/*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013-2016 Mellanox Technologies, Ltd. * Copyright (c) 2014-2015 François Tigeot * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _LINUXKPI_LINUX_KERNEL_H_ #define _LINUXKPI_LINUX_KERNEL_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KERN_CONT "" #define KERN_EMERG "<0>" #define KERN_ALERT "<1>" #define KERN_CRIT "<2>" #define KERN_ERR "<3>" #define KERN_WARNING "<4>" #define KERN_NOTICE "<5>" #define KERN_INFO "<6>" #define KERN_DEBUG "<7>" #define U8_MAX ((u8)~0U) #define S8_MAX ((s8)(U8_MAX >> 1)) #define S8_MIN ((s8)(-S8_MAX - 1)) #define U16_MAX ((u16)~0U) #define S16_MAX ((s16)(U16_MAX >> 1)) #define S16_MIN ((s16)(-S16_MAX - 1)) #define U32_MAX ((u32)~0U) #define S32_MAX ((s32)(U32_MAX >> 1)) #define S32_MIN ((s32)(-S32_MAX - 1)) #define U64_MAX ((u64)~0ULL) #define S64_MAX ((s64)(U64_MAX >> 1)) #define S64_MIN ((s64)(-S64_MAX - 1)) #define S8_C(x) x #define U8_C(x) x ## U #define S16_C(x) x #define U16_C(x) x ## U #define S32_C(x) x #define U32_C(x) x ## U #define S64_C(x) x ## LL #define U64_C(x) x ## ULL #define BUG() panic("BUG at %s:%d", __FILE__, __LINE__) #define BUG_ON(cond) do { \ if (cond) { \ panic("BUG ON %s failed at %s:%d", \ __stringify(cond), __FILE__, __LINE__); \ } \ } while (0) extern int linuxkpi_warn_dump_stack; #define WARN_ON(cond) ({ \ bool __ret = (cond); \ if (__ret) { \ printf("WARNING %s failed at %s:%d\n", \ __stringify(cond), __FILE__, __LINE__); \ if (linuxkpi_warn_dump_stack) \ linux_dump_stack(); \ } \ unlikely(__ret); \ }) #define WARN_ON_SMP(cond) WARN_ON(cond) #define WARN_ON_ONCE(cond) ({ \ static bool __warn_on_once; \ bool __ret = (cond); \ if (__ret && !__warn_on_once) { \ __warn_on_once = 1; \ printf("WARNING %s failed at %s:%d\n", \ __stringify(cond), __FILE__, __LINE__); \ if (linuxkpi_warn_dump_stack) \ linux_dump_stack(); \ } \ unlikely(__ret); \ }) #define oops_in_progress SCHEDULER_STOPPED() #undef ALIGN #define ALIGN(x, y) roundup2((x), (y)) #define ALIGN_DOWN(x, y) rounddown2(x, y) #undef PTR_ALIGN #define PTR_ALIGN(p, a) ((__typeof(p))ALIGN((uintptr_t)(p), (a))) #define IS_ALIGNED(x, a) (((x) & ((__typeof(x))(a) - 1)) == 0) #define DIV_ROUND_UP(x, n) howmany(x, n) #define __KERNEL_DIV_ROUND_UP(x, n) howmany(x, n) #define DIV_ROUND_UP_ULL(x, n) DIV_ROUND_UP((unsigned long long)(x), (n)) #define DIV_ROUND_DOWN_ULL(x, n) (((unsigned long long)(x) / (n)) * (n)) #define FIELD_SIZEOF(t, f) sizeof(((t *)0)->f) #define printk(...) printf(__VA_ARGS__) #define vprintk(f, a) vprintf(f, a) #define asm __asm extern void linux_dump_stack(void); #define dump_stack() linux_dump_stack() struct va_format { const char *fmt; va_list *va; }; static inline int vscnprintf(char *buf, size_t size, const char *fmt, va_list args) { ssize_t ssize = size; int i; i = vsnprintf(buf, size, fmt, args); return ((i >= ssize) ? (ssize - 1) : i); } static inline int scnprintf(char *buf, size_t size, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vscnprintf(buf, size, fmt, args); va_end(args); return (i); } /* * The "pr_debug()" and "pr_devel()" macros should produce zero code * unless DEBUG is defined: */ #ifdef DEBUG extern int linuxkpi_debug; #define pr_debug(fmt, ...) \ do { \ if (linuxkpi_debug) \ log(LOG_DEBUG, fmt, ##__VA_ARGS__); \ } while (0) #define pr_devel(fmt, ...) \ log(LOG_DEBUG, pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ ({ if (0) log(LOG_DEBUG, fmt, ##__VA_ARGS__); 0; }) #define pr_devel(fmt, ...) \ ({ if (0) log(LOG_DEBUG, pr_fmt(fmt), ##__VA_ARGS__); 0; }) #endif #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #define printk_once(...) do { \ static bool __print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(__VA_ARGS__); \ } \ } while (0) /* * Log a one-time message (analogous to WARN_ONCE() et al): */ #define log_once(level,...) do { \ static bool __log_once; \ \ if (unlikely(!