed = B_FALSE;

	ASSERT(!read || length <= DMU_MAX_ACCESS);

	/*
	 * Note: We directly notify the prefetch code of this read, so that
	 * we can tell it about the multi-block read.  dbuf_read() only knows
	 * about the one block it is accessing.
	 */
	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
	    DB_RF_NOPREFETCH;

	if ((flags & DMU_READ_NO_DECRYPT) != 0)
		dbuf_flags |= DB_RF_NO_DECRYPT;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (dn->dn_datablkshift) {
		int blkshift = dn->dn_datablkshift;
		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
		    P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
		    >> blkshift;
	} else {
		if (offset + length > dn->dn_datablksz) {
			zfs_panic_recover("zfs: accessing past end of object "
			    "%llx/%llx (size=%u access=%llu+%llu)",
			    (longlong_t)dn->dn_objset->
			    os_dsl_dataset->ds_object,
			    (longlong_t)dn->dn_object, dn->dn_datablksz,
			    (longlong_t)offset, (longlong_t)length);
			rw_exit(&dn->dn_struct_rwlock);
			return (SET_ERROR(EIO));
		}
		nblks = 1;
	}
	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);

	if (read)
		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
		    ZIO_FLAG_CANFAIL);
	blkid = dbuf_whichblock(dn, 0, offset);
	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
		/*
		 * Prepare the zfetch before initiating the demand reads, so
		 * that if multiple threads block on same indirect block, we
		 * base predictions on the original less racy request order.
		 */
		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
		    B_TRUE);
	}
	for (i = 0; i < nblks; i++) {
		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
		if (db == NULL) {
			if (zs) {
				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
				    B_TRUE);
			}
			rw_exit(&dn->dn_struct_rwlock);
			dmu_buf_rele_array(dbp, nblks, tag);
			if (read)
				zio_nowait(zio);
			return (SET_ERROR(EIO));
		}

		/*
		 * Initiate async demand data read.
		 * We check the db_state after calling dbuf_read() because
		 * (1) dbuf_read() may change the state to CACHED due to a
		 * hit in the ARC, and (2) on a cache miss, a child will
		 * have been added to "zio" but not yet completed, so the
		 * state will not yet be CACHED.
		 */
		if (read) {
			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
			    offset + length < db->db.db_offset +
			    db->db.db_size) {
				if (offset <= db->db.db_offset)
					dbuf_flags |= DB_RF_PARTIAL_FIRST;
				else
					dbuf_flags |= DB_RF_PARTIAL_MORE;
			}
			(void) dbuf_read(db, zio, dbuf_flags);
			if (db->db_state != DB_CACHED)
				missed = B_TRUE;
		}
		dbp[i] = &db->db;
	}

	/*
	 * If we are doing O_DIRECT we still hold the dbufs, even for reads,
	 * but we do not issue any reads here. We do not want to account for
	 * writes in this case.
	 *
	 * O_DIRECT write/read accounting takes place in
	 * dmu_{write/read}_abd().
	 */
	if (!read && ((flags & DMU_DIRECTIO) == 0))
		zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);

	if (zs)
		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE);
	rw_exit(&dn->dn_struct_rwlock);

	if (read) {
		/* wait for async read i/o */
		err = zio_wait(zio);
		if (err) {
			dmu_buf_rele_array(dbp, nblks, tag);
			return (err);
		}

		/* wait for other io to complete */
		for (i = 0; i < nblks; i++) {
			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
			mutex_enter(&db->db_mtx);
			while (db->db_state == DB_READ ||
			    db->db_state == DB_FILL)
				cv_wait(&db->db_changed, &db->db_mtx);
			if (db->db_state == DB_UNCACHED)
				err = SET_ERROR(EIO);
			mutex_exit(&db->db_mtx);
			if (err) {
				dmu_buf_rele_array(dbp, nblks, tag);
				return (err);
			}
		}
	}

	*numbufsp = nblks;
	*dbpp = dbp;
	return (0);
}

int
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
    uint64_t length, int read, const void *tag, int *numbufsp,
    dmu_buf_t ***dbpp)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
	    numbufsp, dbpp, DMU_READ_PREFETCH);

	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
    uint64_t length, boolean_t read, const void *tag, int *numbufsp,
    dmu_buf_t ***dbpp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	int err;

	DB_DNODE_ENTER(db);
	err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
	    tag, numbufsp, dbpp, DMU_READ_PREFETCH);
	DB_DNODE_EXIT(db);

	return (err);
}

void
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
{
	int i;
	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;

	if (numbufs == 0)
		return;

	for (i = 0; i < numbufs; i++) {
		if (dbp[i])
			dbuf_rele(dbp[i], tag);
	}

	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
}

/*
 * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
 * indirect blocks prefetched will be those that point to the blocks containing
 * the data starting at offset, and continuing to offset + len.  If the range
 * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
 * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
 * should primarily help random reads, since for long sequential reads there is
 * a speculative prefetcher.
 *
 * Note that if the indirect blocks above the blocks being prefetched are not
 * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
 * is currently synchronous.
 */
void
dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
    uint64_t len, zio_priority_t pri)
{
	dnode_t *dn;

	if (dmu_prefetch_max == 0 || len == 0) {
		dmu_prefetch_dnode(os, object, pri);
		return;
	}

	if (dnode_hold(os, object, FTAG, &dn) != 0)
		return;

	dmu_prefetch_by_dnode(dn, level, offset, len, pri);

	dnode_rele(dn, FTAG);
}

void
dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
    uint64_t len, zio_priority_t pri)
{
	int64_t level2 = level;
	uint64_t start, end, start2, end2;

	/*
	 * Depending on len we may do two prefetches: blocks [start, end) at
	 * level, and following blocks [start2, end2) at higher level2.
	 */
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (dn->dn_datablkshift != 0) {
		/*
		 * The object has multiple blocks.  Calculate the full range
		 * of blocks [start, end2) and then split it into two parts,
		 * so that the first [start, end) fits into dmu_prefetch_max.
		 */
		start = dbuf_whichblock(dn, level, offset);
		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
		uint8_t ibs = dn->dn_indblkshift;
		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
		start2 = end = MIN(end2, start + limit);

		/*
		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
		 */
		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
		do {
			level2++;
			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
		} while (end2 - start2 > limit);
	} else {
		/* There is only one block.  Prefetch it or nothing. */
		start = start2 = end2 = 0;
		end = start + (level == 0 && offset < dn->dn_datablksz);
	}

	for (uint64_t i = start; i < end; i++)
		dbuf_prefetch(dn, level, i, pri, 0);
	for (uint64_t i = start2; i < end2; i++)
		dbuf_prefetch(dn, level2, i, pri, 0);
	rw_exit(&dn->dn_struct_rwlock);
}

typedef struct {
	kmutex_t	dpa_lock;
	kcondvar_t	dpa_cv;
	uint64_t	dpa_pending_io;
} dmu_prefetch_arg_t;

static void
dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
{
	(void) level; (void) blkid; (void)issued;
	dmu_prefetch_arg_t *dpa = arg;

