/****************************************************************************** * * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2021, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exmisc") /******************************************************************************* * * FUNCTION: AcpiExGetObjectReference * * PARAMETERS: ObjDesc - Create a reference to this object * ReturnDesc - Where to store the reference * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Obtain and return a "reference" to the target object * Common code for the RefOfOp and the CondRefOfOp. * ******************************************************************************/ ACPI_STATUS AcpiExGetObjectReference ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ReferenceObj; ACPI_OPERAND_OBJECT *ReferencedObj; ACPI_FUNCTION_TRACE_PTR (ExGetObjectReference, ObjDesc); *ReturnDesc = NULL; switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)) { case ACPI_DESC_TYPE_OPERAND: if (ObjDesc->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Must be a reference to a Local or Arg */ switch (ObjDesc->Reference.Class) { case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_ARG: case ACPI_REFCLASS_DEBUG: /* The referenced object is the pseudo-node for the local/arg */ ReferencedObj = ObjDesc->Reference.Object; break; default: ACPI_ERROR ((AE_INFO, "Invalid Reference Class 0x%2.2X", ObjDesc->Reference.Class)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } break; case ACPI_DESC_TYPE_NAMED: /* * A named reference that has already been resolved to a Node */ ReferencedObj = ObjDesc; break; default: ACPI_ERROR ((AE_INFO, "Invalid descriptor type 0x%X", ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))); return_ACPI_STATUS (AE_TYPE); } /* Create a new reference object */ ReferenceObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!ReferenceObj) { return_ACPI_STATUS (AE_NO_MEMORY); } ReferenceObj->Reference.Class = ACPI_REFCLASS_REFOF; ReferenceObj->Reference.Object = ReferencedObj; *ReturnDesc = ReferenceObj; ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Object %p Type [%s], returning Reference %p\n", ObjDesc, AcpiUtGetObjectTypeName (ObjDesc), *ReturnDesc)); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExDoMathOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * * RETURN: Integer result of the operation * * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the * math functions here is to prevent a lot of pointer dereferencing * to obtain the operands. * ******************************************************************************/ UINT64 AcpiExDoMathOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1) { ACPI_FUNCTION_ENTRY (); switch (Opcode) { case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */ return (Integer0 + Integer1); case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */ return (Integer0 & Integer1); case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */ return (~(Integer0 & Integer1)); case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */ return (Integer0 | Integer1); case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */ return (~(Integer0 | Integer1)); case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */ return (Integer0 ^ Integer1); case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */ return (Integer0 * Integer1); case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result)*/ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 << Integer1); case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result) */ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 >> Integer1); case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */ return (Integer0 - Integer1); default: return (0); } } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalNumericOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric * operators (LAnd and LOr), both operands must be integers. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Integer0 && Integer1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalNumericOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1, BOOLEAN *LogicalResult) { ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; ACPI_FUNCTION_TRACE (ExDoLogicalNumericOp); switch (Opcode) { case AML_LOGICAL_AND_OP: /* LAnd (Integer0, Integer1) */ if (Integer0 && Integer1) { LocalResult = TRUE; } break; case AML_LOGICAL_OR_OP: /* LOr (Integer0, Integer1) */ if (Integer0 || Integer1) { LocalResult = TRUE; } break; default: ACPI_ERROR ((AE_INFO, "Invalid numeric logical opcode: %X", Opcode)); Status = AE_AML_INTERNAL; break; } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalOp * * PARAMETERS: Opcode - AML opcode * Operand0 - operand #0 * Operand1 - operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the * functions here is to prevent a lot of pointer dereferencing * to obtain the operands and to simplify the generation of the * logical value. For the Numeric operators (LAnd and LOr), both * operands must be integers. For the other logical operators, * operands can be any combination of Integer/String/Buffer. The * first operand determines the type to which the second operand * will be converted. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Operand0 == Operand1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalOp ( UINT16 Opcode, ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, BOOLEAN *LogicalResult) { ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1; UINT64 Integer0; UINT64 Integer1; UINT32 Length0; UINT32 Length1; ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; int Compare; ACPI_FUNCTION_TRACE (ExDoLogicalOp); /* * Convert the second operand if necessary. The first operand * determines the type of the second operand, (See the Data Types * section of the ACPI 3.0+ specification.) Both object types are * guaranteed to be either Integer/String/Buffer by the operand * resolution mechanism. */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERSION); break; case ACPI_TYPE_STRING: Status = AcpiExConvertToString ( Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1); break; default: ACPI_ERROR ((AE_INFO, "Invalid object type for logical operator: %X", Operand0->Common.Type)); Status = AE_AML_INTERNAL; break; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Two cases: 1) Both Integers, 2) Both Strings or Buffers */ if (Operand0->Common.Type == ACPI_TYPE_INTEGER) { /* * 1) Both operands are of type integer * Note: LocalOperand1 may have changed above */ Integer0 = Operand0->Integer.Value; Integer1 = LocalOperand1->Integer.Value; switch (Opcode) { case AML_LOGICAL_EQUAL_OP: /* LEqual (Operand0, Operand1) */ if (Integer0 == Integer1) { LocalResult = TRUE; } break; case AML_LOGICAL_GREATER_OP: /* LGreater (Operand0, Operand1) */ if (Integer0 > Integer1) { LocalResult = TRUE; } break; case AML_LOGICAL_LESS_OP: /* LLess (Operand0, Operand1) */ if (Integer0 < Integer1) { LocalResult = TRUE; } break; default: ACPI_ERROR ((AE_INFO, "Invalid comparison opcode: %X", Opcode)); Status = AE_AML_INTERNAL; break; } } else { /* * 2) Both operands are Strings or both are Buffers * Note: Code below takes advantage of common Buffer/String * object fields. LocalOperand1 may have changed above. Use * memcmp to handle nulls in buffers. */ Length0 = Operand0->Buffer.Length; Length1 = LocalOperand1->Buffer.Length; /* Lexicographic compare: compare the data bytes */ Compare = memcmp (Operand0->Buffer.Pointer, LocalOperand1->Buffer.Pointer, (Length0 > Length1) ? Length1 : Length0); switch (Opcode) { case AML_LOGICAL_EQUAL_OP: /* LEqual (Operand0, Operand1) */ /* Length and all bytes must be equal */ if ((Length0 == Length1) && (Compare == 0)) { /* Length and all bytes match ==> TRUE */ LocalResult = TRUE; } break; case AML_LOGICAL_GREATER_OP: /* LGreater (Operand0, Operand1) */ if (Compare > 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } if (Compare < 0) { goto Cleanup; /* FALSE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 > Length1) { LocalResult = TRUE; } break; case AML_LOGICAL_LESS_OP: /* LLess (Operand0, Operand1) */ if (Compare > 0) { goto Cleanup; /* FALSE */ } if (Compare < 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 < Length1) { LocalResult = TRUE; } break; default: ACPI_ERROR ((AE_INFO, "Invalid comparison opcode: %X", Opcode)); Status = AE_AML_INTERNAL; break; } } Cleanup: /* New object was created if implicit conversion performed - delete */ if (LocalOperand1 != Operand1) { AcpiUtRemoveReference (LocalOperand1); } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); }