// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. */ #include #include "core.h" #include "debug.h" /* World regdom to be used in case default regd from fw is unavailable */ #define ATH11K_2GHZ_CH01_11 REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0) #define ATH11K_5GHZ_5150_5350 REG_RULE(5150 - 10, 5350 + 10, 80, 0, 30,\ NL80211_RRF_NO_IR) #define ATH11K_5GHZ_5725_5850 REG_RULE(5725 - 10, 5850 + 10, 80, 0, 30,\ NL80211_RRF_NO_IR) #define ETSI_WEATHER_RADAR_BAND_LOW 5590 #define ETSI_WEATHER_RADAR_BAND_HIGH 5650 #define ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT 600000 static const struct ieee80211_regdomain ath11k_world_regd = { .n_reg_rules = 3, .alpha2 = "00", .reg_rules = { ATH11K_2GHZ_CH01_11, ATH11K_5GHZ_5150_5350, ATH11K_5GHZ_5725_5850, } }; static bool ath11k_regdom_changes(struct ath11k *ar, char *alpha2) { const struct ieee80211_regdomain *regd; regd = rcu_dereference_rtnl(ar->hw->wiphy->regd); /* This can happen during wiphy registration where the previous * user request is received before we update the regd received * from firmware. */ if (!regd) return true; return memcmp(regd->alpha2, alpha2, 2) != 0; } static void ath11k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct wmi_init_country_params init_country_param; struct wmi_set_current_country_params set_current_param = {}; struct ath11k *ar = hw->priv; int ret; ath11k_dbg(ar->ab, ATH11K_DBG_REG, "Regulatory Notification received for %s\n", wiphy_name(wiphy)); /* Currently supporting only General User Hints. Cell base user * hints to be handled later. * Hints from other sources like Core, Beacons are not expected for * self managed wiphy's */ if (!(request->initiator == NL80211_REGDOM_SET_BY_USER && request->user_reg_hint_type == NL80211_USER_REG_HINT_USER)) { ath11k_warn(ar->ab, "Unexpected Regulatory event for this wiphy\n"); return; } if (!IS_ENABLED(CONFIG_ATH_REG_DYNAMIC_USER_REG_HINTS)) { ath11k_dbg(ar->ab, ATH11K_DBG_REG, "Country Setting is not allowed\n"); return; } if (!ath11k_regdom_changes(ar, request->alpha2)) { ath11k_dbg(ar->ab, ATH11K_DBG_REG, "Country is already set\n"); return; } /* Set the country code to the firmware and will receive * the WMI_REG_CHAN_LIST_CC EVENT for updating the * reg info */ if (ar->ab->hw_params.current_cc_support) { memcpy(&set_current_param.alpha2, request->alpha2, 2); memcpy(&ar->alpha2, &set_current_param.alpha2, 2); ret = ath11k_wmi_send_set_current_country_cmd(ar, &set_current_param); if (ret) ath11k_warn(ar->ab, "failed set current country code: %d\n", ret); } else { init_country_param.flags = ALPHA_IS_SET; memcpy(&init_country_param.cc_info.alpha2, request->alpha2, 2); init_country_param.cc_info.alpha2[2] = 0; ret = ath11k_wmi_send_init_country_cmd(ar, init_country_param); if (ret) ath11k_warn(ar->ab, "INIT Country code set to fw failed : %d\n", ret); } ath11k_mac_11d_scan_stop(ar); ar->regdom_set_by_user = true; } int ath11k_reg_update_chan_list(struct ath11k *ar, bool wait) { struct ieee80211_supported_band **bands; struct scan_chan_list_params *params; struct ieee80211_channel *channel; struct ieee80211_hw *hw = ar->hw; struct channel_param *ch; enum nl80211_band band; int num_channels = 0; int i, ret, left; if (wait && ar->state_11d != ATH11K_11D_IDLE) { left = wait_for_completion_timeout(&ar->completed_11d_scan, ATH11K_SCAN_TIMEOUT_HZ); if (!left) { ath11k_dbg(ar->ab, ATH11K_DBG_REG, "failed to receive 11d scan complete: timed out\n"); ar->state_11d = ATH11K_11D_IDLE; } ath11k_dbg(ar->ab, ATH11K_DBG_REG, "11d scan wait left time %d\n", left); } if (wait && (ar->scan.state == ATH11K_SCAN_STARTING || ar->scan.state == ATH11K_SCAN_RUNNING)) { left = wait_for_completion_timeout(&ar->scan.completed, ATH11K_SCAN_TIMEOUT_HZ); if (!left) ath11k_dbg(ar->ab, ATH11K_DBG_REG, "failed to receive hw scan complete: timed out\n"); ath11k_dbg(ar->ab, ATH11K_DBG_REG, "hw scan wait left time %d\n", left); } if (ar->state == ATH11K_STATE_RESTARTING) return 0; bands = hw->wiphy->bands; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { if (bands[band]->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; num_channels++; } } if (WARN_ON(!num_channels)) return -EINVAL; params = kzalloc(struct_size(params, ch_param, num_channels), GFP_KERNEL); if (!params) return -ENOMEM; params->pdev_id = ar->pdev->pdev_id; params->nallchans = num_channels; ch = params->ch_param; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { channel = &bands[band]->channels[i]; if (channel->flags & IEEE80211_CHAN_DISABLED) continue; /* TODO: Set to true/false based on some condition? */ ch->allow_ht = true; ch->allow_vht = true; ch->allow_he = true; ch->dfs_set = !!(channel->flags & IEEE80211_CHAN_RADAR); ch->is_chan_passive = !!(channel->flags & IEEE80211_CHAN_NO_IR); ch->is_chan_passive |= ch->dfs_set; ch->mhz = channel->center_freq; ch->cfreq1 = channel->center_freq; ch->minpower = 0; ch->maxpower = channel->max_power * 2; ch->maxregpower = channel->max_reg_power * 2; ch->antennamax = channel->max_antenna_gain * 2; /* TODO: Use appropriate phymodes */ if (channel->band == NL80211_BAND_2GHZ) ch->phy_mode = MODE_11G; else ch->phy_mode = MODE_11A; if (channel->band == NL80211_BAND_6GHZ && cfg80211_channel_is_psc(channel)) ch->psc_channel = true; ath11k_dbg(ar->ab, ATH11K_DBG_WMI, "mac channel [%d/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", i, params->nallchans, ch->mhz, ch->maxpower, ch->maxregpower, ch->antennamax, ch->phy_mode); ch++; /* TODO: use quarrter/half rate, cfreq12, dfs_cfreq2 * set_agile, reg_class_idx */ } } ret = ath11k_wmi_send_scan_chan_list_cmd(ar, params); kfree(params); return ret; } #if defined(__linux__) static void ath11k_copy_regd(struct ieee80211_regdomain *regd_orig, #elif defined(__FreeBSD__) static void ath11k_copy_regd(const struct ieee80211_regdomain *regd_orig, #endif struct ieee80211_regdomain *regd_copy) { u8 i; /* The caller should have checked error conditions */ memcpy(regd_copy, regd_orig, sizeof(*regd_orig)); for (i = 0; i < regd_orig->n_reg_rules; i++) memcpy(®d_copy->reg_rules[i], ®d_orig->reg_rules[i], sizeof(struct ieee80211_reg_rule)); } int ath11k_regd_update(struct ath11k *ar) { #if defined(__linux__) struct ieee80211_regdomain *regd, *regd_copy = NULL; #elif defined(__FreeBSD__) const struct ieee80211_regdomain *regd; struct ieee80211_regdomain *regd_copy = NULL; #endif int ret, regd_len, pdev_id; struct ath11k_base *ab; ab = ar->ab; pdev_id = ar->pdev_idx; spin_lock_bh(&ab->base_lock); /* Prefer the latest regd update over default