	ASSERT0(level);

	mutex_enter(&dpa->dpa_lock);
	ASSERT3U(dpa->dpa_pending_io, >, 0);
	if (--dpa->dpa_pending_io == 0)
		cv_broadcast(&dpa->dpa_cv);
	mutex_exit(&dpa->dpa_lock);
}

static void
dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
{
	dmu_prefetch_arg_t dpa;

	mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);

	rw_enter(&dn->dn_struct_rwlock, RW_READER);

	uint64_t start = dbuf_whichblock(dn, 0, offset);
	uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
	dpa.dpa_pending_io = end - start;

	for (uint64_t blk = start; blk < end; blk++) {
		(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
		    0, dmu_prefetch_done, &dpa);
	}

	rw_exit(&dn->dn_struct_rwlock);

	/* wait for prefetch L0 reads to finish */
	mutex_enter(&dpa.dpa_lock);
	while (dpa.dpa_pending_io > 0) {
		cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);

	}
	mutex_exit(&dpa.dpa_lock);

	mutex_destroy(&dpa.dpa_lock);
	cv_destroy(&dpa.dpa_cv);
}

/*
 * Issue prefetch I/Os for the given L0 block range and wait for the I/O
 * to complete. This does not enforce dmu_prefetch_max and will prefetch
 * the entire range. The blocks are read from disk into the ARC but no
 * decompression occurs (i.e., the dbuf cache is not required).
 */
int
dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
{
	dnode_t *dn;
	int err = 0;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return (err);

	/*
	 * Chunk the requests (16 indirects worth) so that we can be interrupted
	 */
	uint64_t chunksize;
	if (dn->dn_indblkshift) {
		uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
		chunksize = (nbps * 16) << dn->dn_datablkshift;
	} else {
		chunksize = dn->dn_datablksz;
	}

	while (size > 0) {
		uint64_t mylen = MIN(size, chunksize);

		dmu_prefetch_wait_by_dnode(dn, offset, mylen);

		offset += mylen;
		size -= mylen;

		if (issig()) {
			err = SET_ERROR(EINTR);
			break;
		}
	}

	dnode_rele(dn, FTAG);

	return (err);
}

/*
 * Issue prefetch I/Os for the given object's dnode.
 */
void
dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
{
	if (object == 0 || object >= DN_MAX_OBJECT)
		return;

	dnode_t *dn = DMU_META_DNODE(os);
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
	dbuf_prefetch(dn, 0, blkid, pri, 0);
	rw_exit(&dn->dn_struct_rwlock);
}

/*
 * Get the next "chunk" of file data to free.  We traverse the file from
 * the end so that the file gets shorter over time (if we crash in the
 * middle, this will leave us in a better state).  We find allocated file
 * data by simply searching the allocated level 1 indirects.
 *
 * On input, *start should be the first offset that does not need to be
 * freed (e.g. "offset + length").  On return, *start will be the first
 * offset that should be freed and l1blks is set to the number of level 1
 * indirect blocks found within the chunk.
 */
static int
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
{
	uint64_t blks;
	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
	/* bytes of data covered by a level-1 indirect block */
	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);

	ASSERT3U(minimum, <=, *start);

	/* dn_nlevels == 1 means we don't have any L1 blocks */
	if (dn->dn_nlevels <= 1) {
		*l1blks = 0;
		*start = minimum;
		return (0);
	}

	/*
	 * Check if we can free the entire range assuming that all of the
	 * L1 blocks in this range have data. If we can, we use this
	 * worst case value as an estimate so we can avoid having to look
	 * at the object's actual data.
	 */
	uint64_t total_l1blks =
	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
	    iblkrange;
	if (total_l1blks <= maxblks) {
		*l1blks = total_l1blks;
		*start = minimum;
		return (0);
	}
	ASSERT(ISP2(iblkrange));

	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
		int err;

		/*
		 * dnode_next_offset(BACKWARDS) will find an allocated L1
		 * indirect block at or before the input offset.  We must
		 * decrement *start so that it is at the end of the region
		 * to search.
		 */
		(*start)--;

		err = dnode_next_offset(dn,
		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);

		/* if there are no indirect blocks before start, we are done */
		if (err == ESRCH) {
			*start = minimum;
			break;
		} else if (err != 0) {
			*l1blks = blks;
			return (err);
		}

		/* set start to the beginning of this L1 indirect */
		*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
	}
	if (*start < minimum)
		*start = minimum;
	*l1blks = blks;

	return (0);
}

/*
 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
 * otherwise return false.
 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
 */
static boolean_t
dmu_objset_zfs_unmounting(objset_t *os)
{
#ifdef _KERNEL
	if (dmu_objset_type(os) == DMU_OST_ZFS)
		return (zfs_get_vfs_flag_unmounted(os));
#else
	(void) os;
#endif
	return (B_FALSE);
}

static int
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
    uint64_t length)
{
	uint64_t object_size;
	int err;
	uint64_t dirty_frees_threshold;
	dsl_pool_t *dp = dmu_objset_pool(os);

	if (dn == NULL)
		return (SET_ERROR(EINVAL));

	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
	if (offset >= object_size)
		return (0);

	if (zfs_per_txg_dirty_frees_percent <= 100)
		dirty_frees_threshold =
		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
	else
		dirty_frees_threshold = zfs_dirty_data_max / 20;

	if (length == DMU_OBJECT_END || offset + length > object_size)
		length = object_size - offset;

	while (length != 0) {
		uint64_t chunk_end, chunk_begin, chunk_len;
		uint64_t l1blks;
		dmu_tx_t *tx;

		if (dmu_objset_zfs_unmounting(dn->dn_objset))
			return (SET_ERROR(EINTR));

		chunk_end = chunk_begin = offset + length;

		/* move chunk_begin backwards to the beginning of this chunk */
		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
		if (err)
			return (err);
		ASSERT3U(chunk_begin, >=, offset);
		ASSERT3U(chunk_begin, <=, chunk_end);

		chunk_len = chunk_end - chunk_begin;

		tx = dmu_tx_create(os);
		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);

		/*
		 * Mark this transaction as typically resulting in a net
		 * reduction in space used.
		 */
		dmu_tx_mark_netfree(tx);
		err = dmu_tx_assign(tx, TXG_WAIT);
		if (err) {
			dmu_tx_abort(tx);
			return (err);
		}

		uint64_t txg = dmu_tx_get_txg(tx);

		mutex_enter(&dp->dp_lock);
		uint64_t long_free_dirty =
		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
		mutex_exit(&dp->dp_lock);

		/*
		 * To avoid filling up a TXG with just frees, wait for
		 * the next TXG to open before freeing more chunks if
		 * we have reached the threshold of frees.
		 */
		if (dirty_frees_threshold != 0 &&
		    long_free_dirty >= dirty_frees_threshold) {
			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
			dmu_tx_commit(tx);
			txg_wait_open(dp, 0, B_TRUE);
			continue;
		}

