/*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013-2017 Mellanox Technologies, Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) struct linux_idr_cache { spinlock_t lock; struct idr_layer *head; unsigned count; }; DPCPU_DEFINE_STATIC(struct linux_idr_cache, linux_idr_cache); /* * IDR Implementation. * * This is quick and dirty and not as re-entrant as the linux version * however it should be fairly fast. It is basically a radix tree with * a builtin bitmap for allocation. */ static MALLOC_DEFINE(M_IDR, "idr", "Linux IDR compat"); static struct idr_layer * idr_preload_dequeue_locked(struct linux_idr_cache *lic) { struct idr_layer *retval; /* check if wrong thread is trying to dequeue */ if (mtx_owned(&lic->lock.m) == 0) return (NULL); retval = lic->head; if (likely(retval != NULL)) { lic->head = retval->ary[0]; lic->count--; retval->ary[0] = NULL; } return (retval); } static void idr_preload_init(void *arg) { int cpu; CPU_FOREACH(cpu) { struct linux_idr_cache *lic = DPCPU_ID_PTR(cpu, linux_idr_cache); spin_lock_init(&lic->lock); } } SYSINIT(idr_preload_init, SI_SUB_CPU, SI_ORDER_ANY, idr_preload_init, NULL); static void idr_preload_uninit(void *arg) { int cpu; CPU_FOREACH(cpu) { struct idr_layer *cacheval; struct linux_idr_cache *lic = DPCPU_ID_PTR(cpu, linux_idr_cache); while (1) { spin_lock(&lic->lock); cacheval = idr_preload_dequeue_locked(lic); spin_unlock(&lic->lock); if (cacheval == NULL) break; free(cacheval, M_IDR); } spin_lock_destroy(&lic->lock); } } SYSUNINIT(idr_preload_uninit, SI_SUB_LOCK, SI_ORDER_FIRST, idr_preload_uninit, NULL); void idr_preload(gfp_t gfp_mask) { struct linux_idr_cache *lic; struct idr_layer *cacheval; sched_pin(); lic = &DPCPU_GET(linux_idr_cache); /* fill up cache */ spin_lock(&lic->lock); while (lic->count < MAX_IDR_FREE) { spin_unlock(&lic->lock); cacheval = malloc(sizeof(*cacheval), M_IDR, M_ZERO | gfp_mask); spin_lock(&lic->lock); if (cacheval == NULL) break; cacheval->ary[0] = lic->head; lic->head = cacheval; lic->count++; } } void idr_preload_end(void) { struct linux_idr_cache *lic; lic = &DPCPU_GET(linux_idr_cache); spin_unlock(&lic->lock); sched_unpin(); } static inline int idr_max(struct idr *idr) { return (1 << (idr->layers * IDR_BITS)) - 1; } static inline int idr_pos(int id, int layer) { return (id >> (IDR_BITS * layer)) & IDR_MASK; } void idr_init(struct idr *idr) { bzero(idr, sizeof(*idr)); mtx_init(&idr->lock, "idr", NULL, MTX_DEF); } /* Only frees cached pages. */ void idr_destroy(struct idr *idr) { struct idr_layer *il, *iln; idr_remove_all(idr); mtx_lock(&idr->lock); for (il = idr->free; il != NULL; il = iln) { iln = il->ary[0]; free(il, M_IDR); } mtx_unlock(&idr->lock); mtx_destroy(&idr->lock); } static void idr_remove_layer(struct idr_layer *il, int layer) { int i; if (il == NULL) return; if (layer == 0) { free(il, M_IDR); return; } for (i = 0; i < IDR_SIZE; i++) if (il->ary[i]) idr_remove_layer(il->ary[i], layer - 1); } void idr_remove_all(struct idr *idr) { mtx_lock(&idr->lock); idr_remove_layer(idr->top, idr->layers - 1); idr->top = NULL; idr->layers = 0; mtx_unlock(&idr->lock); } static void * idr_remove_locked(struct idr *idr, int id) { struct idr_layer *il; void *res; int layer; int idx; id &= MAX_ID_MASK; il = idr->top; layer = idr->layers - 1; if (il == NULL || id > idr_max(idr)) return (NULL); /* * Walk down the tree to this item setting bitmaps along the way * as we know at least one item will be free along this path. */ while (layer && il) { idx = idr_pos(id, layer); il->bitmap |= 1 << idx; il = il->ary[idx]; layer--; } idx = id & IDR_MASK; /* * At this point we've set free space bitmaps up the whole tree. * We could make this non-fatal and unwind but linux dumps a stack * and a warning so I don't think it's necessary. */ if (il == NULL || (il->bitmap & (1 << idx)) != 0) panic("idr_remove: Item %d not allocated (%p, %p)\n", id, idr, il); res = il->ary[idx]; il->ary[idx] = NULL; il->bitmap |= 1 << idx; return (res); } void * idr_remove(struct idr *idr, int id) { void *res; mtx_lock(&idr->lock); res = idr_remove_locked(idr, id); mtx_unlock(&idr->lock); return (res); } static inline struct idr_layer * idr_find_layer_locked(struct idr *idr, int id) { struct idr_layer *il; int layer; id &= MAX_ID_MASK; il = idr->top; layer = idr->layers - 1; if (il == NULL || id > idr_max(idr)) return (NULL); while (layer && il) { il = il->ary[idr_pos(id, layer)]; layer--; } return (il); } void * idr_replace(struct idr *idr, void *ptr, int id) { struct idr_layer *il; void *res; int idx; mtx_lock(&idr->lock); il = idr_find_layer_locked(idr, id); idx = id & IDR_MASK; /* Replace still returns an error if the item was not allocated. */ if (il == NULL || (il->bitmap & (1 << idx))) { res = ERR_PTR(-ENOENT); } else { res = il->ary[idx]; il->ary[idx] = ptr; } mtx_unlock(&idr->lock); return (res); } static inline void * idr_find_locked(struct idr *idr, int id) { struct idr_layer *il; void *res; mtx_assert(&idr->lock, MA_OWNED); il = idr_find_layer_locked(idr, id); if (il != NULL) res = il->ary[id & IDR_MASK]; else res = NULL; return (res); } void * idr_find(struct idr *idr, int id) { void *res; mtx_lock(&idr->lock); res = idr_find_locked(idr, id); mtx_unlock(&idr->lock); return (res); } void * idr_get_next(struct idr *idr, int *nextidp) { void *res = NULL; int id = *nextidp; mtx_lock(&idr->lock); for (; id <= idr_max(idr); id++) { res = idr_find_locked(idr, id); if (res == NULL) continue; *nextidp = id; break; } mtx_unlock(&idr->lock); return (res); } int idr_pre_get(struct idr *idr, gfp_t gfp_mask) { struct idr_layer *il, *iln; struct idr_layer *head; int need; mtx_lock(&idr->lock); for (;;) { need = idr->layers + 1; for (il = idr->free; il != NULL; il = il->ary[0]) need--; mtx_unlock(&idr->lock); if (need <= 0) break; for (head = NULL; need; need--) { iln = malloc(sizeof(*il), M_IDR, M_ZERO | gfp_mask); if (iln == NULL) break; bitmap_fill(&iln->bitmap, IDR_SIZE); if (head != NULL) { il->ary[0] = iln; il = iln; } else head = il = iln; } if (head == NULL) return (0); mtx_lock(&idr->lock); il->ary[0] = idr->free; idr->free = head; } return (1); } static struct idr_layer * idr_free_list_get(struct idr *idp) { struct idr_layer *il; if ((il = idp->free) != NULL) { idp->free = il->ary[0]; il->ary[0] = NULL; } return (il); } static inline struct idr_layer * idr_get(struct idr *idp) { struct idr_layer *il; if ((il = idr_free_list_get(idp)) != NULL) { MPASS(il->bitmap != 0); } else if ((il = malloc(sizeof(*il), M_IDR, M_ZERO | M_NOWAIT)) != NULL) { bitmap_fill(&il->bitmap, IDR_SIZE); } else if ((il = idr_preload_dequeue_locked(&DPCPU_GET(linux_idr_cache))) != NULL) { bitmap_fill(&il->bitmap, IDR_SIZE); } else { return (NULL); } return (il); } /* * Could be implemented as get_new_above(idr, ptr, 0, idp) but written * first for simplicity sake. */ static int idr_get_new_locked(struct idr *idr, void *ptr, int *idp) { struct idr_layer *stack[MAX_LEVEL]; struct idr_layer *il; int error; int layer; int idx; int id; mtx_assert(&idr->lock, MA_OWNED); error = -EAGAIN; /* * Expand the