// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2018-2019 Realtek Corporation */ #if defined(__FreeBSD__) #define LINUXKPI_PARAM_PREFIX rtw88_pci_ #endif #include #include #include "main.h" #include "pci.h" #include "reg.h" #include "tx.h" #include "rx.h" #include "fw.h" #include "ps.h" #include "debug.h" #if defined(__FreeBSD__) #include #endif static bool rtw_disable_msi; static bool rtw_pci_disable_aspm; module_param_named(disable_msi, rtw_disable_msi, bool, 0644); module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644); MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support"); MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support"); static u32 rtw_pci_tx_queue_idx_addr[] = { [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ, [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ, [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ, [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ, [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ, [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q, [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ, }; static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue) { switch (queue) { case RTW_TX_QUEUE_BCN: return TX_DESC_QSEL_BEACON; case RTW_TX_QUEUE_H2C: return TX_DESC_QSEL_H2C; case RTW_TX_QUEUE_MGMT: return TX_DESC_QSEL_MGMT; case RTW_TX_QUEUE_HI0: return TX_DESC_QSEL_HIGH; default: return skb->priority; } }; static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) return readb(rtwpci->mmap + addr); #elif defined(__FreeBSD__) u8 val; val = bus_read_1((struct resource *)rtwpci->mmap, addr); rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val); return (val); #endif } static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) return readw(rtwpci->mmap + addr); #elif defined(__FreeBSD__) u16 val; val = bus_read_2((struct resource *)rtwpci->mmap, addr); rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val); return (val); #endif } static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) return readl(rtwpci->mmap + addr); #elif defined(__FreeBSD__) u32 val; val = bus_read_4((struct resource *)rtwpci->mmap, addr); rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val); return (val); #endif } static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) writeb(val, rtwpci->mmap + addr); #elif defined(__FreeBSD__) rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val); return (bus_write_1((struct resource *)rtwpci->mmap, addr, val)); #endif } static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) writew(val, rtwpci->mmap + addr); #elif defined(__FreeBSD__) rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val); return (bus_write_2((struct resource *)rtwpci->mmap, addr, val)); #endif } static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; #if defined(__linux__) writel(val, rtwpci->mmap + addr); #elif defined(__FreeBSD__) rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val); return (bus_write_4((struct resource *)rtwpci->mmap, addr, val)); #endif } #if defined(__linux__) && 0 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx) { int offset = tx_ring->r.desc_size * idx; return tx_ring->r.head + offset; } #endif static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev, struct rtw_pci_tx_ring *tx_ring) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); struct rtw_pci_tx_data *tx_data; struct sk_buff *skb, *tmp; dma_addr_t dma; /* free every skb remained in tx list */ skb_queue_walk_safe(&tx_ring->queue, skb, tmp) { __skb_unlink(skb, &tx_ring->queue); tx_data = rtw_pci_get_tx_data(skb); dma = tx_data->dma; dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); } } static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev, struct rtw_pci_tx_ring *tx_ring) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); u8 *head = tx_ring->r.head; u32 len = tx_ring->r.len; int ring_sz = len * tx_ring->r.desc_size; rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); /* free the ring itself */ dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma); tx_ring->r.head = NULL; } static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev, struct rtw_pci_rx_ring *rx_ring) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); struct sk_buff *skb; int buf_sz = RTK_PCI_RX_BUF_SIZE; dma_addr_t dma; int i; for (i = 0; i < rx_ring->r.len; i++) { skb = rx_ring->buf[i]; if (!skb) continue; dma = *((dma_addr_t *)skb->cb); dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); dev_kfree_skb(skb); rx_ring->buf[i] = NULL; } } static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev, struct rtw_pci_rx_ring *rx_ring) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); u8 *head = rx_ring->r.head; int ring_sz = rx_ring->r.desc_size * rx_ring->r.len; rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring); dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma); } static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *tx_ring; struct rtw_pci_rx_ring *rx_ring; int i; for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { tx_ring = &rtwpci->tx_rings[i]; rtw_pci_free_tx_ring(rtwdev, tx_ring); } for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) { rx_ring = &rtwpci->rx_rings[i]; rtw_pci_free_rx_ring(rtwdev, rx_ring); } } static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev, struct rtw_pci_tx_ring *tx_ring, u8 desc_size, u32 len) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); int ring_sz = desc_size * len; dma_addr_t dma; u8 *head; if (len > TRX_BD_IDX_MASK) { rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len); return -EINVAL; } head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); if (!head) { rtw_err(rtwdev, "failed to allocate tx ring\n"); return -ENOMEM; } skb_queue_head_init(&tx_ring->queue); tx_ring->r.head = head; tx_ring->r.dma = dma; tx_ring->r.len = len; tx_ring->r.desc_size = desc_size; tx_ring->r.wp = 0; tx_ring->r.rp = 0; return 0; } static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb, struct rtw_pci_rx_ring *rx_ring, u32 idx, u32 desc_sz) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); struct rtw_pci_rx_buffer_desc *buf_desc; int buf_sz = RTK_PCI_RX_BUF_SIZE; dma_addr_t dma; if (!skb) return -EINVAL; dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, dma)) return -EBUSY; *((dma_addr_t *)skb->cb) = dma; buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + idx * desc_sz); memset(buf_desc, 0, sizeof(*buf_desc)); buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); buf_desc->dma = cpu_to_le32(dma); return 0; } static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma, struct rtw_pci_rx_ring *rx_ring, u32 idx, u32 desc_sz) { struct device *dev = rtwdev->dev; struct rtw_pci_rx_buffer_desc *buf_desc; int buf_sz = RTK_PCI_RX_BUF_SIZE; dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE); buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + idx * desc_sz); memset(buf_desc, 0, sizeof(*buf_desc)); buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); buf_desc->dma = cpu_to_le32(dma); } static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev, struct rtw_pci_rx_ring *rx_ring, u8 desc_size, u32 len) { struct pci_dev *pdev = to_pci_dev(rtwdev->dev); struct sk_buff *skb = NULL; dma_addr_t dma; u8 *head; int ring_sz = desc_size * len; int buf_sz = RTK_PCI_RX_BUF_SIZE; int i, allocated; int ret = 0; head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); if (!head) { rtw_err(rtwdev, "failed to allocate rx ring\n"); return -ENOMEM; } rx_ring->r.head = head; for (i = 0; i < len; i++) { skb = dev_alloc_skb(buf_sz); if (!skb) { allocated = i; ret = -ENOMEM; goto err_out; } memset(skb->data, 0, buf_sz); rx_ring->buf[i] = skb; ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size); if (ret) { allocated = i; dev_kfree_skb_any(skb); goto err_out; } } rx_ring->r.dma = dma; rx_ring->r.len = len; rx_ring->r.desc_size = desc_size; rx_ring->r.wp = 0; rx_ring->r.rp = 0; return 0; err_out: for (i = 0; i < allocated; i++) { skb = rx_ring->buf[i]; if (!skb) continue; dma = *((dma_addr_t *)skb->cb); dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); rx_ring->buf[i] = NULL; } dma_free_coherent(&pdev->dev, ring_sz, head, dma); rtw_err(rtwdev, "failed to init rx buffer\n"); return ret; } static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *tx_ring; struct rtw_pci_rx_ring *rx_ring; struct rtw_chip_info *chip = rtwdev->chip; int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0; int tx_desc_size, rx_desc_size; u32 len; int ret; tx_desc_size = chip->tx_buf_desc_sz; for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { tx_ring = &rtwpci->tx_rings[i]; len = max_num_of_tx_queue(i); ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len); if (ret) goto out; } rx_desc_size = chip->rx_buf_desc_sz; for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) { rx_ring = &rtwpci->rx_rings[j]; ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size, RTK_MAX_RX_DESC_NUM); if (ret) goto out; } return 0; out: tx_alloced = i; for (i = 0; i < tx_alloced; i++) { tx_ring = &rtwpci->tx_rings[i]; rtw_pci_free_tx_ring(rtwdev, tx_ring); } rx_alloced = j; for (j = 0; j < rx_alloced; j++) { rx_ring = &rtwpci->rx_rings[j]; rtw_pci_free_rx_ring(rtwdev, rx_ring); } return ret; } static void rtw_pci_deinit(struct rtw_dev *rtwdev) { rtw_pci_free_trx_ring(rtwdev); } static int rtw_pci_init(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; int ret = 0; rtwpci->irq_mask[0] = IMR_HIGHDOK | IMR_MGNTDOK | IMR_BKDOK | IMR_BEDOK | IMR_VIDOK | IMR_VODOK | IMR_ROK | IMR_BCNDMAINT_E | IMR_C2HCMD | 0; rtwpci->irq_mask[1] = IMR_TXFOVW | 0; rtwpci->irq_mask[3] = IMR_H2CDOK | 0; spin_lock_init(&rtwpci->irq_lock); spin_lock_init(&rtwpci->hwirq_lock); ret = rtw_pci_init_trx_ring(rtwdev); return ret; } static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; u32 len; u8 tmp; dma_addr_t dma; tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3); rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7); dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma; rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma); if (!rtw_chip_wcpu_11n(rtwdev)) { len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma); } len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma); len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma); len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma); len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma); len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma); len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len; dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma; rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0; rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma); len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len; dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma; rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0; rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0; rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK); rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma); /* reset read/write point */ rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff); /* reset H2C Queue index in a single write */ if (rtw_chip_wcpu_11ac(rtwdev)) rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR, BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX); } static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev) { rtw_pci_reset_buf_desc(rtwdev); } static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, bool exclude_rx) { unsigned long flags; u32 imr0_unmask = exclude_rx ? IMR_ROK : 0; spin_lock_irqsave(&rtwpci->hwirq_lock, flags); rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask); rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]); if (rtw_chip_wcpu_11ac(rtwdev)) rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]); rtwpci->irq_enabled = true; spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); } static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) { unsigned long flags; spin_lock_irqsave(&rtwpci->hwirq_lock, flags); if (!rtwpci->irq_enabled) goto out; rtw_write32(rtwdev, RTK_PCI_HIMR0, 0); rtw_write32(rtwdev, RTK_PCI_HIMR1, 0); if (rtw_chip_wcpu_11ac(rtwdev)) rtw_write32(rtwdev, RTK_PCI_HIMR3, 0); rtwpci->irq_enabled = false; out: spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); } static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) { /* reset dma and rx tag */ rtw_write32_set(rtwdev, RTK_PCI_CTRL, BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN); rtwpci->rx_tag = 0; } static int rtw_pci_setup(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; rtw_pci_reset_trx_ring(rtwdev); rtw_pci_dma_reset(rtwdev, rtwpci); return 0; } static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) { struct rtw_pci_tx_ring *tx_ring; u8 queue; rtw_pci_reset_trx_ring(rtwdev); for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { tx_ring = &rtwpci->tx_rings[queue]; rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); } } static void rtw_pci_napi_start(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) return; napi_enable(&rtwpci->napi); } static void rtw_pci_napi_stop(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) return; napi_synchronize(&rtwpci->napi); napi_disable(&rtwpci->napi); } static int rtw_pci_start(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; rtw_pci_napi_start(rtwdev); spin_lock_bh(&rtwpci->irq_lock); rtwpci->running = true; rtw_pci_enable_interrupt(rtwdev, rtwpci, false); spin_unlock_bh(&rtwpci->irq_lock); return 0; } static void rtw_pci_stop(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; spin_lock_bh(&rtwpci->irq_lock); rtwpci->running = false; rtw_pci_disable_interrupt(rtwdev, rtwpci); spin_unlock_bh(&rtwpci->irq_lock); synchronize_irq(pdev->irq); rtw_pci_napi_stop(rtwdev); spin_lock_bh(&rtwpci->irq_lock); rtw_pci_dma_release(rtwdev, rtwpci); spin_unlock_bh(&rtwpci->irq_lock); } static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *tx_ring; bool tx_empty = true; u8 queue; if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) goto enter_deep_ps; lockdep_assert_held(&rtwpci->irq_lock); /* Deep PS state is not allowed to TX-DMA */ for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { /* BCN queue is rsvd page, does not have DMA interrupt * H2C queue is managed by firmware */ if (queue == RTW_TX_QUEUE_BCN || queue == RTW_TX_QUEUE_H2C) continue; tx_ring = &rtwpci->tx_rings[queue]; /* check if there is any skb DMAing */ if (skb_queue_len(&tx_ring->queue)) { tx_empty = false; break; } } if (!tx_empty) { rtw_dbg(rtwdev, RTW_DBG_PS, "TX path not empty, cannot enter deep power save state\n"); return; } enter_deep_ps: set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); rtw_power_mode_change(rtwdev, true); } static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev) { #if defined(__linux__) struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; lockdep_assert_held(&rtwpci->irq_lock); #elif defined(__FreeBSD__) lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock); #endif if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_power_mode_change(rtwdev, false); } static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; spin_lock_bh(&rtwpci->irq_lock); if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_pci_deep_ps_enter(rtwdev); if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_pci_deep_ps_leave(rtwdev); spin_unlock_bh(&rtwpci->irq_lock); } static u8 ac_to_hwq[] = { [IEEE80211_AC_VO] = RTW_TX_QUEUE_VO, [IEEE80211_AC_VI] = RTW_TX_QUEUE_VI, [IEEE80211_AC_BE] = RTW_TX_QUEUE_BE, [IEEE80211_AC_BK] = RTW_TX_QUEUE_BK, }; #if defined(__linux__) static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS); #elif defined(__FreeBSD__) rtw88_static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS); #endif static u8 rtw_hw_queue_mapping(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; u8 q_mapping = skb_get_queue_mapping(skb); u8 queue; if (unlikely(ieee80211_is_beacon(fc))) queue = RTW_TX_QUEUE_BCN; else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc))) queue = RTW_TX_QUEUE_MGMT; else if (is_broadcast_ether_addr(hdr->addr1) || is_multicast_ether_addr(hdr->addr1)) queue = RTW_TX_QUEUE_HI0; else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq))) queue = ac_to_hwq[IEEE80211_AC_BE]; else queue = ac_to_hwq[q_mapping]; return queue; } static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci, struct rtw_pci_tx_ring *ring) { struct sk_buff *prev = skb_dequeue(&ring->queue); struct rtw_pci_tx_data *tx_data; dma_addr_t dma; if (!prev) return; tx_data = rtw_pci_get_tx_data(prev); dma = tx_data->dma; dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE); dev_kfree_skb_any(prev); } static void rtw_pci_dma_check(struct rtw_dev *rtwdev, struct rtw_pci_rx_ring *rx_ring, u32 idx) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_chip_info *chip = rtwdev->chip; struct rtw_pci_rx_buffer_desc *buf_desc; u32 desc_sz = chip->rx_buf_desc_sz; u16 total_pkt_size; buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + idx * desc_sz); total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size); /* rx tag mismatch, throw a warning */ if (total_pkt_size != rtwpci->rx_tag) rtw_warn(rtwdev, "pci bus timeout, check dma status\n"); rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX; } static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q) { u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q]; u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2); return FIELD_GET(TRX_BD_IDX_MASK, bd_idx); } static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q]; u32 cur_rp; u8 i; /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a * bit dynamic, it's hard to define a reasonable fixed total timeout to * use read_poll_timeout* helper. Instead, we can ensure a reasonable * polling times, so we just use for loop with udelay here. */ for (i = 0; i < 30; i++) { cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q); if (cur_rp == ring->r.wp) return; udelay(1); } if (!drop) rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q); } static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues, bool drop) { u8 q; for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) { /* It may be not necessary to flush BCN and H2C tx queues. */ if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C) continue; if (pci_queues & BIT(q)) __pci_flush_queue(rtwdev, q, drop); } } static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop) { u32 pci_queues = 0; u8 i; /* If all of the hardware queues are requested to flush, * flush all of the pci queues. */ if (queues == BIT(rtwdev->hw->queues) - 1) { pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1; } else { for (i = 0; i < rtwdev->hw->queues; i++) if (queues & BIT(i)) pci_queues |= BIT(ac_to_hwq[i]); } __rtw_pci_flush_queues(rtwdev, pci_queues, drop); } static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *ring; u32 bd_idx; ring = &rtwpci->tx_rings[queue]; bd_idx = rtw_pci_tx_queue_idx_addr[queue]; spin_lock_bh(&rtwpci->irq_lock); if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) rtw_pci_deep_ps_leave(rtwdev); rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK); spin_unlock_bh(&rtwpci->irq_lock); } static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; u8 queue; for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) if (test_and_clear_bit(queue, rtwpci->tx_queued)) rtw_pci_tx_kick_off_queue(rtwdev, queue); } static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev, struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb, u8 queue) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_chip_info *chip = rtwdev->chip; struct rtw_pci_tx_ring *ring; struct rtw_pci_tx_data *tx_data; dma_addr_t dma; u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz; u32 tx_buf_desc_sz = chip->tx_buf_desc_sz; u32 size; u32 psb_len; u8 *pkt_desc; struct rtw_pci_tx_buffer_desc *buf_desc; ring = &rtwpci->tx_rings[queue]; size = skb->len; if (queue == RTW_TX_QUEUE_BCN) rtw_pci_release_rsvd_page(rtwpci, ring); else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len)) return -ENOSPC; pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); memset(pkt_desc, 0, tx_pkt_desc_sz); pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue); rtw_tx_fill_tx_desc(pkt_info, skb); dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&rtwpci->pdev->dev, dma)) return -EBUSY; /* after this we got dma mapped, there is no way back */ buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz); memset(buf_desc, 0, tx_buf_desc_sz); psb_len = (skb->len - 1) / 128 + 1; if (queue == RTW_TX_QUEUE_BCN) psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET; buf_desc[0].psb_len = cpu_to_le16(psb_len); buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz); buf_desc[0].dma = cpu_to_le32(dma); buf_desc[1].buf_size = cpu_to_le16(size); buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz); tx_data = rtw_pci_get_tx_data(skb); tx_data->dma = dma; tx_data->sn = pkt_info->sn; spin_lock_bh(&rtwpci->irq_lock); skb_queue_tail(&ring->queue, skb); if (queue == RTW_TX_QUEUE_BCN) goto out_unlock; /* update write-index, and kick it off later */ set_bit(queue, rtwpci->tx_queued); if (++ring->r.wp >= ring->r.len) ring->r.wp = 0; out_unlock: spin_unlock_bh(&rtwpci->irq_lock); return 0; } static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, u32 size) { struct sk_buff *skb; struct rtw_tx_pkt_info pkt_info = {0}; u8 reg_bcn_work; int ret; skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); if (!skb) return -ENOMEM; ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); if (ret) { #if defined(__FreeBSD__) dev_kfree_skb_any(skb); #endif rtw_err(rtwdev, "failed to write rsvd page data\n"); return ret; } /* reserved pages go through beacon queue */ reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK); reg_bcn_work |= BIT_PCI_BCNQ_FLAG; rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work); return 0; } static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) { struct sk_buff *skb; struct rtw_tx_pkt_info pkt_info = {0}; int ret; skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); if (!skb) return -ENOMEM; ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); if (ret) { #if defined(__FreeBSD__) dev_kfree_skb_any(skb); #endif rtw_err(rtwdev, "failed to write h2c data\n"); return ret; } rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C); return 0; } static int rtw_pci_tx_write(struct rtw_dev *rtwdev, struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_pci_tx_ring *ring; u8 queue = rtw_hw_queue_mapping(skb); int ret; ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue); if (ret) return ret; ring = &rtwpci->tx_rings[queue]; spin_lock_bh(&rtwpci->irq_lock); if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) { ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb)); ring->queue_stopped = true; } spin_unlock_bh(&rtwpci->irq_lock); return 0; } static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, u8 hw_queue) { struct ieee80211_hw *hw = rtwdev->hw; struct ieee80211_tx_info *info; struct rtw_pci_tx_ring *ring; struct rtw_pci_tx_data *tx_data; struct sk_buff *skb; u32 count; u32 bd_idx_addr; u32 bd_idx, cur_rp, rp_idx; u16 q_map; ring = &rtwpci->tx_rings[hw_queue]; bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue]; bd_idx = rtw_read32(rtwdev, bd_idx_addr); cur_rp = bd_idx >> 16; cur_rp &= TRX_BD_IDX_MASK; rp_idx = ring->r.rp; if (cur_rp >= ring->r.rp) count = cur_rp - ring->r.rp; else count = ring->r.len - (ring->r.rp - cur_rp); while (count--) { skb = skb_dequeue(&ring->queue); if (!skb) { rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n", count, hw_queue, bd_idx, ring->r.rp, cur_rp); break; } tx_data = rtw_pci_get_tx_data(skb); dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, DMA_TO_DEVICE); /* just free command packets from host to card */ if (hw_queue == RTW_TX_QUEUE_H2C) { dev_kfree_skb_irq(skb); continue; } if (ring->queue_stopped && avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) { q_map = skb_get_queue_mapping(skb); ieee80211_wake_queue(hw, q_map); ring->queue_stopped = false; } if (++rp_idx >= ring->r.len) rp_idx = 0; skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz); info = IEEE80211_SKB_CB(skb); /* enqueue to wait for tx report */ if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); continue; } /* always ACK for others, then they won't be marked as drop */ if (info->flags & IEEE80211_TX_CTL_NO_ACK) info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; else info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_info_clear_status(info); ieee80211_tx_status_irqsafe(hw, skb); } ring->r.rp = cur_rp; } static void rtw_pci_rx_isr(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct napi_struct *napi = &rtwpci->napi; napi_schedule(napi); } static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) { struct rtw_pci_rx_ring *ring; int count = 0; u32 tmp, cur_wp; ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ); cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK); if (cur_wp >= ring->r.wp) count = cur_wp - ring->r.wp; else count = ring->r.len - (ring->r.wp - cur_wp); return count; } static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, u8 hw_queue, u32 limit) { struct rtw_chip_info *chip = rtwdev->chip; struct napi_struct *napi = &rtwpci->napi; struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; struct rtw_rx_pkt_stat pkt_stat; struct ieee80211_rx_status rx_status; struct sk_buff *skb, *new; u32 cur_rp = ring->r.rp; u32 count, rx_done = 0; u32 pkt_offset; u32 pkt_desc_sz = chip->rx_pkt_desc_sz; u32 buf_desc_sz = chip->rx_buf_desc_sz; u32 new_len; u8 *rx_desc; dma_addr_t dma; count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci); count = min(count, limit); while (count--) { rtw_pci_dma_check(rtwdev, ring, cur_rp); skb = ring->buf[cur_rp]; dma = *((dma_addr_t *)skb->cb); dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE, DMA_FROM_DEVICE); rx_desc = skb->data; chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); /* offset from rx_desc to payload */ pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + pkt_stat.shift; /* allocate a new skb for this frame, * discard the frame if none available */ new_len = pkt_stat.pkt_len + pkt_offset; new = dev_alloc_skb(new_len); if (WARN_ONCE(!new, "rx routine starvation\n")) goto next_rp; /* put the DMA data including rx_desc from phy to new skb */ skb_put_data(new, skb->data, new_len); if (pkt_stat.is_c2h) { rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new); } else { /* remove rx_desc */ skb_pull(new, pkt_offset); rtw_rx_stats(rtwdev, pkt_stat.vif, new); memcpy(new->cb, &rx_status, sizeof(rx_status)); ieee80211_rx_napi(rtwdev->hw, NULL, new, napi); rx_done++; } next_rp: /* new skb delivered to mac80211, re-enable original skb DMA */ rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp, buf_desc_sz); /* host read next element in ring */ if (++cur_rp >= ring->r.len) cur_rp = 0; } ring->r.rp = cur_rp; /* 'rp', the last position we have read, is seen as previous posistion * of 'wp' that is used to calculate 'count' next time. */ ring->r.wp = cur_rp; rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp); return rx_done; } static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, u32 *irq_status) { unsigned long flags; spin_lock_irqsave(&rtwpci->hwirq_lock, flags); irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0); irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1); if (rtw_chip_wcpu_11ac(rtwdev)) irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3); else irq_status[3] = 0; irq_status[0] &= rtwpci->irq_mask[0]; irq_status[1] &= rtwpci->irq_mask[1]; irq_status[3] &= rtwpci->irq_mask[3]; rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]); rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]); if (rtw_chip_wcpu_11ac(rtwdev)) rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]); spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); } static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev) { struct rtw_dev *rtwdev = dev; struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; /* disable RTW PCI interrupt to avoid more interrupts before the end of * thread function * * disable HIMR here to also avoid new HISR flag being raised before * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs * are cleared, the edge-triggered interrupt will not be generated when * a new HISR flag is set. */ rtw_pci_disable_interrupt(rtwdev, rtwpci); return IRQ_WAKE_THREAD; } static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev) { struct rtw_dev *rtwdev = dev; struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; u32 irq_status[4]; bool rx = false; spin_lock_bh(&rtwpci->irq_lock); rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status); if (irq_status[0] & IMR_MGNTDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT); if (irq_status[0] & IMR_HIGHDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0); if (irq_status[0] & IMR_BEDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE); if (irq_status[0] & IMR_BKDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK); if (irq_status[0] & IMR_VODOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO); if (irq_status[0] & IMR_VIDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI); if (irq_status[3] & IMR_H2CDOK) rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C); if (irq_status[0] & IMR_ROK) { rtw_pci_rx_isr(rtwdev); rx = true; } if (unlikely(irq_status[0] & IMR_C2HCMD)) rtw_fw_c2h_cmd_isr(rtwdev); /* all of the jobs for this interrupt have been done */ if (rtwpci->running) rtw_pci_enable_interrupt(rtwdev, rtwpci, rx); spin_unlock_bh(&rtwpci->irq_lock); return IRQ_HANDLED; } static int rtw_pci_io_mapping(struct rtw_dev *rtwdev, struct pci_dev *pdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; unsigned long len; u8 bar_id = 2; int ret; ret = pci_request_regions(pdev, KBUILD_MODNAME); if (ret) { rtw_err(rtwdev, "failed to request pci regions\n"); return ret; } #if defined(__FreeBSD__) ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { rtw_err(rtwdev, "failed to set dma mask to 32-bit\n"); goto err_release_regions; } ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n"); goto err_release_regions; } #endif len = pci_resource_len(pdev, bar_id); #if defined(__FreeBSD__) linuxkpi_pcim_want_to_use_bus_functions(pdev); #endif rtwpci->mmap = pci_iomap(pdev, bar_id, len); if (!rtwpci->mmap) { pci_release_regions(pdev); rtw_err(rtwdev, "failed to map pci memory\n"); return -ENOMEM; } return 0; #if defined(__FreeBSD__) err_release_regions: pci_release_regions(pdev); return ret; #endif } static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev, struct pci_dev *pdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; if (rtwpci->mmap) { pci_iounmap(pdev, rtwpci->mmap); pci_release_regions(pdev); } } static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data) { u16 write_addr; u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK); u8 flag; u8 cnt; write_addr = addr & BITS_DBI_ADDR_MASK; write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN); rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data); rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr); rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16); for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); if (flag == 0) return; udelay(10); } WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr); } static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value) { u16 read_addr = addr & BITS_DBI_ADDR_MASK; u8 flag; u8 cnt; rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr); rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16); for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); if (flag == 0) { read_addr = REG_DBI_RDATA_V1 + (addr & 3); *value = rtw_read8(rtwdev, read_addr); return 0; } udelay(10); } WARN(1, "failed to read DBI register, addr=0x%04x\n", addr); return -EIO; } static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1) { u8 page; u8 wflag; u8 cnt; rtw_write16(rtwdev, REG_MDIO_V1, data); page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1; page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2; rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK); rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page); rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1); for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1); if (wflag == 0) return; udelay(10); } WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr); } static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable) { u8 value; int ret; if (rtw_pci_disable_aspm) return; ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); if (ret) { rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); return; } if (enable) value |= BIT_CLKREQ_SW_EN; else value &= ~BIT_CLKREQ_SW_EN; rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); } static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable) { u8 value; int ret; ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); if (ret) { rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); return; } if (enable) value &= ~BIT_CLKREQ_N_PAD; else value |= BIT_CLKREQ_N_PAD; rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); } static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable) { u8 value; int ret; if (rtw_pci_disable_aspm) return; ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); if (ret) { rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret); return; } if (enable) value |= BIT_L1_SW_EN; else value &= ~BIT_L1_SW_EN; rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); } static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; /* Like