__log_once)) { \ __log_once = true; \ log(level, __VA_ARGS__); \ } \ } while (0) #define pr_emerg(fmt, ...) \ log(LOG_EMERG, pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert(fmt, ...) \ log(LOG_ALERT, pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit(fmt, ...) \ log(LOG_CRIT, pr_fmt(fmt), ##__VA_ARGS__) #define pr_err(fmt, ...) \ log(LOG_ERR, pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ log_once(LOG_ERR, pr_fmt(fmt), ##__VA_ARGS__) #define pr_warning(fmt, ...) \ log(LOG_WARNING, pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn(...) \ pr_warning(__VA_ARGS__) #define pr_warn_once(fmt, ...) \ log_once(LOG_WARNING, pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice(fmt, ...) \ log(LOG_NOTICE, pr_fmt(fmt), ##__VA_ARGS__) #define pr_info(fmt, ...) \ log(LOG_INFO, pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ log_once(LOG_INFO, pr_fmt(fmt), ##__VA_ARGS__) #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) #define pr_warn_ratelimited(...) do { \ static linux_ratelimit_t __ratelimited; \ if (linux_ratelimited(&__ratelimited)) \ pr_warning(__VA_ARGS__); \ } while (0) #ifndef WARN #define WARN(condition, ...) ({ \ bool __ret_warn_on = (condition); \ if (unlikely(__ret_warn_on)) \ pr_warning(__VA_ARGS__); \ unlikely(__ret_warn_on); \ }) #endif #ifndef WARN_ONCE #define WARN_ONCE(condition, ...) ({ \ bool __ret_warn_on = (condition); \ if (unlikely(__ret_warn_on)) \ pr_warn_once(__VA_ARGS__); \ unlikely(__ret_warn_on); \ }) #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define u64_to_user_ptr(val) ((void *)(uintptr_t)(val)) #define _RET_IP_ __builtin_return_address(0) static inline unsigned long long simple_strtoull(const char *cp, char **endp, unsigned int base) { return (strtouq(cp, endp, base)); } static inline long long simple_strtoll(const char *cp, char **endp, unsigned int base) { return (strtoq(cp, endp, base)); } static inline unsigned long simple_strtoul(const char *cp, char **endp, unsigned int base) { return (strtoul(cp, endp, base)); } static inline long simple_strtol(const char *cp, char **endp, unsigned int base) { return (strtol(cp, endp, base)); } static inline int kstrtoul(const char *cp, unsigned int base, unsigned long *res) { char *end; *res = strtoul(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); return (0); } static inline int kstrtol(const char *cp, unsigned int base, long *res) { char *end; *res = strtol(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); return (0); } static inline int kstrtoint(const char *cp, unsigned int base, int *res) { char *end; long temp; *res = temp = strtol(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); if (temp != (int)temp) return (-ERANGE); return (0); } static inline int kstrtouint(const char *cp, unsigned int base, unsigned int *res) { char *end; unsigned long temp; *res = temp = strtoul(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); if (temp != (unsigned