/*- * Copyright (c) 2020 Mellanox Technologies, Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include /* * Linux' XArray allows to store a NULL pointer as a value. xa_load() would * return NULL for both an unused index and an index set to NULL. But it * impacts xa_alloc() which needs to find the next available index. * * However, our implementation relies on a radix tree (see `linux_radix.c`) * which does not accept NULL pointers as values. I'm not sure this is a * limitation or a feature, so to work around this, a NULL value is replaced by * `NULL_VALUE`, an unlikely address, when we pass it to linux_radix. */ #define NULL_VALUE (void *)0x1 /* * This function removes the element at the given index and returns * the pointer to the removed element, if any. */ void * __xa_erase(struct xarray *xa, uint32_t index) { void *retval; XA_ASSERT_LOCKED(xa); retval = radix_tree_delete(&xa->root, index); if (retval == NULL_VALUE) retval = NULL; return (retval); } void * xa_erase(struct xarray *xa, uint32_t index) { void *retval; xa_lock(xa); retval = __xa_erase(xa, index); xa_unlock(xa); return (retval); } /* * This function returns the element pointer at the given index. A * value of NULL is returned if the element does not exist. */ void * xa_load(struct xarray *xa, uint32_t index) { void *retval; xa_lock(xa); retval = radix_tree_lookup(&xa->root, index); xa_unlock(xa); if (retval == NULL_VALUE) retval = NULL; return (retval); } /* * This is an internal function used to sleep until more memory * becomes available. */ static void xa_vm_wait_locked(struct xarray *xa) { xa_unlock(xa); vm_wait(NULL); xa_lock(xa); } /* * This function iterates the xarray until it finds a free slot where * it can insert the element pointer to by "ptr". It starts at the * index pointed to by "pindex" and updates this value at return. The * "mask" argument defines the maximum index allowed, inclusivly, and * must be a power of two minus one value. The "gfp" argument * basically tells if we can wait for more memory to become available * or not. This function returns zero upon success or a negative error * code on failure. A typical error code is -ENOMEM which means either * the xarray is full, or there was not enough internal memory * available to complete the radix tree insertion. */ int __xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp) { int retval; XA_ASSERT_LOCKED(xa); /* mask should allow to allocate at least one item */ MPASS(mask > ((xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0)); /* mask can be any power of two value minus one */ MPASS((mask & (mask + 1)) == 0); *pindex = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0; if (ptr == NULL) ptr = NULL_VALUE; retry: retval = radix_tree_insert(&xa->root, *pindex, ptr); switch (retval) { case -EEXIST: if (likely(*pindex != mask)) { (*pindex)++; goto retry; } retval = -ENOMEM; break; case -ENOMEM: if (likely(gfp & M_WAITOK)) { xa_vm_wait_locked(xa); goto retry; } break; default: break; } return (retval); } int xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp) { int retval; if (ptr == NULL) ptr = NULL_VALUE; xa_lock(xa); retval = __xa_alloc(xa, pindex, ptr, mask, gfp); xa_unlock(xa); return (retval); } /* * This function works the same like the "xa_alloc" function, except * it wraps the next index value to zero when there are no entries * left at the end of the xarray searching for a free slot from the * beginning of the array. If the xarray is full -ENOMEM is returned. */ int __xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, uint32_t *pnext_index, gfp_t gfp) { int retval; int timeout = 1; XA_ASSERT_LOCKED(xa); /* mask should allow to allocate at least one item */ MPASS(mask > ((xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0)); /* mask can be any power of two value minus one */ MPASS((mask & (mask + 1)) == 0); *pnext_index = (xa->flags & XA_FLAGS_ALLOC1) != 0 ? 