/*- * Copyright (c) 2017 Hans Petter Selasky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __amd64__ #define DEV_APIC #elif defined(__i386__) #include "opt_apic.h" #endif #include #include #include #include #include #include #include #include #include #include #if defined(__aarch64__) || defined(__arm__) || defined(__amd64__) || \ defined(__i386__) #include #endif #ifdef DEV_APIC extern u_int first_msi_irq, num_msi_irqs; #endif static eventhandler_tag linuxkpi_thread_dtor_tag; static uma_zone_t linux_current_zone; static uma_zone_t linux_mm_zone; /* check if another thread already has a mm_struct */ static struct mm_struct * find_other_mm(struct proc *p) { struct thread *td; struct task_struct *ts; struct mm_struct *mm; PROC_LOCK_ASSERT(p, MA_OWNED); FOREACH_THREAD_IN_PROC(p, td) { ts = td->td_lkpi_task; if (ts == NULL) continue; mm = ts->mm; if (mm == NULL) continue; /* try to share other mm_struct */ if (atomic_inc_not_zero(&mm->mm_users)) return (mm); } return (NULL); } int linux_alloc_current(struct thread *td, int flags) { struct proc *proc; struct task_struct *ts; struct mm_struct *mm, *mm_other; MPASS(td->td_lkpi_task == NULL); if ((td->td_pflags & TDP_ITHREAD) != 0 || !THREAD_CAN_SLEEP()) { flags &= ~M_WAITOK; flags |= M_NOWAIT | M_USE_RESERVE; } ts = uma_zalloc(linux_current_zone, flags | M_ZERO); if (ts == NULL) { if ((flags & (M_WAITOK | M_NOWAIT)) == M_WAITOK) panic("linux_alloc_current: failed to allocate task"); return (ENOMEM); } mm = NULL; /* setup new task structure */ atomic_set(&ts->kthread_flags, 0); ts->task_thread = td; ts->comm = td->td_name; ts->pid = td->td_tid; ts->group_leader = ts; atomic_set(&ts->usage, 1); atomic_set(&ts->state, TASK_RUNNING); init_completion(&ts->parked); init_completion(&ts->exited); proc = td->td_proc; PROC_LOCK(proc); mm_other = find_other_mm(proc); /* use allocated mm_struct as a fallback */ if (mm_other == NULL) { PROC_UNLOCK(proc); mm = uma_zalloc(linux_mm_zone, flags | M_ZERO); if (mm == NULL) { if ((flags & (M_WAITOK | M_NOWAIT)) == M_WAITOK) panic( "linux_alloc_current: failed to allocate mm"); uma_zfree(linux_current_zone, mm); return (ENOMEM); } PROC_LOCK(proc); mm_other = find_other_mm(proc); if (mm_other == NULL) { /* setup new mm_struct */ init_rwsem(&mm->mmap_sem); atomic_set(&mm->mm_count, 1); atomic_set(&mm->mm_users, 1); /* set mm_struct pointer */ ts->mm = mm; /* clear pointer to not free memory */ mm = NULL; } else { ts->mm = mm_other; } } else { ts->mm = mm_other; } /* store pointer to task struct */ td->td_lkpi_task = ts; PROC_UNLOCK(proc); /* free mm_struct pointer, if any */ uma_zfree(linux_mm_zone, mm); return (0); } int linux_set_fpu_ctx(struct task_struct *task) { #if defined(__aarch64__) || defined(__arm__) || defined(__amd64__) || \ defined(__i386__) if (task->fpu_ctx == NULL && curthread->td_critnest == 0) task->fpu_ctx = fpu_kern_alloc_ctx(FPU_KERN_NOWAIT); #endif return (task->fpu_ctx != NULL ? 