tree until there is free space. */ if (idr->top == NULL || idr->top->bitmap == 0) { if (idr->layers == MAX_LEVEL + 1) { error = -ENOSPC; goto out; } il = idr_get(idr); if (il == NULL) goto out; il->ary[0] = idr->top; if (idr->top) il->bitmap &= ~1; idr->top = il; idr->layers++; } il = idr->top; id = 0; /* * Walk the tree following free bitmaps, record our path. */ for (layer = idr->layers - 1;; layer--) { stack[layer] = il; idx = ffsl(il->bitmap); if (idx == 0) panic("idr_get_new: Invalid leaf state (%p, %p)\n", idr, il); idx--; id |= idx << (layer * IDR_BITS); if (layer == 0) break; if (il->ary[idx] == NULL) { il->ary[idx] = idr_get(idr); if (il->ary[idx] == NULL) goto out; } il = il->ary[idx]; } /* * Allocate the leaf to the consumer. */ il->bitmap &= ~(1 << idx); il->ary[idx] = ptr; *idp = id; /* * Clear bitmaps potentially up to the root. */ while (il->bitmap == 0 && ++layer < idr->layers) { il = stack[layer]; il->bitmap &= ~(1 << idr_pos(id, layer)); } error = 0; out: #ifdef INVARIANTS if (error == 0 && idr_find_locked(idr, id) != ptr) { panic("idr_get_new: Failed for idr %p, id %d, ptr %p\n", idr, id, ptr); } #endif return (error); } int idr_get_new(struct idr *idr, void *ptr, int *idp) { int retval; mtx_lock(&idr->lock); retval = idr_get_new_locked(idr, ptr, idp); mtx_unlock(&idr->lock); return (retval); } static int idr_get_new_above_locked(struct idr *idr, void *ptr, int starting_id, int *idp) { struct idr_layer *stack[MAX_LEVEL]; struct idr_layer *il; int error; int layer; int idx, sidx; int id; mtx_assert(&idr->lock, MA_OWNED); error = -EAGAIN; /* * Compute the layers required to support starting_id and the mask * at the top layer. */ restart: idx = starting_id; layer = 0; while (idx & ~IDR_MASK) { layer++; idx >>= IDR_BITS; } if (layer == MAX_LEVEL + 1) { error = -ENOSPC; goto out; } /* * Expand the tree until there is free space at or beyond starting_id. */ while (idr->layers <= layer || idr->top->bitmap < (1 << idr_pos(starting_id, idr->layers - 1))) { if (idr->layers == MAX_LEVEL + 1) { error = -ENOSPC; goto out; } il = idr_get(idr); if (il == NULL) goto out; il->ary[0] = idr->top; if (idr->top && idr->top->bitmap == 0) il->bitmap &= ~1; idr->top = il; idr->layers++; } il = idr->top; id = 0; /* * Walk the tree following free bitmaps, record our path. */ for (layer = idr->layers - 1;; layer--) { stack[layer] = il; sidx = idr_pos(starting_id, layer); /* Returns index numbered from 0 or size if none exists. */ idx = find_next_bit(&il->bitmap, IDR_SIZE, sidx); if (idx == IDR_SIZE && sidx == 0) panic("idr_get_new: Invalid leaf state (%p, %p)\n", idr, il); /* * We may have walked a path where there was a free bit but * it was lower than what we wanted. Restart the search with * a larger starting id. id contains the progress we made so * far. Search the leaf one above this level. This may * restart as many as MAX_LEVEL times but that is expected * to be rare. */ if (idx == IDR_SIZE) { starting_id = id + (1 << ((layer + 1) * IDR_BITS)); goto restart; } if (idx > sidx) starting_id = 0; /* Search the whole subtree. */ id |= idx << (layer * IDR_BITS); if (layer == 0) break; if (il->ary[idx] == NULL) { il->ary[idx] = idr_get(idr); if (il->ary[idx] == NULL) goto out; } il = il->ary[idx]; } /* * Allocate the leaf to the consumer. */ il->bitmap &= ~(1 << idx); il->ary[idx] = ptr; *idp = id; /* * Clear bitmaps potentially up to the root. */ while (il->bitmap == 0 && ++layer < idr->layers) { il = stack[layer]; il->bitmap &= ~(1 << idr_pos(id, layer)); } error = 0; out: #ifdef INVARIANTS if (error == 0 && idr_find_locked(idr, id) != ptr) { panic("idr_get_new_above: Failed for idr %p, id %d, ptr %p\n", idr, id, ptr); } #endif return (error); } int idr_get_new_above(struct idr *idr, void *ptr, int starting_id, int *idp) { int retval; mtx_lock(&idr->lock); retval = idr_get_new_above_locked(idr, ptr, starting_id, idp); mtx_unlock(&idr->lock); return (retval); } int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) { return (idr_get_new_above(&ida->idr, NULL, starting_id, p_id)); } static int idr_alloc_locked(struct idr *idr, void *ptr, int start, int end) { int max = end > 0 ? end - 1 : INT_MAX; int error; int id; mtx_assert(&idr->lock, MA_OWNED); if (unlikely(start < 0)) return (-EINVAL); if (unlikely(max < start)) return (-ENOSPC); if (start == 0) error = idr_get_new_locked(idr, ptr, &id); else error = idr_get_new_above_locked(idr, ptr, start, &id); if (unlikely(error < 0)) return (error); if (unlikely(id > max)) { idr_remove_locked(idr, id); return (-ENOSPC); } return (id); } int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) { int retval; mtx_lock(&idr->lock); retval = idr_alloc_locked(idr, ptr, start, end); mtx_unlock(&idr->lock); return (retval); } int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) { int retval; mtx_lock(&idr->lock); retval = idr_alloc_locked(idr, ptr, max(start, idr->next_cyclic_id), end); if (unlikely(retval == -ENOSPC)) retval = idr_alloc_locked(idr, ptr, start, end); if (likely(retval >= 0)) idr->next_cyclic_id = retval + 1; mtx_unlock(&idr->lock); return (retval); } static int idr_for_each_layer(struct idr_layer *il, int offset, int layer, int (*f)(int id, void *p, void *data), void *data) { int i, err; if (il == NULL) return (0); if (layer == 0) { for (i = 0; i < IDR_SIZE; i++) { if (il->ary[i] == NULL) continue; err = f(i + offset, il->ary[i], data); if (err) return (err); } return (0); } for (i = 0; i < IDR_SIZE; i++) { if (il->ary[i] == NULL) continue; err = idr_for_each_layer(il->ary[i], (i + offset) * IDR_SIZE, layer - 1, f, data); if (err) return (err); } return (0); } /* NOTE: It is not allowed to modify the IDR tree while it is being iterated */ int idr_for_each(struct idr *idp, int (*f)(int id, void *p, void *data), void *data) { return (idr_for_each_layer(idp->top, 0, idp->layers - 1, f, data)); } static int idr_has_entry(int id, void *p, void *data) { return (1); } bool idr_is_empty(struct idr *idp) { return (idr_for_each(idp, idr_has_entry, NULL) == 0); } int ida_pre_get(struct ida *ida, gfp_t flags) { if (idr_pre_get(&ida->idr, flags) == 0) return (0); if (ida->free_bitmap == NULL) { ida->free_bitmap = malloc(sizeof(struct ida_bitmap), M_IDR, flags); } return (ida->free_bitmap != NULL); } int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, gfp_t flags) { int ret, id; unsigned int max; MPASS((int)start >= 0); MPASS((int)end >= 0); if (end == 0) max = 0x80000000; else { MPASS(end > start); max = end - 1; } again: if (!ida_pre_get(ida, flags)) return (-ENOMEM); if ((ret = ida_get_new_above(ida, start, &id)) == 0) { if (id > max) { ida_remove(ida, id); ret = -ENOSPC; } else { ret = id; } } if (__predict_false(ret == -EAGAIN)) goto again; return (ret); } void ida_simple_remove(struct ida *ida, unsigned int id) { idr_remove(&ida->idr, id); } void ida_remove(struct ida *ida, int id) { idr_remove(&ida->idr, id); } void ida_init(struct ida *ida) { idr_init(&ida->idr); } void ida_destroy(struct ida *ida) { idr_destroy(&ida->idr); free(ida->free_bitmap, M_IDR); }