		/*
		 * In order to prevent unnecessary write throttling, for each
		 * TXG, we track the cumulative size of L1 blocks being dirtied
		 * in dnode_free_range() below. We compare this number to a
		 * tunable threshold, past which we prevent new L1 dirty freeing
		 * blocks from being added into the open TXG. See
		 * dmu_free_long_range_impl() for details. The threshold
		 * prevents write throttle activation due to dirty freeing L1
		 * blocks taking up a large percentage of zfs_dirty_data_max.
		 */
		mutex_enter(&dp->dp_lock);
		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
		    l1blks << dn->dn_indblkshift;
		mutex_exit(&dp->dp_lock);
		DTRACE_PROBE3(free__long__range,
		    uint64_t, long_free_dirty, uint64_t, chunk_len,
		    uint64_t, txg);
		dnode_free_range(dn, chunk_begin, chunk_len, tx);

		dmu_tx_commit(tx);

		length -= chunk_len;
	}
	return (0);
}

int
dmu_free_long_range(objset_t *os, uint64_t object,
    uint64_t offset, uint64_t length)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return (err);
	err = dmu_free_long_range_impl(os, dn, offset, length);

	/*
	 * It is important to zero out the maxblkid when freeing the entire
	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
	 * will take the fast path, and (b) dnode_reallocate() can verify
	 * that the entire file has been freed.
	 */
	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
		dn->dn_maxblkid = 0;

	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_free_long_object(objset_t *os, uint64_t object)
{
	dmu_tx_t *tx;
	int err;

	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
	if (err != 0)
		return (err);

	tx = dmu_tx_create(os);
	dmu_tx_hold_bonus(tx, object);
	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
	dmu_tx_mark_netfree(tx);
	err = dmu_tx_assign(tx, TXG_WAIT);
	if (err == 0) {
		err = dmu_object_free(os, object, tx);
		dmu_tx_commit(tx);
	} else {
		dmu_tx_abort(tx);
	}

	return (err);
}

int
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
    uint64_t size, dmu_tx_t *tx)
{
	dnode_t *dn;
	int err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	ASSERT(offset < UINT64_MAX);
	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
	dnode_free_range(dn, offset, size, tx);
	dnode_rele(dn, FTAG);
	return (0);
}

static int
dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
    void *buf, uint32_t flags)
{
	dmu_buf_t **dbp;
	int numbufs, err = 0;

	/*
	 * Deal with odd block sizes, where there can't be data past the first
	 * block. If we ever do the tail block optimization, we will need to
	 * handle that here as well.
	 */
	if (dn->dn_maxblkid == 0) {
		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
		    MIN(size, dn->dn_datablksz - offset);
		memset((char *)buf + newsz, 0, size - newsz);
		size = newsz;
	}

	if (size == 0)
		return (0);

	/* Allow Direct I/O when requested and properly aligned */
	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
	    zfs_dio_aligned(offset, size, PAGESIZE)) {
		abd_t *data = abd_get_from_buf(buf, size);
		err = dmu_read_abd(dn, offset, size, data, flags);
		abd_free(data);
		return (err);
	}

	while (size > 0) {
		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
		int i;

		/*
		 * NB: we could do this block-at-a-time, but it's nice
		 * to be reading in parallel.
		 */
		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
		    TRUE, FTAG, &numbufs, &dbp, flags);
		if (err)
			break;

		for (i = 0; i < numbufs; i++) {
			uint64_t tocpy;
			int64_t bufoff;
			dmu_buf_t *db = dbp[i];

			ASSERT(size > 0);

			bufoff = offset - db->db_offset;
			tocpy = MIN(db->db_size - bufoff, size);

			ASSERT(db->db_data != NULL);
			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);

			offset += tocpy;
			size -= tocpy;
			buf = (char *)buf + tocpy;
		}
		dmu_buf_rele_array(dbp, numbufs, FTAG);
	}
	return (err);
}

int
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    void *buf, uint32_t flags)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return (err);

	err = dmu_read_impl(dn, offset, size, buf, flags);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
    uint32_t flags)
{
	return (dmu_read_impl(dn, offset, size, buf, flags));
}

static void
dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	int i;

	for (i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(size > 0);

		bufoff = offset - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, size);

		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

		if (tocpy == db->db_size)
			dmu_buf_will_fill(db, tx, B_FALSE);
		else
			dmu_buf_will_dirty(db, tx);

		ASSERT(db->db_data != NULL);
		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);

		if (tocpy == db->db_size)
			dmu_buf_fill_done(db, tx, B_FALSE);

		offset += tocpy;
		size -= tocpy;
		buf = (char *)buf + tocpy;
	}
}

void
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs;

	if (size == 0)
		return;

	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
	    FALSE, FTAG, &numbufs, &dbp));
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

/*
 * This interface is not used internally by ZFS but is provided for
 * use by Lustre which is built on the DMU interfaces.
 */
int
dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx, uint32_t flags)
{
	dmu_buf_t **dbp;
	int numbufs;
	int error;

	if (size == 0)
		return (0);

	/* Allow Direct I/O when requested and properly aligned */
	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
	    zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
		abd_t *data = abd_get_from_buf((void *)buf, size);
		error = dmu_write_abd(dn, offset, size, data, DMU_DIRECTIO, tx);
		abd_free(data);
		return (error);
	}

	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
	return (0);
}

int
dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	return (dmu_write_by_dnode_flags(dn, offset, size, buf, tx, 0));
}

void
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs, i;

	if (size == 0)
		return;

	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
	    FALSE, FTAG, &numbufs, &dbp));

	for (i = 0; i < numbufs; i++) {
		dmu_buf_t *db = dbp[i];

		dmu_buf_will_not_fill(db, tx);
	}
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

void
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
    int compressed_size, int byteorder, dmu_tx_t *tx)
{
	dmu_buf_t *db;

	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
	VERIFY0(dmu_buf_hold_noread(os, object, offset,
	    FTAG, &db));

	dmu_buf_write_embedded(db,
	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
	    uncompressed_size, compressed_size, byteorder, tx);

	dmu_buf_rele(db, FTAG);
}

void
dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    dmu_tx_t *tx)
{
	int numbufs, i;
	dmu_buf_t **dbp;

	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
	    &numbufs, &dbp));
	for (i = 0; i < numbufs; i++)
		dmu_buf_redact(dbp[i], tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

#ifdef _KERNEL
int
dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
{
	dmu_buf_t **dbp;
	int numbufs, i, err;

	if (uio->uio_extflg & UIO_DIRECT)
		return (dmu_read_uio_direct(dn, uio, size));

	/*
	 * NB: we could do this block-at-a-time, but it's nice
	 * to be reading in parallel.
	 */
	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
	    TRUE, FTAG, &numbufs, &dbp, 0);
	if (err)
		return (err);

	for (i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(size > 0);

		bufoff = zfs_uio_offset(uio) - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, size);

		ASSERT(db->db_data != NULL);
		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
		    UIO_READ, uio);

		if (err)
			break;

		size -= tocpy;
	}
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (err);
}

/*
 * Read 'size' bytes into the uio buffer.
 * From object zdb->db_object.
 * Starting at zfs_uio_offset(uio).
 *
 * If the caller already has a dbuf in the target object
 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
 * because we don't have to find the dnode_t for the object.
 */
int
dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
	int err;

	if (size == 0)
		return (0);