1 : 0; if (ptr == NULL) ptr = NULL_VALUE; retry: retval = radix_tree_insert(&xa->root, *pnext_index, ptr); switch (retval) { case -EEXIST: if (unlikely(*pnext_index == mask) && !timeout--) { retval = -ENOMEM; break; } (*pnext_index)++; (*pnext_index) &= mask; if (*pnext_index == 0 && (xa->flags & XA_FLAGS_ALLOC1) != 0) (*pnext_index)++; goto retry; case -ENOMEM: if (likely(gfp & M_WAITOK)) { xa_vm_wait_locked(xa); goto retry; } break; default: break; } *pindex = *pnext_index; return (retval); } int xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, uint32_t *pnext_index, gfp_t gfp) { int retval; xa_lock(xa); retval = __xa_alloc_cyclic(xa, pindex, ptr, mask, pnext_index, gfp); xa_unlock(xa); return (retval); } /* * This function tries to insert an element at the given index. The * "gfp" argument basically decides of this function can sleep or not * trying to allocate internal memory for its radix tree. The * function returns an error code upon failure. Typical error codes * are element exists (-EEXIST) or out of memory (-ENOMEM). */ int __xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp) { int retval; XA_ASSERT_LOCKED(xa); if (ptr == NULL) ptr = NULL_VALUE; retry: retval = radix_tree_insert(&xa->root, index, ptr); switch (retval) { case -ENOMEM: if (likely(gfp & M_WAITOK)) { xa_vm_wait_locked(xa); goto retry; } break; default: break; } return (retval); } int xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp) { int retval; xa_lock(xa); retval = __xa_insert(xa, index, ptr, gfp); xa_unlock(xa); return (retval); } /* * This function updates the element at the given index and returns a * pointer to the old element. The "gfp" argument basically decides of * this function can sleep or not trying to allocate internal memory * for its radix tree. The function returns an XA_ERROR() pointer code * upon failure. Code using this function must always check if the * return value is an XA_ERROR() code before using the returned value. */ void * __xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp) { int retval; XA_ASSERT_LOCKED(xa); if (ptr == NULL) ptr = NULL_VALUE; retry: retval = radix_tree_store(&xa->root, index, &ptr); switch (retval) { case 0: if (ptr == NULL_VALUE) ptr = NULL; break; case -ENOMEM: if (likely(gfp & M_WAITOK)) { xa_vm_wait_locked(xa); goto retry; } ptr = XA_ERROR(retval); break; default: ptr = XA_ERROR(retval); break; } return (ptr); } void * xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp) { void *retval; xa_lock(xa); retval = __xa_store(xa, index, ptr, gfp); xa_unlock(xa); return (retval); } /* * This function initialize an xarray structure. */ void xa_init_flags(struct xarray *xa, uint32_t flags) { memset(xa, 0, sizeof(*xa)); mtx_init(&xa->mtx, "lkpi-xarray", NULL, MTX_DEF | MTX_RECURSE); xa->root.gfp_mask = GFP_NOWAIT; xa->flags = flags; } /* * This function destroys an xarray structure and all its internal * memory and locks. */ void xa_destroy(struct xarray *xa) { struct radix_tree_iter iter; void **ppslot; radix_tree_for_each_slot(ppslot, &xa->root, &iter, 0) radix_tree_iter_delete(&xa->root, &iter, ppslot); mtx_destroy(&xa->mtx); } /* * This function checks if an xarray is empty or not. * It returns true if empty, else false. */ bool __xa_empty(struct xarray *xa) { struct radix_tree_iter iter = {}; void **temp; XA_ASSERT_LOCKED(xa); return (!radix_tree_iter_find(&xa->root, &iter, &temp)); } bool xa_empty(struct xarray *xa) { bool retval; xa_lock(xa); retval = __xa_empty(xa); xa_unlock(xa); return (retval); } /* * This function returns the next valid xarray entry based on the * index given by "pindex". The valued pointed to by "pindex" is * updated before return. */ void * __xa_next(struct xarray *xa, unsigned long *pindex, bool not_first) { struct radix_tree_iter iter = { .index = *pindex }; void **ppslot; void *retval; bool found; XA_ASSERT_LOCKED(xa); if (not_first) { /* advance to next index, if any */ iter.index++; if (iter.index == 0) return (NULL); } found = radix_tree_iter_find(&xa->root, &iter, &ppslot); if (likely(found)) { retval = *ppslot; if (retval == NULL_VALUE) retval = NULL; *pindex = iter.index; } else { retval = NULL; } return (retval); } void * xa_next(struct xarray *xa, unsigned long *pindex, bool not_first) { void *retval; xa_lock(xa); retval = __xa_next(xa, pindex, not_first); xa_unlock(xa); return (retval); }