/****************************************************************************** * * Module Name: exregion - ACPI default OpRegion (address space) handlers * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2024, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exregion") /******************************************************************************* * * FUNCTION: AcpiExSystemMemorySpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the System Memory address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExSystemMemorySpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; void *LogicalAddrPtr = NULL; ACPI_MEM_SPACE_CONTEXT *MemInfo = RegionContext; ACPI_MEM_MAPPING *Mm = MemInfo->CurMm; UINT32 Length; ACPI_SIZE MapLength; #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED UINT32 Remainder; #endif ACPI_FUNCTION_TRACE (ExSystemMemorySpaceHandler); /* Validate and translate the bit width */ switch (BitWidth) { case 8: Length = 1; break; case 16: Length = 2; break; case 32: Length = 4; break; case 64: Length = 8; break; default: ACPI_ERROR ((AE_INFO, "Invalid SystemMemory width %u", BitWidth)); return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED /* * Hardware does not support non-aligned data transfers, we must verify * the request. */ (void) AcpiUtShortDivide ((UINT64) Address, Length, NULL, &Remainder); if (Remainder != 0) { return_ACPI_STATUS (AE_AML_ALIGNMENT); } #endif /* * Does the request fit into the cached memory mapping? * Is 1) Address below the current mapping? OR * 2) Address beyond the current mapping? */ if (!Mm || (Address < Mm->PhysicalAddress) || ((UINT64) Address + Length > (UINT64) Mm->PhysicalAddress + Mm->Length)) { /* * The request cannot be resolved by the current memory mapping. * * Look for an existing saved mapping covering the address range * at hand. If found, save it as the current one and carry out * the access. */ for (Mm = MemInfo->FirstMm; Mm; Mm = Mm->NextMm) { if (Mm == MemInfo->CurMm) { continue; } if (Address < Mm->PhysicalAddress) { continue; } if ((UINT64) Address + Length > (UINT64) Mm->PhysicalAddress + Mm->Length) { continue; } MemInfo->CurMm = Mm; goto access; } /* Create a new mappings list entry */ Mm = ACPI_ALLOCATE_ZEROED(sizeof(*Mm)); if (!Mm) { ACPI_ERROR((AE_INFO, "Unable to save memory mapping at 0x%8.8X%8.8X, size %u", ACPI_FORMAT_UINT64(Address), Length)); return_ACPI_STATUS(AE_NO_MEMORY); } /* * October 2009: Attempt to map from the requested address to the * end of the region. However, we will never map more than one * page, nor will we cross a page boundary. */ MapLength = (ACPI_SIZE) ((MemInfo->Address + MemInfo->Length) - Address); if (MapLength > ACPI_DEFAULT_PAGE_SIZE) { MapLength = ACPI_DEFAULT_PAGE_SIZE; } /* Create a new mapping starting at the address given */ LogicalAddrPtr = AcpiOsMapMemory(Address, MapLength); if (!LogicalAddrPtr) { ACPI_ERROR ((AE_INFO, "Could not map memory at 0x%8.8X%8.8X, size %u", ACPI_FORMAT_UINT64 (Address), (UINT32) MapLength)); ACPI_FREE(Mm); return_ACPI_STATUS (AE_NO_MEMORY); } /* Save the physical address and mapping size */ Mm->LogicalAddress = LogicalAddrPtr; Mm->PhysicalAddress = Address; Mm->Length = MapLength; /* * Add the new entry to the mappigs list and save it as the * current mapping. */ Mm->NextMm = MemInfo->FirstMm; MemInfo->FirstMm = Mm; MemInfo->CurMm = Mm; } access: /* * Generate a logical pointer corresponding to the address we want to * access */ LogicalAddrPtr = Mm->LogicalAddress + ((UINT64) Address - (UINT64) Mm->PhysicalAddress); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "System-Memory (width %u) R/W %u Address=%8.8X%8.8X\n", BitWidth, Function, ACPI_FORMAT_UINT64 (Address))); /* * Perform the memory read or write * * Note: For machines that do not support non-aligned transfers, the target * address was checked for alignment above. We do not attempt to break the * transfer up into smaller (byte-size) chunks because the AML specifically * asked for a transfer width that the hardware may require. */ switch (Function) { case ACPI_READ: *Value = 0; switch (BitWidth) { case 8: *Value = (UINT64) ACPI_GET8 (LogicalAddrPtr); break; case 16: *Value = (UINT64) ACPI_GET16 (LogicalAddrPtr); break; case 32: *Value = (UINT64) ACPI_GET32 (LogicalAddrPtr); break; case 64: *Value = (UINT64) ACPI_GET64 (LogicalAddrPtr); break; default: /* BitWidth was already validated */ break; } break; case ACPI_WRITE: switch (BitWidth) { case 8: ACPI_SET8 (LogicalAddrPtr, *Value); break; case 16: ACPI_SET16 (LogicalAddrPtr, *Value); break; case 32: ACPI_SET32 (LogicalAddrPtr, *Value); break; case 64: ACPI_SET64 (LogicalAddrPtr, *Value); break; default: /* BitWidth was already validated */ break; } break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExSystemIoSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the System IO address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExSystemIoSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; UINT32 Value32; ACPI_FUNCTION_TRACE (ExSystemIoSpaceHandler); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "System-IO (width %u) R/W %u Address=%8.8X%8.8X\n", BitWidth, Function, ACPI_FORMAT_UINT64 (Address))); /* Decode the function parameter */ switch (Function) { case ACPI_READ: Status = AcpiHwReadPort ((ACPI_IO_ADDRESS) Address, &Value32, BitWidth); *Value = Value32; break; case ACPI_WRITE: Status = AcpiHwWritePort ((ACPI_IO_ADDRESS) Address, (UINT32) *Value, BitWidth); break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExPciConfigSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the PCI Config address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExPciConfigSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_PCI_ID *PciId; UINT16 PciRegister; ACPI_FUNCTION_TRACE (ExPciConfigSpaceHandler); /* * The arguments to AcpiOs(Read|Write)PciConfiguration are: * * PciSegment is the PCI bus segment range 0-31 * PciBus is the PCI bus number range 0-255 * PciDevice is the PCI device number range 0-31 * PciFunction is the PCI device function number * PciRegister is the Config space register range 0-255 bytes * * Value - input value for write, output address for read * */ PciId = (ACPI_PCI_ID *) RegionContext; PciRegister = (UINT16) (UINT32) Address; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Pci-Config %u (%u) Seg(%04x) Bus(%04x) " "Dev(%04x) Func(%04x) Reg(%04x)\n", Function, BitWidth, PciId->Segment, PciId->Bus, PciId->Device, PciId->Function, PciRegister)); switch (Function) { case ACPI_READ: *Value = 0; Status = AcpiOsReadPciConfiguration ( PciId, PciRegister, Value, BitWidth); break; case ACPI_WRITE: Status = AcpiOsWritePciConfiguration ( PciId, PciRegister, *Value, BitWidth); break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExCmosSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the CMOS address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExCmosSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExCmosSpaceHandler); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExPciBarSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the PCI BarTarget address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExPciBarSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExPciBarSpaceHandler); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDataTableSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the Data Table address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExDataTableSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_DATA_TABLE_MAPPING *Mapping; char *Pointer; ACPI_FUNCTION_TRACE (ExDataTableSpaceHandler); Mapping = (ACPI_DATA_TABLE_MAPPING *) RegionContext; Pointer = ACPI_CAST_PTR (char, Mapping->Pointer) + (Address - ACPI_PTR_TO_PHYSADDR (Mapping->Pointer)); /* * Perform the memory read or write. The BitWidth was already * validated. */ switch (Function) { case ACPI_READ: memcpy (ACPI_CAST_PTR (char, Value), Pointer, ACPI_DIV_8 (BitWidth)); break; case ACPI_WRITE: memcpy (Pointer, ACPI_CAST_PTR (char, Value), ACPI_DIV_8 (BitWidth)); break; default: return_ACPI_STATUS (AE_BAD_PARAMETER); } return_ACPI_STATUS (AE_OK); }