0 : ENOMEM); } struct mm_struct * linux_get_task_mm(struct task_struct *task) { struct mm_struct *mm; mm = task->mm; if (mm != NULL) { atomic_inc(&mm->mm_users); return (mm); } return (NULL); } void linux_mm_dtor(struct mm_struct *mm) { uma_zfree(linux_mm_zone, mm); } void linux_free_current(struct task_struct *ts) { mmput(ts->mm); #if defined(__aarch64__) || defined(__arm__) || defined(__amd64__) || \ defined(__i386__) if (ts->fpu_ctx != NULL) fpu_kern_free_ctx(ts->fpu_ctx); #endif uma_zfree(linux_current_zone, ts); } static void linuxkpi_thread_dtor(void *arg __unused, struct thread *td) { struct task_struct *ts; ts = td->td_lkpi_task; if (ts == NULL) return; td->td_lkpi_task = NULL; put_task_struct(ts); } static struct task_struct * linux_get_pid_task_int(pid_t pid, const bool do_get) { struct thread *td; struct proc *p; struct task_struct *ts; if (pid > PID_MAX) { /* try to find corresponding thread */ td = tdfind(pid, -1); if (td != NULL) { ts = td->td_lkpi_task; if (do_get && ts != NULL) get_task_struct(ts); PROC_UNLOCK(td->td_proc); return (ts); } } else { /* try to find corresponding procedure */ p = pfind(pid); if (p != NULL) { FOREACH_THREAD_IN_PROC(p, td) { ts = td->td_lkpi_task; if (ts != NULL) { if (do_get) get_task_struct(ts); PROC_UNLOCK(p); return (ts); } } PROC_UNLOCK(p); } } return (NULL); } struct task_struct * linux_pid_task(pid_t pid) { return (linux_get_pid_task_int(pid, false)); } struct task_struct * linux_get_pid_task(pid_t pid) { return (linux_get_pid_task_int(pid, true)); } bool linux_task_exiting(struct task_struct *task) { struct thread *td; struct proc *p; bool ret; ret = false; /* try to find corresponding thread */ td = tdfind(task->pid, -1); if (td != NULL) { p = td->td_proc; } else { /* try to find corresponding procedure */ p = pfind(task->pid); } if (p != NULL) { if ((p->p_flag & P_WEXIT) != 0) ret = true; PROC_UNLOCK(p); } return (ret); } static int lkpi_task_resrv; SYSCTL_INT(_compat_linuxkpi, OID_AUTO, task_struct_reserve, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lkpi_task_resrv, 0, "Number of struct task and struct mm to reserve for non-sleepable " "allocations"); static void linux_current_init(void *arg __unused) { TUNABLE_INT_FETCH("compat.linuxkpi.task_struct_reserve", &lkpi_task_resrv); if (lkpi_task_resrv == 0) { #ifdef DEV_APIC /* * Number of interrupt threads plus per-cpu callout * SWI threads. */ lkpi_task_resrv = first_msi_irq + num_msi_irqs + MAXCPU; #else lkpi_task_resrv = 1024; /* XXXKIB arbitrary */ #endif } linux_current_zone = uma_zcreate("lkpicurr", sizeof(struct task_struct), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_reserve(linux_current_zone, lkpi_task_resrv); uma_prealloc(linux_current_zone, lkpi_task_resrv); linux_mm_zone = uma_zcreate("lkpimm", sizeof(struct mm_struct), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_reserve(linux_mm_zone, lkpi_task_resrv); uma_prealloc(linux_mm_zone, lkpi_task_resrv); atomic_thread_fence_seq_cst(); linuxkpi_thread_dtor_tag = EVENTHANDLER_REGISTER(thread_dtor, linuxkpi_thread_dtor, NULL, EVENTHANDLER_PRI_ANY); lkpi_alloc_current = linux_alloc_current; } SYSINIT(linux_current, SI_SUB_EVENTHANDLER + 1, SI_ORDER_SECOND, linux_current_init, NULL); static void linux_current_uninit(void *arg __unused) { struct proc *p; struct task_struct *ts; struct thread *td; lkpi_alloc_current = linux_alloc_current_noop; atomic_thread_fence_seq_cst(); sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); FOREACH_THREAD_IN_PROC(p, td) { if ((ts = td->td_lkpi_task) != NULL) { td->td_lkpi_task = NULL; put_task_struct(ts); } } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); thread_reap_barrier(); EVENTHANDLER_DEREGISTER(thread_dtor, linuxkpi_thread_dtor_tag); uma_zdestroy(linux_current_zone); uma_zdestroy(linux_mm_zone); } SYSUNINIT(linux_current, SI_SUB_EVENTHANDLER + 1, SI_ORDER_SECOND, linux_current_uninit, NULL);