	DB_DNODE_ENTER(db);
	err = dmu_read_uio_dnode(DB_DNODE(db), uio, size);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Read 'size' bytes into the uio buffer.
 * From the specified object
 * Starting at offset zfs_uio_offset(uio).
 */
int
dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
{
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_read_uio_dnode(dn, uio, size);

	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs;
	int err = 0;
	uint64_t write_size;

top:
	write_size = size;

	/*
	 * We only allow Direct I/O writes to happen if we are block
	 * sized aligned. Otherwise, we pass the write off to the ARC.
	 */
	if ((uio->uio_extflg & UIO_DIRECT) &&
	    (write_size >= dn->dn_datablksz)) {
		if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
		    dn->dn_datablksz)) {
			return (dmu_write_uio_direct(dn, uio, size, tx));
		} else if (write_size > dn->dn_datablksz &&
		    zfs_dio_offset_aligned(zfs_uio_offset(uio),
		    dn->dn_datablksz)) {
			write_size =
			    dn->dn_datablksz * (write_size / dn->dn_datablksz);
			err = dmu_write_uio_direct(dn, uio, write_size, tx);
			if (err == 0) {
				size -= write_size;
				goto top;
			} else {
				return (err);
			}
		} else {
			write_size =
			    P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
		}
	}

	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
	if (err)
		return (err);

	for (int i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(write_size > 0);

		offset_t off = zfs_uio_offset(uio);
		bufoff = off - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, write_size);

		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

		if (tocpy == db->db_size)
			dmu_buf_will_fill(db, tx, B_TRUE);
		else
			dmu_buf_will_dirty(db, tx);

		ASSERT(db->db_data != NULL);
		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
		    tocpy, UIO_WRITE, uio);

		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
			/* The fill was reverted.  Undo any uio progress. */
			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
		}

		if (err)
			break;

		write_size -= tocpy;
		size -= tocpy;
	}

	IMPLY(err == 0, write_size == 0);

	dmu_buf_rele_array(dbp, numbufs, FTAG);

	if ((uio->uio_extflg & UIO_DIRECT) && size > 0) {
		goto top;
	}

	return (err);
}

/*
 * Write 'size' bytes from the uio buffer.
 * To object zdb->db_object.
 * Starting at offset zfs_uio_offset(uio).
 *
 * If the caller already has a dbuf in the target object
 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
 * because we don't have to find the dnode_t for the object.
 */
int
dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
	int err;

	if (size == 0)
		return (0);

	DB_DNODE_ENTER(db);
	err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Write 'size' bytes from the uio buffer.
 * To the specified object.
 * Starting at offset zfs_uio_offset(uio).
 */
int
dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_write_uio_dnode(dn, uio, size, tx);

	dnode_rele(dn, FTAG);

	return (err);
}
#endif /* _KERNEL */

static void
dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
    uint64_t *l1sz, uint64_t *l2sz)
{
	int cached_flags;

	if (bps == NULL)
		return;

	for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
		blkptr_t *bp = &bps[blk_off];

		if (BP_IS_HOLE(bp))
			continue;

		cached_flags = arc_cached(spa, bp);
		if (cached_flags == 0)
			continue;

		if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
		    ARC_CACHED_IN_L2)
			*l2sz += BP_GET_LSIZE(bp);
		else
			*l1sz += BP_GET_LSIZE(bp);
	}
}

/*
 * Estimate DMU object cached size.
 */
int
dmu_object_cached_size(objset_t *os, uint64_t object,
    uint64_t *l1sz, uint64_t *l2sz)
{
	dnode_t *dn;
	dmu_object_info_t doi;
	int err = 0;

	*l1sz = *l2sz = 0;

	if (dnode_hold(os, object, FTAG, &dn) != 0)
		return (0);

	if (dn->dn_nlevels < 2) {
		dnode_rele(dn, FTAG);
		return (0);
	}

	dmu_object_info_from_dnode(dn, &doi);

	for (uint64_t off = 0; off < doi.doi_max_offset;
	    off += dmu_prefetch_max) {
		/* dbuf_read doesn't prefetch L1 blocks. */
		dmu_prefetch_by_dnode(dn, 1, off,
		    dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
	}

	/*
	 * Hold all valid L1 blocks, asking ARC the status of each BP
	 * contained in each such L1 block.
	 */
	uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
	uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	for (uint64_t blk = 0; blk < l1blks; blk++) {
		dmu_buf_impl_t *db = NULL;

		if (issig()) {
			/*
			 * On interrupt, get out, and bubble up EINTR
			 */
			err = EINTR;
			break;
		}

		/*
		 * If we get an i/o error here, the L1 can't be read,
		 * and nothing under it could be cached, so we just
		 * continue. Ignoring the error from dbuf_hold_impl
		 * or from dbuf_read is then a reasonable choice.
		 */
		err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
		if (err != 0) {
			/*
			 * ignore error and continue
			 */
			err = 0;
			continue;
		}

		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
		if (err == 0) {
			dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
			    nbps, l1sz, l2sz);
		}
		/*
		 * error may be ignored, and we continue
		 */
		err = 0;
		dbuf_rele(db, FTAG);
	}
	rw_exit(&dn->dn_struct_rwlock);

	dnode_rele(dn, FTAG);
	return (err);
}

/*
 * Allocate a loaned anonymous arc buffer.
 */
arc_buf_t *
dmu_request_arcbuf(dmu_buf_t *handle, int size)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;

	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
}

/*
 * Free a loaned arc buffer.
 */
void
dmu_return_arcbuf(arc_buf_t *buf)
{
	arc_return_buf(buf, FTAG);
	arc_buf_destroy(buf, FTAG);
}

/*
 * A "lightweight" write is faster than a regular write (e.g.
 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
 * data can not be read or overwritten until the transaction's txg has been
 * synced.  This makes it appropriate for workloads that are known to be
 * (temporarily) write-only, like "zfs receive".
 *
 * A single block is written, starting at the specified offset in bytes.  If
 * the call is successful, it returns 0 and the provided abd has been
 * consumed (the caller should not free it).
 */
int
dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
    const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
{
	dbuf_dirty_record_t *dr =
	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
	if (dr == NULL)
		return (SET_ERROR(EIO));
	dr->dt.dll.dr_abd = abd;
	dr->dt.dll.dr_props = *zp;
	dr->dt.dll.dr_flags = flags;
	return (0);
}

/*
 * When possible directly assign passed loaned arc buffer to a dbuf.
 * If this is not possible copy the contents of passed arc buf via
 * dmu_write().
 */
int
dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db;
	objset_t *os = dn->dn_objset;
	uint64_t object = dn->dn_object;
	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
	uint64_t blkid;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, FTAG);
	rw_exit(&dn->dn_struct_rwlock);
	if (db == NULL)
		return (SET_ERROR(EIO));

