/* * Copyright 2011-2015 Samy Al Bahra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef CK_EPOCH_H #define CK_EPOCH_H /* * The implementation here is inspired from the work described in: * Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University * of Cambridge Computing Laboratory. */ #include <ck_cc.h> #include <ck_md.h> #include <ck_pr.h> #include <ck_stack.h> #include <ck_stdbool.h> #ifndef CK_EPOCH_LENGTH #define CK_EPOCH_LENGTH 4 #endif /* * This is used for sense detection with-respect to concurrent * epoch sections. */ #define CK_EPOCH_SENSE (2) struct ck_epoch_entry; typedef struct ck_epoch_entry ck_epoch_entry_t; typedef void ck_epoch_cb_t(ck_epoch_entry_t *); /* * This should be embedded into objects you wish to be the target of * ck_epoch_cb_t functions (with ck_epoch_call). */ struct ck_epoch_entry { ck_epoch_cb_t *function; ck_stack_entry_t stack_entry; }; /* * A section object may be passed to every begin-end pair to allow for * forward progress guarantees with-in prolonged active sections. */ struct ck_epoch_section { unsigned int bucket; }; typedef struct ck_epoch_section ck_epoch_section_t; /* * Return pointer to ck_epoch_entry container object. */ #define CK_EPOCH_CONTAINER(T, M, N) \ CK_CC_CONTAINER(struct ck_epoch_entry, T, M, N) struct ck_epoch_ref { unsigned int epoch; unsigned int count; }; struct ck_epoch_record { ck_stack_entry_t record_next; struct ck_epoch *global; unsigned int state; unsigned int epoch; unsigned int active; struct { struct ck_epoch_ref bucket[CK_EPOCH_SENSE]; } local CK_CC_CACHELINE; unsigned int n_pending; unsigned int n_peak; unsigned int n_dispatch; void *ct; ck_stack_t pending[CK_EPOCH_LENGTH]; } CK_CC_CACHELINE; typedef struct ck_epoch_record ck_epoch_record_t; struct ck_epoch { unsigned int epoch; unsigned int n_free; ck_stack_t records; }; typedef struct ck_epoch ck_epoch_t; /* * Internal functions. */ void _ck_epoch_addref(ck_epoch_record_t *, ck_epoch_section_t *); bool _ck_epoch_delref(ck_epoch_record_t *, ck_epoch_section_t *); CK_CC_FORCE_INLINE static void * ck_epoch_record_ct(const ck_epoch_record_t *record) { return ck_pr_load_ptr(&record->ct); } /* * Marks the beginning of an epoch-protected section. */ CK_CC_FORCE_INLINE static void ck_epoch_begin(ck_epoch_record_t *record, ck_epoch_section_t *section) { struct ck_epoch *epoch = record->global; /* * Only observe new epoch if thread is not recursing into a read * section. */ if (record->active == 0) { unsigned int g_epoch; /* * It is possible for loads to be re-ordered before the store * is committed into the caller's epoch and active fields. * For this reason, store to load serialization is necessary. */ #if defined(CK_MD_TSO) ck_pr_fas_uint(&record->active, 1); ck_pr_fence_atomic_load(); #else ck_pr_store_uint(&record->active, 1); ck_pr_fence_memory(); #endif /* * This load is allowed to be re-ordered prior to setting * active flag due to monotonic nature of the global epoch. * However, stale values lead to measurable performance * degradation in some torture tests so we disallow early load * of global epoch. */ g_epoch = ck_pr_load_uint(&epoch->epoch); ck_pr_store_uint(&record->epoch, g_epoch); } else { ck_pr_store_uint(&record->active, record->active + 1); } if (section != NULL) _ck_epoch_addref(record, section); return; } /* * Marks the end of an epoch-protected section. Returns true if no more * sections exist for the caller. */ CK_CC_FORCE_INLINE static bool ck_epoch_end(ck_epoch_record_t *record, ck_epoch_section_t *section) { ck_pr_fence_release(); ck_pr_store_uint(&record->active, record->active - 1); if (section != NULL) return _ck_epoch_delref(record, section); return record->active == 0; } /* * Defers the execution of the function pointed to by the "cb" * argument until an epoch counter loop. This allows for a * non-blocking deferral. * * We can get away without a fence here due to the monotonic nature * of the epoch counter. Worst case, this will result in some delays * before object destruction. */ CK_CC_FORCE_INLINE static void ck_epoch_call(ck_epoch_record_t *record, ck_epoch_entry_t *entry, ck_epoch_cb_t *function) { struct ck_epoch *epoch = record->global; unsigned int e = ck_pr_load_uint(&epoch->epoch); unsigned int offset = e & (CK_EPOCH_LENGTH - 1); record->n_pending++; entry->function = function; ck_stack_push_spnc(&record->pending[offset], &entry->stack_entry); return; } /* * Same as ck_epoch_call, but allows for records to be shared and is reentrant. */ CK_CC_FORCE_INLINE static void ck_epoch_call_strict(ck_epoch_record_t *record, ck_epoch_entry_t *entry, ck_epoch_cb_t *function) { struct ck_epoch *epoch = record->global; unsigned int e = ck_pr_load_uint(&epoch->epoch); unsigned int offset = e & (CK_EPOCH_LENGTH - 1); ck_pr_inc_uint(&record->n_pending); entry->function = function; /* Store fence is implied by push operation. */ ck_stack_push_upmc(&record->pending[offset], &entry->stack_entry); return; } /* * This callback is used for synchronize_wait to allow for custom blocking * behavior. */ typedef void ck_epoch_wait_cb_t(ck_epoch_t *, ck_epoch_record_t *, void *); /* * Return latest epoch value. This operation provides load ordering. */ CK_CC_FORCE_INLINE static unsigned int ck_epoch_value(const ck_epoch_t *ep) { ck_pr_fence_load(); return ck_pr_load_uint(&ep->epoch); } void ck_epoch_init(ck_epoch_t *); /* * Attempts to recycle an unused epoch record. If one is successfully * allocated, the record context pointer is also updated. */ ck_epoch_record_t *ck_epoch_recycle(ck_epoch_t *, void *); /* * Registers an epoch record. An optional context pointer may be passed that * is retrievable with ck_epoch_record_ct. */ void ck_epoch_register(ck_epoch_t *, ck_epoch_record_t *, void *); /* * Marks a record as available for re-use by a subsequent recycle operation. * Note that the record cannot be physically destroyed. */ void ck_epoch_unregister(ck_epoch_record_t *); bool ck_epoch_poll(ck_epoch_record_t *); bool ck_epoch_poll_deferred(struct ck_epoch_record *record, ck_stack_t *deferred); void ck_epoch_synchronize(ck_epoch_record_t *); void ck_epoch_synchronize_wait(ck_epoch_t *, ck_epoch_wait_cb_t *, void *); void ck_epoch_barrier(ck_epoch_record_t *); void ck_epoch_barrier_wait(ck_epoch_record_t *, ck_epoch_wait_cb_t *, void *); /* * Reclaim entries associated with a record. This is safe to call only on * the caller's record or records that are using call_strict. */ void ck_epoch_reclaim(ck_epoch_record_t *); #endif /* CK_EPOCH_H */