int)temp) return (-ERANGE); return (0); } static inline int kstrtou8(const char *cp, unsigned int base, u8 *res) { char *end; unsigned long temp; *res = temp = strtoul(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); if (temp != (u8)temp) return (-ERANGE); return (0); } static inline int kstrtou16(const char *cp, unsigned int base, u16 *res) { char *end; unsigned long temp; *res = temp = strtoul(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); if (temp != (u16)temp) return (-ERANGE); return (0); } static inline int kstrtou32(const char *cp, unsigned int base, u32 *res) { return (kstrtouint(cp, base, res)); } static inline int kstrtou64(const char *cp, unsigned int base, u64 *res) { char *end; *res = strtouq(cp, &end, base); /* skip newline character, if any */ if (*end == '\n') end++; if (*cp == 0 || *end != 0) return (-EINVAL); return (0); } static inline int kstrtoull(const char *cp, unsigned int base, unsigned long long *res) { return (kstrtou64(cp, base, (u64 *)res)); } static inline int kstrtobool(const char *s, bool *res) { int len; if (s == NULL || (len = strlen(s)) == 0 || res == NULL) return (-EINVAL); /* skip newline character, if any */ if (s[len - 1] == '\n') len--; if (len == 1 && strchr("yY1", s[0]) != NULL) *res = true; else if (len == 1 && strchr("nN0", s[0]) != NULL) *res = false; else if (strncasecmp("on", s, len) == 0) *res = true; else if (strncasecmp("off", s, len) == 0) *res = false; else return (-EINVAL); return (0); } static inline int kstrtobool_from_user(const char __user *s, size_t count, bool *res) { char buf[8] = {}; if (count > (sizeof(buf) - 1)) count = (sizeof(buf) - 1); if (copy_from_user(buf, s, count)) return (-EFAULT); return (kstrtobool(buf, res)); } static inline int kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *p) { char buf[36] = {}; if (count > (sizeof(buf) - 1)) count = (sizeof(buf) - 1); if (copy_from_user(buf, s, count)) return (-EFAULT); return (kstrtoint(buf, base, p)); } static inline int kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *p) { char buf[36] = {}; if (count > (sizeof(buf) - 1)) count = (sizeof(buf) - 1); if (copy_from_user(buf, s, count)) return (-EFAULT); return (kstrtouint(buf, base, p)); } static inline int kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *p) { return (kstrtouint_from_user(s, count, base, p)); } static inline int kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *p) { char buf[8] = {}; if (count > (sizeof(buf) - 1)) count = (sizeof(buf) - 1); if (copy_from_user(buf, s, count)) return (-EFAULT); return (kstrtou8(buf, base, p)); } #define min(x, y) ((x) < (y) ? (x) : (y)) #define max(x, y) ((x) > (y) ? (x) : (y)) #define min3(a, b, c) min(a, min(b,c)) #define max3(a, b, c) max(a, max(b,c)) #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1 : __min2; }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1 : __max2; }) #define offsetofend(t, m) \ (offsetof(t, m) + sizeof((((t *)0)->m))) #define clamp_t(type, _x, min, max) min_t(type, max_t(type, _x, min), max) #define clamp(x, lo, hi) min( max(x,lo), hi) #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define smp_processor_id() PCPU_GET(cpuid) #define num_possible_cpus() mp_ncpus #define num_online_cpus() mp_ncpus #if defined(__i386__) || defined(__amd64__) extern bool linux_cpu_has_clflush; #define cpu_has_clflush linux_cpu_has_clflush #endif /* Swap values of a and b */ #define