	/*
	 * We can only assign if the offset is aligned and the arc buf is the
	 * same size as the dbuf.
	 */
	if (offset == db->db.db_offset && blksz == db->db.db_size) {
		zfs_racct_write(os->os_spa, blksz, 1, 0);
		dbuf_assign_arcbuf(db, buf, tx);
		dbuf_rele(db, FTAG);
	} else {
		/* compressed bufs must always be assignable to their dbuf */
		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));

		dbuf_rele(db, FTAG);
		dmu_write(os, object, offset, blksz, buf->b_data, tx);
		dmu_return_arcbuf(buf);
	}

	return (0);
}

int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
    dmu_tx_t *tx)
{
	int err;
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;

	DB_DNODE_ENTER(db);
	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx);
	DB_DNODE_EXIT(db);

	return (err);
}

void
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
{
	(void) buf;
	dmu_sync_arg_t *dsa = varg;

	if (zio->io_error == 0) {
		dbuf_dirty_record_t *dr = dsa->dsa_dr;
		blkptr_t *bp = zio->io_bp;

		if (BP_IS_HOLE(bp)) {
			dmu_buf_t *db = NULL;
			if (dr)
				db = &(dr->dr_dbuf->db);
			else
				db = dsa->dsa_zgd->zgd_db;
			/*
			 * A block of zeros may compress to a hole, but the
			 * block size still needs to be known for replay.
			 */
			BP_SET_LSIZE(bp, db->db_size);
		} else if (!BP_IS_EMBEDDED(bp)) {
			ASSERT(BP_GET_LEVEL(bp) == 0);
			BP_SET_FILL(bp, 1);
		}
	}
}

static void
dmu_sync_late_arrival_ready(zio_t *zio)
{
	dmu_sync_ready(zio, NULL, zio->io_private);
}

void
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
{
	(void) buf;
	dmu_sync_arg_t *dsa = varg;
	dbuf_dirty_record_t *dr = dsa->dsa_dr;
	dmu_buf_impl_t *db = dr->dr_dbuf;
	zgd_t *zgd = dsa->dsa_zgd;

	/*
	 * Record the vdev(s) backing this blkptr so they can be flushed after
	 * the writes for the lwb have completed.
	 */
	if (zgd && zio->io_error == 0) {
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
	}

	mutex_enter(&db->db_mtx);
	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
	if (zio->io_error == 0) {
		ASSERT0(dr->dt.dl.dr_has_raw_params);
		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
		if (dr->dt.dl.dr_nopwrite) {
			blkptr_t *bp = zio->io_bp;
			blkptr_t *bp_orig = &zio->io_bp_orig;
			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);

			ASSERT(BP_EQUAL(bp, bp_orig));
			VERIFY(BP_EQUAL(bp, db->db_blkptr));
			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
			VERIFY(zio_checksum_table[chksum].ci_flags &
			    ZCHECKSUM_FLAG_NOPWRITE);
		}
		dr->dt.dl.dr_overridden_by = *zio->io_bp;
		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;

		/*
		 * Old style holes are filled with all zeros, whereas
		 * new-style holes maintain their lsize, type, level,
		 * and birth time (see zio_write_compress). While we
		 * need to reset the BP_SET_LSIZE() call that happened
		 * in dmu_sync_ready for old style holes, we do *not*
		 * want to wipe out the information contained in new
		 * style holes. Thus, only zero out the block pointer if
		 * it's an old style hole.
		 */
		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
			BP_ZERO(&dr->dt.dl.dr_overridden_by);
	} else {
		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
	}

	cv_broadcast(&db->db_changed);
	mutex_exit(&db->db_mtx);

	if (dsa->dsa_done)
		dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

	kmem_free(dsa, sizeof (*dsa));
}

static void
dmu_sync_late_arrival_done(zio_t *zio)
{
	blkptr_t *bp = zio->io_bp;
	dmu_sync_arg_t *dsa = zio->io_private;
	zgd_t *zgd = dsa->dsa_zgd;

	if (zio->io_error == 0) {
		/*
		 * Record the vdev(s) backing this blkptr so they can be
		 * flushed after the writes for the lwb have completed.
		 */
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);

		if (!BP_IS_HOLE(bp)) {
			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
		}
	}

	dmu_tx_commit(dsa->dsa_tx);

	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

	abd_free(zio->io_abd);
	kmem_free(dsa, sizeof (*dsa));
}

static int
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
    zio_prop_t *zp, zbookmark_phys_t *zb)
{
	dmu_sync_arg_t *dsa;
	dmu_tx_t *tx;
	int error;

	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
	if (error != 0)
		return (error);

	tx = dmu_tx_create(os);
	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
	/*
	 * This transaction does not produce any dirty data or log blocks, so
	 * it should not be throttled.  All other cases wait for TXG sync, by
	 * which time the log block we are writing will be obsolete, so we can
	 * skip waiting and just return error here instead.
	 */
	if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
		dmu_tx_abort(tx);
		/* Make zl_get_data do txg_waited_synced() */
		return (SET_ERROR(EIO));
	}

	/*
	 * In order to prevent the zgd's lwb from being free'd prior to
	 * dmu_sync_late_arrival_done() being called, we have to ensure
	 * the lwb's "max txg" takes this tx's txg into account.
	 */
	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));

	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
	dsa->dsa_dr = NULL;
	dsa->dsa_done = done;
	dsa->dsa_zgd = zgd;
	dsa->dsa_tx = tx;

	/*
	 * Since we are currently syncing this txg, it's nontrivial to
	 * determine what BP to nopwrite against, so we disable nopwrite.
	 *
	 * When syncing, the db_blkptr is initially the BP of the previous
	 * txg.  We can not nopwrite against it because it will be changed
	 * (this is similar to the non-late-arrival case where the dbuf is
	 * dirty in a future txg).
	 *
	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
	 * We can not nopwrite against it because although the BP will not
	 * (typically) be changed, the data has not yet been persisted to this
	 * location.
	 *
	 * Finally, when dbuf_write_done() is called, it is theoretically
	 * possible to always nopwrite, because the data that was written in
	 * this txg is the same data that we are trying to write.  However we
	 * would need to check that this dbuf is not dirty in any future
	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
	 * don't nopwrite in this case.
	 */
	zp->zp_nopwrite = B_FALSE;

	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));

	return (0);
}

/*
 * Intent log support: sync the block associated with db to disk.
 * N.B. and XXX: the caller is responsible for making sure that the
 * data isn't changing while dmu_sync() is writing it.
 *
 * Return values:
 *
 *	EEXIST: this txg has already been synced, so there's nothing to do.
 *		The caller should not log the write.
 *
 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
 *		The caller should not log the write.
 *
 *	EALREADY: this block is already in the process of being synced.
 *		The caller should track its progress (somehow).
 *
 *	EIO: could not do the I/O.
 *		The caller should do a txg_wait_synced().
 *
 *	0: the I/O has been initiated.
 *		The caller should log this blkptr in the done callback.
 *		It is possible that the I/O will fail, in which case
 *		the error will be reported to the done callback and
 *		propagated to pio from zio_done().
 */
int
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
	objset_t *os = db->db_objset;
	dsl_dataset_t *ds = os->os_dsl_dataset;
	dbuf_dirty_record_t *dr, *dr_next;
	dmu_sync_arg_t *dsa;
	zbookmark_phys_t zb;
	zio_prop_t zp;