CLKREQ, ASPM is also implemented by two HW modules, and can * only be enabled when host supports it. * * And ASPM mechanism should be enabled when driver/firmware enters * power save mode, without having heavy traffic. Because we've * experienced some inter-operability issues that the link tends * to enter L1 state on the fly even when driver is having high * throughput. This is probably because the ASPM behavior slightly * varies from different SOC. */ if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)) return; if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) || (!enter && atomic_inc_return(&rtwpci->link_usage) == 1)) rtw_pci_aspm_set(rtwdev, enter); } static void rtw_pci_link_cfg(struct rtw_dev *rtwdev) { struct rtw_chip_info *chip = rtwdev->chip; struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct pci_dev *pdev = rtwpci->pdev; u16 link_ctrl; int ret; /* RTL8822CE has enabled REFCLK auto calibration, it does not need * to add clock delay to cover the REFCLK timing gap. */ if (chip->id == RTW_CHIP_TYPE_8822C) rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0); /* Though there is standard PCIE configuration space to set the * link control register, but by Realtek's design, driver should * check if host supports CLKREQ/ASPM to enable the HW module. * * These functions are implemented by two HW modules associated, * one is responsible to access PCIE configuration space to * follow the host settings, and another is in charge of doing * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes * the host does not support it, and due to some reasons or wrong * settings (ex. CLKREQ# not Bi-Direction), it could lead to device * loss if HW misbehaves on the link. * * Hence it's designed that driver should first check the PCIE * configuration space is sync'ed and enabled, then driver can turn * on the other module that is actually working on the mechanism. */ ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); if (ret) { rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); return; } if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) rtw_pci_clkreq_set(rtwdev, true); rtwpci->link_ctrl = link_ctrl; } static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev) { struct rtw_chip_info *chip = rtwdev->chip; switch (chip->id) { case RTW_CHIP_TYPE_8822C: if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D) rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG, BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1); break; default: break; } } static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; struct rtw_chip_info *chip = rtwdev->chip; struct pci_dev *pdev = rtwpci->pdev; const struct rtw_intf_phy_para *para; u16 cut; u16 value; u16 offset; int i; int ret; cut = BIT(0) << rtwdev->hal.cut_version; for (i = 0; i < chip->intf_table->n_gen1_para; i++) { para = &chip->intf_table->gen1_para[i]; if (!(para->cut_mask & cut)) continue; if (para->offset == 0xffff) break; offset = para->offset; value = para->value; if (para->ip_sel == RTW_IP_SEL_PHY) rtw_mdio_write(rtwdev, offset, value, true); else rtw_dbi_write8(rtwdev, offset, value); } for (i = 0; i < chip->intf_table->n_gen2_para; i++) { para = &chip->intf_table->gen2_para[i]; if (!(para->cut_mask & cut)) continue; if (para->offset == 0xffff) break; offset = para->offset; value = para->value; if (para->ip_sel == RTW_IP_SEL_PHY) rtw_mdio_write(rtwdev, offset, value, false); else rtw_dbi_write8(rtwdev, offset, value); } rtw_pci_link_cfg(rtwdev); /* Disable 8821ce completion timeout by default */ if (chip->id == RTW_CHIP_TYPE_8821C) { ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_COMP_TMOUT_DIS); if (ret) rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n", ret); } } static int __maybe_unused rtw_pci_suspend(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtw_dev *rtwdev = hw->priv; struct rtw_chip_info *chip = rtwdev->chip; struct rtw_efuse *efuse = &rtwdev->efuse; if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) rtw_pci_clkreq_pad_low(rtwdev, true); return 0; } static int __maybe_unused rtw_pci_resume(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtw_dev *rtwdev = hw->priv; struct rtw_chip_info *chip = rtwdev->chip; struct rtw_efuse *efuse = &rtwdev->efuse; if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) rtw_pci_clkreq_pad_low(rtwdev, false); return 0; } SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume); EXPORT_SYMBOL(rtw_pm_ops); static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev) { int ret; ret = pci_enable_device(pdev); if (ret) { rtw_err(rtwdev, "failed to enable pci device\n"); return ret; } pci_set_master(pdev); pci_set_drvdata(pdev, rtwdev->hw); SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); return 0; } static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev) { pci_clear_master(pdev); pci_disable_device(pdev); } static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev) { struct rtw_pci *rtwpci; int ret; rtwpci = (struct rtw_pci *)rtwdev->priv; rtwpci->pdev = pdev; /* after this driver can access to hw registers */ ret = rtw_pci_io_mapping(rtwdev, pdev); if (ret) { rtw_err(rtwdev, "failed to request pci io region\n"); goto err_out; } ret = rtw_pci_init(rtwdev); if (ret) { rtw_err(rtwdev, "failed to allocate pci resources\n"); goto err_io_unmap; } return 0; err_io_unmap: rtw_pci_io_unmapping(rtwdev, pdev); err_out: return ret; } static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev) { rtw_pci_deinit(rtwdev); rtw_pci_io_unmapping(rtwdev, pdev); } static struct rtw_hci_ops rtw_pci_ops = { .tx_write = rtw_pci_tx_write, .tx_kick_off = rtw_pci_tx_kick_off, .flush_queues = rtw_pci_flush_queues, .setup = rtw_pci_setup, .start = rtw_pci_start, .stop = rtw_pci_stop, .deep_ps = rtw_pci_deep_ps, .link_ps = rtw_pci_link_ps, .interface_cfg = rtw_pci_interface_cfg, .read8 = rtw_pci_read8, .read16 = rtw_pci_read16, .read32 = rtw_pci_read32, .write8 = rtw_pci_write8, .write16 = rtw_pci_write16, .write32 = rtw_pci_write32, .write_data_rsvd_page = rtw_pci_write_data_rsvd_page, .write_data_h2c = rtw_pci_write_data_h2c, }; static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) { unsigned int flags = PCI_IRQ_LEGACY; int ret; if (!rtw_disable_msi) flags |= PCI_IRQ_MSI; ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); if (ret < 0) { rtw_err(rtwdev, "failed to alloc PCI irq vectors\n"); return ret; } ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, rtw_pci_interrupt_handler, rtw_pci_interrupt_threadfn, IRQF_SHARED, KBUILD_MODNAME, rtwdev); if (ret) { rtw_err(rtwdev, "failed to request irq %d\n", ret); pci_free_irq_vectors(pdev); } return ret; } static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) { devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); pci_free_irq_vectors(pdev); } static int rtw_pci_napi_poll(struct napi_struct *napi, int budget) { struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi); struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev, priv); int work_done = 0; if (rtwpci->rx_no_aspm) rtw_pci_link_ps(rtwdev, false); while (work_done < budget) { u32 work_done_once; work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU, budget - work_done); if (work_done_once == 0) break; work_done += work_done_once; } if (work_done < budget) { napi_complete_done(napi, work_done); spin_lock_bh(&rtwpci->irq_lock); if (rtwpci->running) rtw_pci_enable_interrupt(rtwdev, rtwpci, false); spin_unlock_bh(&rtwpci->irq_lock); /* When ISR happens during polling and before napi_complete * while no further data is received. Data on the dma_ring will * not be processed immediately. Check whether dma ring is * empty and perform napi_schedule accordingly. */ if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci)) napi_schedule(napi); } if (rtwpci->rx_no_aspm) rtw_pci_link_ps(rtwdev, true); return work_done; } static void rtw_pci_napi_init(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; init_dummy_netdev(&rtwpci->netdev); netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll); } static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev) { struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; rtw_pci_napi_stop(rtwdev); netif_napi_del(&rtwpci->napi); } int rtw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct pci_dev *bridge = pci_upstream_bridge(pdev); struct ieee80211_hw *hw; struct rtw_dev *rtwdev; struct rtw_pci *rtwpci; int drv_data_size; int ret; drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci); hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); if (!hw) { dev_err(&pdev->dev, "failed to allocate hw\n"); return -ENOMEM; } rtwdev = hw->priv; rtwdev->hw = hw; rtwdev->dev = &pdev->dev; rtwdev->chip = (struct rtw_chip_info *)id->driver_data; rtwdev->hci.ops = &rtw_pci_ops; rtwdev->hci.type = RTW_HCI_TYPE_PCIE; rtwpci = (struct rtw_pci *)rtwdev->priv; atomic_set(&rtwpci->link_usage, 1); ret = rtw_core_init(rtwdev); if (ret) goto err_release_hw; rtw_dbg(rtwdev, RTW_DBG_PCI, "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n", pdev->vendor, pdev->device, pdev->revision); ret = rtw_pci_claim(rtwdev, pdev); if (ret) { rtw_err(rtwdev, "failed to claim pci device\n"); goto err_deinit_core; } ret = rtw_pci_setup_resource(rtwdev, pdev); if (ret) { rtw_err(rtwdev, "failed to setup pci resources\n"); goto err_pci_declaim; } rtw_pci_napi_init(rtwdev); ret = rtw_chip_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip information\n"); goto err_destroy_pci; } /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */ if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL) rtwpci->rx_no_aspm = true; rtw_pci_phy_cfg(rtwdev); ret = rtw_register_hw(rtwdev, hw); if (ret) { rtw_err(rtwdev, "failed to register hw\n"); goto err_destroy_pci; } ret = rtw_pci_request_irq(rtwdev, pdev); if (ret) { ieee80211_unregister_hw(hw); goto err_destroy_pci; } return 0; err_destroy_pci: rtw_pci_napi_deinit(rtwdev); rtw_pci_destroy(rtwdev, pdev); err_pci_declaim: rtw_pci_declaim(rtwdev, pdev); err_deinit_core: rtw_core_deinit(rtwdev); err_release_hw: ieee80211_free_hw(hw); return ret; } EXPORT_SYMBOL(rtw_pci_probe); void rtw_pci_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtw_dev *rtwdev; struct rtw_pci *rtwpci; if (!hw) return; rtwdev = hw->priv; rtwpci = (struct rtw_pci *)rtwdev->priv; rtw_unregister_hw(rtwdev, hw); rtw_pci_disable_interrupt(rtwdev, rtwpci); rtw_pci_napi_deinit(rtwdev); rtw_pci_destroy(rtwdev, pdev); rtw_pci_declaim(rtwdev, pdev); rtw_pci_free_irq(rtwdev, pdev); rtw_core_deinit(rtwdev); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtw_pci_remove); void rtw_pci_shutdown(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtw_dev *rtwdev; struct rtw_chip_info *chip; if (!hw) return; rtwdev = hw->priv; chip = rtwdev->chip; if (chip->ops->shutdown) chip->ops->shutdown(rtwdev); pci_set_power_state(pdev, PCI_D3hot); } EXPORT_SYMBOL(rtw_pci_shutdown); MODULE_AUTHOR("Realtek Corporation"); MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver"); MODULE_LICENSE("Dual BSD/GPL"); #if defined(__FreeBSD__) MODULE_VERSION(rtw_pci, 1); MODULE_DEPEND(rtw_pci, linuxkpi, 1, 1, 1); MODULE_DEPEND(rtw_pci, linuxkpi_wlan, 1, 1, 1); #ifdef CONFIG_RTW88_DEBUGFS MODULE_DEPEND(rtw_pci, lindebugfs, 1, 1, 1); #endif #endif