if it's available */ if (ab->new_regd[pdev_id]) { regd = ab->new_regd[pdev_id]; } else { /* Apply the regd received during init through * WMI_REG_CHAN_LIST_CC event. In case of failure to * receive the regd, initialize with a default world * regulatory. */ if (ab->default_regd[pdev_id]) { regd = ab->default_regd[pdev_id]; } else { ath11k_warn(ab, "failed to receive default regd during init\n"); #if defined(__linux__) regd = (struct ieee80211_regdomain *)&ath11k_world_regd; #elif defined(__FreeBSD__) regd = &ath11k_world_regd; #endif } } if (!regd) { ret = -EINVAL; spin_unlock_bh(&ab->base_lock); goto err; } regd_len = sizeof(*regd) + (regd->n_reg_rules * sizeof(struct ieee80211_reg_rule)); regd_copy = kzalloc(regd_len, GFP_ATOMIC); if (regd_copy) ath11k_copy_regd(regd, regd_copy); spin_unlock_bh(&ab->base_lock); if (!regd_copy) { ret = -ENOMEM; goto err; } ret = regulatory_set_wiphy_regd(ar->hw->wiphy, regd_copy); kfree(regd_copy); if (ret) goto err; if (ar->state == ATH11K_STATE_ON) { ret = ath11k_reg_update_chan_list(ar, true); if (ret) goto err; } return 0; err: ath11k_warn(ab, "failed to perform regd update : %d\n", ret); return ret; } static enum nl80211_dfs_regions ath11k_map_fw_dfs_region(enum ath11k_dfs_region dfs_region) { switch (dfs_region) { case ATH11K_DFS_REG_FCC: case ATH11K_DFS_REG_CN: return NL80211_DFS_FCC; case ATH11K_DFS_REG_ETSI: case ATH11K_DFS_REG_KR: return NL80211_DFS_ETSI; case ATH11K_DFS_REG_MKK: case ATH11K_DFS_REG_MKK_N: return NL80211_DFS_JP; default: return NL80211_DFS_UNSET; } } static u32 ath11k_map_fw_reg_flags(u16 reg_flags) { u32 flags = 0; if (reg_flags & REGULATORY_CHAN_NO_IR) flags = NL80211_RRF_NO_IR; if (reg_flags & REGULATORY_CHAN_RADAR) flags |= NL80211_RRF_DFS; if (reg_flags & REGULATORY_CHAN_NO_OFDM) flags |= NL80211_RRF_NO_OFDM; if (reg_flags & REGULATORY_CHAN_INDOOR_ONLY) flags |= NL80211_RRF_NO_OUTDOOR; if (reg_flags & REGULATORY_CHAN_NO_HT40) flags |= NL80211_RRF_NO_HT40; if (reg_flags & REGULATORY_CHAN_NO_80MHZ) flags |= NL80211_RRF_NO_80MHZ; if (reg_flags & REGULATORY_CHAN_NO_160MHZ) flags |= NL80211_RRF_NO_160MHZ; return flags; } static bool ath11k_reg_can_intersect(struct ieee80211_reg_rule *rule1, struct ieee80211_reg_rule *rule2) { u32 start_freq1, end_freq1; u32 start_freq2, end_freq2; start_freq1 = rule1->freq_range.start_freq_khz; start_freq2 = rule2->freq_range.start_freq_khz; end_freq1 = rule1->freq_range.end_freq_khz; end_freq2 = rule2->freq_range.end_freq_khz; if ((start_freq1 >= start_freq2 && start_freq1 < end_freq2) || (start_freq2 > start_freq1 && start_freq2 < end_freq1)) return true; /* TODO: Should we restrict intersection feasibility * based on min bandwidth of the intersected region also, * say the intersected rule should have a min bandwidth * of 20MHz? */ return false; } static void ath11k_reg_intersect_rules(struct ieee80211_reg_rule *rule1, struct ieee80211_reg_rule *rule2, struct ieee80211_reg_rule *new_rule) { u32 start_freq1, end_freq1; u32 start_freq2, end_freq2; u32 freq_diff, max_bw; start_freq1 = rule1->freq_range.start_freq_khz; start_freq2 = rule2->freq_range.start_freq_khz; end_freq1 = rule1->freq_range.end_freq_khz; end_freq2 = rule2->freq_range.end_freq_khz; new_rule->freq_range.start_freq_khz = max_t(u32, start_freq1, start_freq2); new_rule->freq_range.end_freq_khz = min_t(u32, end_freq1, end_freq2); freq_diff = new_rule->freq_range.end_freq_khz - new_rule->freq_range.start_freq_khz; max_bw = min_t(u32, rule1->freq_range.max_bandwidth_khz, rule2->freq_range.max_bandwidth_khz); new_rule->freq_range.max_bandwidth_khz = min_t(u32, max_bw, freq_diff); new_rule->power_rule.max_antenna_gain = min_t(u32, rule1->power_rule.max_antenna_gain, rule2->power_rule.max_antenna_gain); new_rule->power_rule.max_eirp = min_t(u32, rule1->power_rule.max_eirp, rule2->power_rule.max_eirp); /* Use the flags of both the rules */ new_rule->flags = rule1->flags | rule2->flags; /* To be safe, lts use the max cac timeout of both rules */ new_rule->dfs_cac_ms = max_t(u32, rule1->dfs_cac_ms, rule2->dfs_cac_ms); } static struct ieee80211_regdomain * ath11k_regd_intersect(struct ieee80211_regdomain *default_regd, struct ieee80211_regdomain *curr_regd) { u8 num_old_regd_rules, num_curr_regd_rules, num_new_regd_rules; struct ieee80211_reg_rule *old_rule, *curr_rule, *new_rule; struct ieee80211_regdomain *new_regd = NULL; u8 i, j, k; num_old_regd_rules = default_regd->n_reg_rules; num_curr_regd_rules = curr_regd->n_reg_rules; num_new_regd_rules = 0; /* Find the number of intersecting rules to allocate new regd memory */ for (i = 0; i < num_old_regd_rules; i++) { old_rule = default_regd->reg_rules + i; for (j = 0; j < num_curr_regd_rules; j++) { curr_rule = curr_regd->reg_rules + j; if (ath11k_reg_can_intersect(old_rule, curr_rule)) num_new_regd_rules++; } } if (!num_new_regd_rules) return NULL; new_regd = kzalloc(sizeof(*new_regd) + (num_new_regd_rules * sizeof(struct ieee80211_reg_rule)), GFP_ATOMIC); if (!new_regd) return NULL; /* We set the new country and dfs region directly and only trim * the freq, power, antenna gain by intersecting with the * default regdomain. Also MAX of the dfs cac timeout is selected. */ new_regd->n_reg_rules = num_new_regd_rules; memcpy(new_regd->alpha2, curr_regd->alpha2, sizeof(new_regd->alpha2)); new_regd->dfs_region = curr_regd->dfs_region; new_rule = new_regd->reg_rules; for (i = 0, k = 0; i < num_old_regd_rules; i++) { old_rule = default_regd->reg_rules + i; for (j = 0; j < num_curr_regd_rules; j++) { curr_rule = curr_regd->reg_rules + j; if (ath11k_reg_can_intersect(old_rule, curr_rule)) ath11k_reg_intersect_rules(old_rule, curr_rule, (new_rule + k++)); } } return new_regd; } static const char * ath11k_reg_get_regdom_str(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_FCC: return "FCC"; case NL80211_DFS_ETSI: return "ETSI"; case NL80211_DFS_JP: return "JP"; default: return "UNSET"; } } static u16 ath11k_reg_adjust_bw(u16 start_freq, u16 end_freq, u16 max_bw) { u16 bw; if (end_freq <= start_freq) return 0; bw = end_freq - start_freq; bw = min_t(u16, bw, max_bw); if (bw >= 80 && bw < 160) bw = 80; else if (bw >= 40 && bw < 80) bw = 40; else if (bw >= 20 && bw < 40) bw = 20; else bw = 0; return bw; } static void ath11k_reg_update_rule(struct ieee80211_reg_rule *reg_rule, u32 start_freq, u32 end_freq, u32 bw, u32 ant_gain, u32 reg_pwr, u32 reg_flags) { reg_rule->freq_range.start_freq_khz = MHZ_TO_KHZ(start_freq); reg_rule->freq_range.end_freq_khz = MHZ_TO_KHZ(end_freq); reg_rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(bw); reg_rule->power_rule.max_antenna_gain = DBI_TO_MBI(ant_gain); reg_rule->power_rule.max_eirp = DBM_TO_MBM(reg_pwr); reg_rule->flags = reg_flags; } static void ath11k_reg_update_weather_radar_band(struct ath11k_base *ab, struct ieee80211_regdomain *regd, struct cur_reg_rule *reg_rule, u8 *rule_idx, u32 flags, u16 max_bw) { u32 start_freq; u32 end_freq; u16 bw; u8 i; i = *rule_idx; /* there might be situations when even the input rule must be dropped */ i--; /* frequencies below weather radar */ bw = ath11k_reg_adjust_bw(reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, max_bw); if (bw > 0) { i++; ath11k_reg_update_rule(regd->reg_rules + i, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, bw, reg_rule->ant_gain, reg_rule->reg_power, flags); ath11k_dbg(ab, ATH11K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); } /* weather radar frequencies */ start_freq = max_t(u32, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW); end_freq = min_t(u32, reg_rule->end_freq, ETSI_WEATHER_RADAR_BAND_HIGH); bw = ath11k_reg_adjust_bw(start_freq, end_freq, max_bw); if (bw > 0) { i++; ath11k_reg_update_rule(regd->reg_rules + i, start_freq, end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, flags); regd->reg_rules[i].dfs_cac_ms = ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT; ath11k_dbg(ab, ATH11K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, start_freq, end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); } /* frequencies above weather radar */ bw = ath11k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, max_bw); if (bw > 0) { i++; ath11k_reg_update_rule(regd->reg_rules + i, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, flags); ath11k_dbg(ab, ATH11K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); } *rule_idx = i; } struct ieee80211_regdomain * ath11k_reg_build_regd(struct ath11k_base *ab, struct cur_regulatory_info *reg_info, bool intersect) { struct ieee80211_regdomain *tmp_regd, *default_regd, *new_regd = NULL; struct cur_reg_rule *reg_rule; u8 i = 0, j = 0, k = 0; u8 num_rules; u16 max_bw; u32 flags; char alpha2[3]; num_rules = reg_info->num_5ghz_reg_rules + reg_info->num_2ghz_reg_rules; /* FIXME: Currently taking reg rules for 6 GHz only from Indoor AP mode list. * This can be updated after complete 6 GHz regulatory support is added. */ if (reg_info->is_ext_reg_event) num_rules += reg_info->num_6ghz_rules_ap[WMI_REG_INDOOR_AP]; if (!num_rules) goto ret; /* Add max additional rules to accommodate weather radar band */ if (reg_info->dfs_region == ATH11K_DFS_REG_ETSI) num_rules += 2; tmp_regd = kzalloc(sizeof(*tmp_regd) + (num_rules * sizeof(struct ieee80211_reg_rule)), GFP_ATOMIC); if (!tmp_regd) goto ret; memcpy(tmp_regd->alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1); memcpy(alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1); alpha2[2] = '\0'; tmp_regd->dfs_region = ath11k_map_fw_dfs_region(reg_info->dfs_region); ath11k_dbg(ab, ATH11K_DBG_REG, "Country %s, CFG Regdomain %s FW Regdomain %d, num_reg_rules %d\n", alpha2, ath11k_reg_get_regdom_str(tmp_regd->dfs_region), reg_info->dfs_region, num_rules); /* Update reg_rules[] below. Firmware is expected to * send these rules in order(2 GHz rules first and then 