	ASSERT(pio != NULL);
	ASSERT(txg != 0);

	SET_BOOKMARK(&zb, ds->ds_object,
	    db->db.db_object, db->db_level, db->db_blkid);

	DB_DNODE_ENTER(db);
	dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
	DB_DNODE_EXIT(db);

	/*
	 * If we're frozen (running ziltest), we always need to generate a bp.
	 */
	if (txg > spa_freeze_txg(os->os_spa))
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));

	/*
	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
	 * and us.  If we determine that this txg is not yet syncing,
	 * but it begins to sync a moment later, that's OK because the
	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
	 */
	mutex_enter(&db->db_mtx);

	if (txg <= spa_last_synced_txg(os->os_spa)) {
		/*
		 * This txg has already synced.  There's nothing to do.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(EEXIST));
	}

	if (txg <= spa_syncing_txg(os->os_spa)) {
		/*
		 * This txg is currently syncing, so we can't mess with
		 * the dirty record anymore; just write a new log block.
		 */
		mutex_exit(&db->db_mtx);
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
	}

	dr = dbuf_find_dirty_eq(db, txg);

	if (dr == NULL) {
		/*
		 * There's no dr for this dbuf, so it must have been freed.
		 * There's no need to log writes to freed blocks, so we're done.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(ENOENT));
	}

	dr_next = list_next(&db->db_dirty_records, dr);
	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);

	if (db->db_blkptr != NULL) {
		/*
		 * We need to fill in zgd_bp with the current blkptr so that
		 * the nopwrite code can check if we're writing the same
		 * data that's already on disk.  We can only nopwrite if we
		 * are sure that after making the copy, db_blkptr will not
		 * change until our i/o completes.  We ensure this by
		 * holding the db_mtx, and only allowing nopwrite if the
		 * block is not already dirty (see below).  This is verified
		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
		 * not changed.
		 */
		*zgd->zgd_bp = *db->db_blkptr;
	}

	/*
	 * Assume the on-disk data is X, the current syncing data (in
	 * txg - 1) is Y, and the current in-memory data is Z (currently
	 * in dmu_sync).
	 *
	 * We usually want to perform a nopwrite if X and Z are the
	 * same.  However, if Y is different (i.e. the BP is going to
	 * change before this write takes effect), then a nopwrite will
	 * be incorrect - we would override with X, which could have
	 * been freed when Y was written.
	 *
	 * (Note that this is not a concern when we are nop-writing from
	 * syncing context, because X and Y must be identical, because
	 * all previous txgs have been synced.)
	 *
	 * Therefore, we disable nopwrite if the current BP could change
	 * before this TXG.  There are two ways it could change: by
	 * being dirty (dr_next is non-NULL), or by being freed
	 * (dnode_block_freed()).  This behavior is verified by
	 * zio_done(), which VERIFYs that the override BP is identical
	 * to the on-disk BP.
	 */
	if (dr_next != NULL) {
		zp.zp_nopwrite = B_FALSE;
	} else {
		DB_DNODE_ENTER(db);
		if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
			zp.zp_nopwrite = B_FALSE;
		DB_DNODE_EXIT(db);
	}

	ASSERT(dr->dr_txg == txg);
	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
		/*
		 * We have already issued a sync write for this buffer,
		 * or this buffer has already been synced.  It could not
		 * have been dirtied since, or we would have cleared the state.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(EALREADY));
	}

	ASSERT0(dr->dt.dl.dr_has_raw_params);
	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
	mutex_exit(&db->db_mtx);

	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
	dsa->dsa_dr = dr;
	dsa->dsa_done = done;
	dsa->dsa_zgd = zgd;
	dsa->dsa_tx = NULL;

	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
	    dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
	    dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
	    &zb));

	return (0);
}

int
dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	err = dnode_set_nlevels(dn, nlevels, tx);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	err = dnode_set_blksz(dn, size, ibs, tx);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);
	return (0);
}

void
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
    dmu_tx_t *tx)
{
	dnode_t *dn;

	/*
	 * Send streams include each object's checksum function.  This
	 * check ensures that the receiving system can understand the
	 * checksum function transmitted.
	 */
	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);

	VERIFY0(dnode_hold(os, object, FTAG, &dn));
	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
	dn->dn_checksum = checksum;
	dnode_setdirty(dn, tx);
	dnode_rele(dn, FTAG);
}

void
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
    dmu_tx_t *tx)
{
	dnode_t *dn;

	/*
	 * Send streams include each object's compression function.  This
	 * check ensures that the receiving system can understand the
	 * compression function transmitted.
	 */
	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);

	VERIFY0(dnode_hold(os, object, FTAG, &dn));
	dn->dn_compress = compress;
	dnode_setdirty(dn, tx);
	dnode_rele(dn, FTAG);
}

/*
 * When the "redundant_metadata" property is set to "most", only indirect
 * blocks of this level and higher will have an additional ditto block.
 */
static const int zfs_redundant_metadata_most_ditto_level = 2;

void
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
{
	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
	    (wp & WP_SPILL));
	enum zio_checksum checksum = os->os_checksum;
	enum zio_compress compress = os->os_compress;
	uint8_t complevel = os->os_complevel;
	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
	boolean_t dedup = B_FALSE;
	boolean_t nopwrite = B_FALSE;
	boolean_t dedup_verify = os->os_dedup_verify;
	boolean_t encrypt = B_FALSE;
	int copies = os->os_copies;

	/*
	 * We maintain different write policies for each of the following
	 * types of data:
	 *	 1. metadata
	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
	 *	 3. all other level 0 blocks
	 */
	if (ismd) {
		/*
		 * XXX -- we should design a compression algorithm
		 * that specializes in arrays of bps.
		 */
		compress = zio_compress_select(os->os_spa,
		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);

		/*
		 * Metadata always gets checksummed.  If the data
		 * checksum is multi-bit correctable, and it's not a
		 * ZBT-style checksum, then it's suitable for metadata
		 * as well.  Otherwise, the metadata checksum defaults
		 * to fletcher4.
		 */
		if (!(zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_METADATA) ||
		    (zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_EMBEDDED))
			checksum = ZIO_CHECKSUM_FLETCHER_4;

		switch (os->os_redundant_metadata) {
		case ZFS_REDUNDANT_METADATA_ALL:
			copies++;
			break;
		case ZFS_REDUNDANT_METADATA_MOST:
			if (level >= zfs_redundant_metadata_most_ditto_level ||
			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
				copies++;
			break;
		case ZFS_REDUNDANT_METADATA_SOME:
			if (DMU_OT_IS_CRITICAL(type))
				copies++;
			break;
		case ZFS_REDUNDANT_METADATA_NONE:
			break;
		}

		if (dmu_ddt_copies > 0) {
			/*
			 * If this tuneable is set, and this is a write for a
			 * dedup entry store (zap or log), then we treat it
			 * something like ZFS_REDUNDANT_METADATA_MOST on a
			 * regular dataset: this many copies, and one more for
			 * "higher" indirect blocks. This specific exception is
			 * necessary because dedup objects are stored in the
			 * MOS, which always has the highest possible copies.
			 */
			dmu_object_type_t stype =
			    dn ? dn->dn_storage_type : DMU_OT_NONE;
			if (stype == DMU_OT_NONE)
				stype = type;
			if (stype == DMU_OT_DDT_ZAP) {
				copies = dmu_ddt_copies;
				if (level >=
				    zfs_redundant_metadata_most_ditto_level)
					copies++;
			}
		}
	} else if (wp & WP_NOFILL) {
		ASSERT(level == 0);