swap(a, b) do { \ typeof(a) _swap_tmp = a; \ a = b; \ b = _swap_tmp; \ } while (0) #define DIV_ROUND_CLOSEST(x, divisor) (((x) + ((divisor) / 2)) / (divisor)) #define DIV_ROUND_CLOSEST_ULL(x, divisor) ({ \ __typeof(divisor) __d = (divisor); \ unsigned long long __ret = (x) + (__d) / 2; \ __ret /= __d; \ __ret; \ }) static inline uintmax_t mult_frac(uintmax_t x, uintmax_t multiplier, uintmax_t divisor) { uintmax_t q = (x / divisor); uintmax_t r = (x % divisor); return ((q * multiplier) + ((r * multiplier) / divisor)); } typedef struct linux_ratelimit { struct timeval lasttime; int counter; } linux_ratelimit_t; static inline bool linux_ratelimited(linux_ratelimit_t *rl) { return (ppsratecheck(&rl->lasttime, &rl->counter, 1)); } #define struct_size(ptr, field, num) ({ \ const size_t __size = offsetof(__typeof(*(ptr)), field); \ const size_t __max = (SIZE_MAX - __size) / sizeof((ptr)->field[0]); \ ((num) > __max) ? SIZE_MAX : (__size + sizeof((ptr)->field[0]) * (num)); \ }) #define __is_constexpr(x) \ __builtin_constant_p(x) /* * The is_signed() macro below returns true if the passed data type is * signed. Else false is returned. */ #define is_signed(datatype) (((datatype)-1 / (datatype)2) == (datatype)0) /* * The type_max() macro below returns the maxium positive value the * passed data type can hold. */ #define type_max(datatype) ( \ (sizeof(datatype) >= 8) ? (is_signed(datatype) ? INT64_MAX : UINT64_MAX) : \ (sizeof(datatype) >= 4) ? (is_signed(datatype) ? INT32_MAX : UINT32_MAX) : \ (sizeof(datatype) >= 2) ? (is_signed(datatype) ? INT16_MAX : UINT16_MAX) : \ (is_signed(datatype) ? INT8_MAX : UINT8_MAX) \ ) /* * The type_min() macro below returns the minimum value the passed * data type can hold. For unsigned types the minimum value is always * zero. For signed types it may vary. */ #define type_min(datatype) ( \ (sizeof(datatype) >= 8) ? (is_signed(datatype) ? INT64_MIN : 0) : \ (sizeof(datatype) >= 4) ? (is_signed(datatype) ? INT32_MIN : 0) : \ (sizeof(datatype) >= 2) ? (is_signed(datatype) ? INT16_MIN : 0) : \ (is_signed(datatype) ? INT8_MIN : 0) \ ) #define TAINT_WARN 0 #define test_taint(x) (0) #define add_taint(x,y) do { \ } while (0) static inline int _h2b(const char c) { if (c >= '0' && c <= '9') return (c - '0'); if (c >= 'a' && c <= 'f') return (10 + c - 'a'); if (c >= 'A' && c <= 'F') return (10 + c - 'A'); return (-EINVAL); } static inline int hex2bin(uint8_t *bindst, const char *hexsrc, size_t binlen) { int hi4, lo4; while (binlen > 0) { hi4 = _h2b(*hexsrc++); lo4 = _h2b(*hexsrc++); if (hi4 < 0 || lo4 < 0) return (-EINVAL); *bindst++ = (hi4 << 4) | lo4; binlen--; } return (0); } static inline bool mac_pton(const char *macin, uint8_t *macout) { const char *s, *d; uint8_t mac[6], hx, lx;; int i; if (strlen(macin) < (3 * 6 - 1)) return (false); i = 0; s = macin; do { /* Should we also support '-'-delimiters? */ d = strchrnul(s, ':'); hx = lx = 0; while (s < d) { /* Fail on abc:123:xxx:... */ if ((d - s) > 2) return (false); /* We do support non-well-formed strings: 3:45:6:... */ if ((d - s) > 1) { hx = _h2b(*s); if (hx < 0) return (false); s++; } lx = _h2b(*s); if (lx < 0) return (false); s++; } mac[i] = (hx << 4) | lx; i++; if (i >= 6) return (false); } while (d != NULL && *d != '\0'); memcpy(macout, mac, 6); return (true); } #define DECLARE_FLEX_ARRAY(_t, _n) \ struct { struct { } __dummy_ ## _n; _t _n[0]; } #endif /* _LINUXKPI_LINUX_KERNEL_H_ */