5 GHz) */ for (; i < num_rules; i++) { if (reg_info->num_2ghz_reg_rules && (i < reg_info->num_2ghz_reg_rules)) { reg_rule = reg_info->reg_rules_2ghz_ptr + i; max_bw = min_t(u16, reg_rule->max_bw, reg_info->max_bw_2ghz); flags = 0; } else if (reg_info->num_5ghz_reg_rules && (j < reg_info->num_5ghz_reg_rules)) { reg_rule = reg_info->reg_rules_5ghz_ptr + j++; max_bw = min_t(u16, reg_rule->max_bw, reg_info->max_bw_5ghz); /* FW doesn't pass NL80211_RRF_AUTO_BW flag for * BW Auto correction, we can enable this by default * for all 5G rules here. The regulatory core performs * BW correction if required and applies flags as * per other BW rule flags we pass from here */ flags = NL80211_RRF_AUTO_BW; } else if (reg_info->is_ext_reg_event && reg_info->num_6ghz_rules_ap[WMI_REG_INDOOR_AP] && (k < reg_info->num_6ghz_rules_ap[WMI_REG_INDOOR_AP])) { reg_rule = reg_info->reg_rules_6ghz_ap_ptr[WMI_REG_INDOOR_AP] + k++; max_bw = min_t(u16, reg_rule->max_bw, reg_info->max_bw_6ghz_ap[WMI_REG_INDOOR_AP]); flags = NL80211_RRF_AUTO_BW; } else { break; } flags |= ath11k_map_fw_reg_flags(reg_rule->flags); ath11k_reg_update_rule(tmp_regd->reg_rules + i, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, flags); /* Update dfs cac timeout if the dfs domain is ETSI and the * new rule covers weather radar band. * Default value of '0' corresponds to 60s timeout, so no * need to update that for other rules. */ if (flags & NL80211_RRF_DFS && reg_info->dfs_region == ATH11K_DFS_REG_ETSI && (reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_LOW && reg_rule->start_freq < ETSI_WEATHER_RADAR_BAND_HIGH)){ ath11k_reg_update_weather_radar_band(ab, tmp_regd, reg_rule, &i, flags, max_bw); continue; } if (reg_info->is_ext_reg_event) { ath11k_dbg(ab, ATH11K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d) (%d, %d)\n", i + 1, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, tmp_regd->reg_rules[i].dfs_cac_ms, flags, reg_rule->psd_flag, reg_rule->psd_eirp); } else { ath11k_dbg(ab, ATH11K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, tmp_regd->reg_rules[i].dfs_cac_ms, flags); } } tmp_regd->n_reg_rules = i; if (intersect) { default_regd = ab->default_regd[reg_info->phy_id]; /* Get a new regd by intersecting the received regd with * our default regd. */ new_regd = ath11k_regd_intersect(default_regd, tmp_regd); kfree(tmp_regd); if (!new_regd) { ath11k_warn(ab, "Unable to create intersected regdomain\n"); goto ret; } } else { new_regd = tmp_regd; } ret: return new_regd; } void ath11k_regd_update_work(struct work_struct *work) { struct ath11k *ar = container_of(work, struct ath11k, regd_update_work); int ret; ret = ath11k_regd_update(ar); if (ret) { /* Firmware has already moved to the new regd. We need * to maintain channel consistency across FW, Host driver * and userspace. Hence as a fallback mechanism we can set * the prev or default country code to the firmware. */ /* TODO: Implement Fallback Mechanism */ } } void ath11k_reg_init(struct ath11k *ar) { ar->hw->wiphy->regulatory_flags = REGULATORY_WIPHY_SELF_MANAGED; ar->hw->wiphy->reg_notifier = ath11k_reg_notifier; } void ath11k_reg_free(struct ath11k_base *ab) { int i; for (i = 0; i < ab->hw_params.max_radios; i++) { kfree(ab->default_regd[i]); kfree(ab->new_regd[i]); } }