		/*
		 * If we're writing preallocated blocks, we aren't actually
		 * writing them so don't set any policy properties.  These
		 * blocks are currently only used by an external subsystem
		 * outside of zfs (i.e. dump) and not written by the zio
		 * pipeline.
		 */
		compress = ZIO_COMPRESS_OFF;
		checksum = ZIO_CHECKSUM_OFF;
	} else {
		compress = zio_compress_select(os->os_spa, dn->dn_compress,
		    compress);
		complevel = zio_complevel_select(os->os_spa, compress,
		    complevel, complevel);

		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
		    zio_checksum_select(dn->dn_checksum, checksum) :
		    dedup_checksum;

		/*
		 * Determine dedup setting.  If we are in dmu_sync(),
		 * we won't actually dedup now because that's all
		 * done in syncing context; but we do want to use the
		 * dedup checksum.  If the checksum is not strong
		 * enough to ensure unique signatures, force
		 * dedup_verify.
		 */
		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
			if (!(zio_checksum_table[checksum].ci_flags &
			    ZCHECKSUM_FLAG_DEDUP))
				dedup_verify = B_TRUE;
		}

		/*
		 * Enable nopwrite if we have secure enough checksum
		 * algorithm (see comment in zio_nop_write) and
		 * compression is enabled.  We don't enable nopwrite if
		 * dedup is enabled as the two features are mutually
		 * exclusive.
		 */
		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_NOPWRITE) &&
		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
	}

	/*
	 * All objects in an encrypted objset are protected from modification
	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
	 * in the bp, so we cannot use all copies. Encrypted objects are also
	 * not subject to nopwrite since writing the same data will still
	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
	 * to avoid ambiguity in the dedup code since the DDT does not store
	 * object types.
	 */
	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
		encrypt = B_TRUE;

		if (DMU_OT_IS_ENCRYPTED(type)) {
			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
			nopwrite = B_FALSE;
		} else {
			dedup = B_FALSE;
		}

		if (level <= 0 &&
		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
			compress = ZIO_COMPRESS_EMPTY;
		}
	}

	zp->zp_compress = compress;
	zp->zp_complevel = complevel;
	zp->zp_checksum = checksum;
	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
	zp->zp_level = level;
	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
	zp->zp_dedup = dedup;
	zp->zp_dedup_verify = dedup && dedup_verify;
	zp->zp_nopwrite = nopwrite;
	zp->zp_encrypt = encrypt;
	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
	zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
	    os->os_zpl_special_smallblock : 0;
	zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;

	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
}

/*
 * Reports the location of data and holes in an object.  In order to
 * accurately report holes all dirty data must be synced to disk.  This
 * causes extremely poor performance when seeking for holes in a dirty file.
 * As a compromise, only provide hole data when the dnode is clean.  When
 * a dnode is dirty report the dnode as having no holes by returning EBUSY
 * which is always safe to do.
 */
int
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
{
	dnode_t *dn;
	int restarted = 0, err;

restart:
	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	rw_enter(&dn->dn_struct_rwlock, RW_READER);

	if (dnode_is_dirty(dn)) {
		/*
		 * If the zfs_dmu_offset_next_sync module option is enabled
		 * then hole reporting has been requested.  Dirty dnodes
		 * must be synced to disk to accurately report holes.
		 *
		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
		 * held by the caller only a single restart will be required.
		 * We tolerate callers which do not hold the rangelock by
		 * returning EBUSY and not reporting holes after one restart.
		 */
		if (zfs_dmu_offset_next_sync) {
			rw_exit(&dn->dn_struct_rwlock);
			dnode_rele(dn, FTAG);

			if (restarted)
				return (SET_ERROR(EBUSY));

			txg_wait_synced(dmu_objset_pool(os), 0);
			restarted = 1;
			goto restart;
		}

		err = SET_ERROR(EBUSY);
	} else {
		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
	}

	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
    blkptr_t *bps, size_t *nbpsp)
{
	dmu_buf_t **dbp, *dbuf;
	dmu_buf_impl_t *db;
	blkptr_t *bp;
	int error, numbufs;

	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
	    &numbufs, &dbp);
	if (error != 0) {
		if (error == ESRCH) {
			error = SET_ERROR(ENXIO);
		}
		return (error);
	}

	ASSERT3U(numbufs, <=, *nbpsp);

	for (int i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;

		mutex_enter(&db->db_mtx);

		if (!list_is_empty(&db->db_dirty_records)) {
			dbuf_dirty_record_t *dr;

			dr = list_head(&db->db_dirty_records);
			if (dr->dt.dl.dr_brtwrite) {
				/*
				 * This is very special case where we clone a
				 * block and in the same transaction group we
				 * read its BP (most likely to clone the clone).
				 */
				bp = &dr->dt.dl.dr_overridden_by;
			} else {
				/*
				 * The block was modified in the same
				 * transaction group.
				 */
				mutex_exit(&db->db_mtx);
				error = SET_ERROR(EAGAIN);
				goto out;
			}
		} else {
			bp = db->db_blkptr;
		}

		mutex_exit(&db->db_mtx);

		if (bp == NULL) {
			/*
			 * The file size was increased, but the block was never
			 * written, otherwise we would either have the block
			 * pointer or the dirty record and would not get here.
			 * It is effectively a hole, so report it as such.
			 */
			BP_ZERO(&bps[i]);
			continue;
		}
		/*
		 * Make sure we clone only data blocks.
		 */
		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
			error = SET_ERROR(EINVAL);
			goto out;
		}

		/*
		 * If the block was allocated in transaction group that is not
		 * yet synced, we could clone it, but we couldn't write this
		 * operation into ZIL, or it may be impossible to replay, since
		 * the block may appear not yet allocated at that point.
		 */
		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
			error = SET_ERROR(EINVAL);
			goto out;
		}
		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
			error = SET_ERROR(EAGAIN);
			goto out;
		}

		bps[i] = *bp;
	}

	*nbpsp = numbufs;
out:
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (error);
}

int
dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
    dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
{
	spa_t *spa;
	dmu_buf_t **dbp, *dbuf;
	dmu_buf_impl_t *db;
	struct dirty_leaf *dl;
	dbuf_dirty_record_t *dr;
	const blkptr_t *bp;
	int error = 0, i, numbufs;

	spa = os->os_spa;

	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
	    &numbufs, &dbp));
	ASSERT3U(nbps, ==, numbufs);

	/*
	 * Before we start cloning make sure that the dbufs sizes match new BPs
	 * sizes. If they don't, that's a no-go, as we are not able to shrink
	 * dbufs.
	 */
	for (i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;
		bp = &bps[i];

		ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
		ASSERT0(db->db_level);
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
		ASSERT(db->db_blkid != DMU_SPILL_BLKID);

		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
			error = SET_ERROR(EXDEV);
			goto out;
		}
	}

	for (i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;
		bp = &bps[i];

		dmu_buf_will_clone_or_dio(dbuf, tx);

		mutex_enter(&db->db_mtx);

		dr = list_head(&db->db_dirty_records);
		VERIFY(dr != NULL);
		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
		dl = &dr->dt.dl;
		ASSERT0(dl->dr_has_raw_params);
		dl->dr_overridden_by = *bp;
		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
			if (!BP_IS_EMBEDDED(bp)) {
				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
				    BP_GET_BIRTH(bp));
			} else {
				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
				    dr->dr_txg);
			}
		}
		dl->dr_brtwrite = B_TRUE;
		dl->dr_override_state = DR_OVERRIDDEN;

		mutex_exit(&db->db_mtx);

		/*
		 * When data in embedded into BP there is no need to create
		 * BRT entry as there is no data block. Just copy the BP as
		 * it contains the data.
		 */
		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
			brt_pending_add(spa, bp, tx);
		}
	}
out:
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (error);
}

void
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
	dnode_phys_t *dnp = dn->dn_phys;

	doi->doi_data_block_size = dn->dn_datablksz;
	doi->doi_metadata_block_size = dn->dn_indblkshift ?
	    1ULL << dn->dn_indblkshift : 0;
	doi->doi_type = dn->dn_type;
	doi->doi_bonus_type = dn->dn_bonustype;
	doi->doi_bonus_size = dn->dn_bonuslen;
	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
	doi->doi_indirection = dn->dn_nlevels;
	doi->doi_checksum = dn->dn_checksum;
	doi->doi_compress = dn->dn_compress;
	doi->doi_nblkptr = dn->dn_nblkptr;
	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
	doi->doi_fill_count = 0;
	for (int i = 0; i < dnp->dn_nblkptr; i++)
		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
}

void
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	mutex_enter(&dn->dn_mtx);

	__dmu_object_info_from_dnode(dn, doi);

	mutex_exit(&dn->dn_mtx);
	rw_exit(&dn->dn_struct_rwlock);
}

/*
 * Get information on a DMU object.
 * If doi is NULL, just indicates whether the object exists.
 */
int
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
{
	dnode_t *dn;
	int err = dnode_hold(os, object, FTAG, &dn);

	if (err)
		return (err);

	if (doi != NULL)
		dmu_object_info_from_dnode(dn, doi);

	dnode_rele(dn, FTAG);
	return (0);
}

/*
 * As above, but faster; can be used when you have a held dbuf in hand.
 */
void
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	DB_DNODE_ENTER(db);
	dmu_object_info_from_dnode(DB_DNODE(db), doi);
	DB_DNODE_EXIT(db);
}

/*
 * Faster still when you only care about the size.
 */
void
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
    u_longlong_t *nblk512)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	*blksize = dn->dn_datablksz;
	/* add in number of slots used for the dnode itself */
	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
	DB_DNODE_EXIT(db);
}

void
dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	DB_DNODE_ENTER(db);
	*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
	DB_DNODE_EXIT(db);
}

void
byteswap_uint64_array(void *vbuf, size_t size)
{
	uint64_t *buf = vbuf;
	size_t count = size >> 3;
	int i;

	ASSERT((size & 7) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_64(buf[i]);
}

void
byteswap_uint32_array(void *vbuf, size_t size)
{
	uint32_t *buf = vbuf;
	size_t count = size >> 2;
	int i;

	ASSERT((size & 3) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_32(buf[i]);
}

void
byteswap_uint16_array(void *vbuf, size_t size)
{
	uint16_t *buf = vbuf;
	size_t count = size >> 1;
	int i;

	ASSERT((size & 1) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_16(buf[i]);
}

void
byteswap_uint8_array(void *vbuf, size_t size)
{
	(void) vbuf, (void) size;
}

void
dmu_init(void)
{
	abd_init();
	zfs_dbgmsg_init();
	sa_cache_init();
	dmu_objset_init();
	dnode_init();
	zfetch_init();
	dmu_tx_init();
	l2arc_init();
	arc_init();
	dbuf_init();
}

void
dmu_fini(void)
{
	arc_fini(); /* arc depends on l2arc, so arc must go first */
	l2arc_fini();
	dmu_tx_fini();
	zfetch_fini();
	dbuf_fini();
	dnode_fini();
	dmu_objset_fini();
	sa_cache_fini();
	zfs_dbgmsg_fini();
	abd_fini();
}

EXPORT_SYMBOL(dmu_bonus_hold);
EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
EXPORT_SYMBOL(dmu_buf_rele_array);
EXPORT_SYMBOL(dmu_prefetch);
EXPORT_SYMBOL(dmu_prefetch_by_dnode);
EXPORT_SYMBOL(dmu_prefetch_dnode);
EXPORT_SYMBOL(dmu_free_range);
EXPORT_SYMBOL(dmu_free_long_range);
EXPORT_SYMBOL(dmu_free_long_object);
EXPORT_SYMBOL(dmu_read);
EXPORT_SYMBOL(dmu_read_by_dnode);
EXPORT_SYMBOL(dmu_read_uio);
EXPORT_SYMBOL(dmu_read_uio_dbuf);
EXPORT_SYMBOL(dmu_read_uio_dnode);
EXPORT_SYMBOL(dmu_write);
EXPORT_SYMBOL(dmu_write_by_dnode);
EXPORT_SYMBOL(dmu_write_by_dnode_flags);
EXPORT_SYMBOL(dmu_write_uio);
EXPORT_SYMBOL(dmu_write_uio_dbuf);
EXPORT_SYMBOL(dmu_write_uio_dnode);
EXPORT_SYMBOL(dmu_prealloc);
EXPORT_SYMBOL(dmu_object_info);
EXPORT_SYMBOL(dmu_object_info_from_dnode);
EXPORT_SYMBOL(dmu_object_info_from_db);
EXPORT_SYMBOL(dmu_object_size_from_db);
EXPORT_SYMBOL(dmu_object_dnsize_from_db);
EXPORT_SYMBOL(dmu_object_set_nlevels);
EXPORT_SYMBOL(dmu_object_set_blocksize);
EXPORT_SYMBOL(dmu_object_set_maxblkid);
EXPORT_SYMBOL(dmu_object_set_checksum);
EXPORT_SYMBOL(dmu_object_set_compress);
EXPORT_SYMBOL(dmu_offset_next);
EXPORT_SYMBOL(dmu_write_policy);
EXPORT_SYMBOL(dmu_sync);
EXPORT_SYMBOL(dmu_request_arcbuf);
EXPORT_SYMBOL(dmu_return_arcbuf);
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
EXPORT_SYMBOL(dmu_buf_hold);
EXPORT_SYMBOL(dmu_ot);

ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
	"Enable NOP writes");

ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
	"Percentage of dirtied blocks from frees in one TXG");

ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
	"Enable forcing txg sync to find holes");

ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
	"Limit one prefetch call to this size");

ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
	"Override copies= for dedup objects");