/*- * Copyright (c) 2002 Doug Rabson * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #if defined(__i386__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include #include #include #include /* DTrace init */ LIN_SDT_PROVIDER_DECLARE(LINUX_DTRACE); /* Linuxulator-global DTrace probes */ LIN_SDT_PROBE_DECLARE(locks, emul_lock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_lock, unlock); LIN_SDT_PROBE_DECLARE(locks, emul_shared_rlock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_shared_rlock, unlock); LIN_SDT_PROBE_DECLARE(locks, emul_shared_wlock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_shared_wlock, unlock); int stclohz; /* Statistics clock frequency */ static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, RLIMIT_MEMLOCK, RLIMIT_AS }; struct l_sysinfo { l_long uptime; /* Seconds since boot */ l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ #define LINUX_SYSINFO_LOADS_SCALE 65536 l_ulong totalram; /* Total usable main memory size */ l_ulong freeram; /* Available memory size */ l_ulong sharedram; /* Amount of shared memory */ l_ulong bufferram; /* Memory used by buffers */ l_ulong totalswap; /* Total swap space size */ l_ulong freeswap; /* swap space still available */ l_ushort procs; /* Number of current processes */ l_ushort pads; l_ulong totalbig; l_ulong freebig; l_uint mem_unit; char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ }; int linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) { struct l_sysinfo sysinfo; vm_object_t object; int i, j; struct timespec ts; getnanouptime(&ts); if (ts.tv_nsec != 0) ts.tv_sec++; sysinfo.uptime = ts.tv_sec; /* Use the information from the mib to get our load averages */ for (i = 0; i < 3; i++) sysinfo.loads[i] = averunnable.ldavg[i] * LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; sysinfo.totalram = physmem * PAGE_SIZE; sysinfo.freeram = sysinfo.totalram - vm_cnt.v_wire_count * PAGE_SIZE; sysinfo.sharedram = 0; mtx_lock(&vm_object_list_mtx); TAILQ_FOREACH(object, &vm_object_list, object_list) if (object->shadow_count > 1) sysinfo.sharedram += object->resident_page_count; mtx_unlock(&vm_object_list_mtx); sysinfo.sharedram *= PAGE_SIZE; sysinfo.bufferram = 0; swap_pager_status(&i, &j); sysinfo.totalswap = i * PAGE_SIZE; sysinfo.freeswap = (i - j) * PAGE_SIZE; sysinfo.procs = nprocs; /* The following are only present in newer Linux kernels. */ sysinfo.totalbig = 0; sysinfo.freebig = 0; sysinfo.mem_unit = 1; return (copyout(&sysinfo, args->info, sizeof(sysinfo))); } int linux_alarm(struct thread *td, struct linux_alarm_args *args) { struct itimerval it, old_it; u_int secs; int error; #ifdef DEBUG if (ldebug(alarm)) printf(ARGS(alarm, "%u"), args->secs); #endif secs = args->secs; if (secs > INT_MAX) secs = INT_MAX; it.it_value.tv_sec = (long) secs; it.it_value.tv_usec = 0; it.it_interval.tv_sec = 0; it.it_interval.tv_usec = 0; error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); if (error) return (error); if (timevalisset(&old_it.it_value)) { if (old_it.it_value.tv_usec != 0) old_it.it_value.tv_sec++; td->td_retval[0] = old_it.it_value.tv_sec; } return (0); } int linux_brk(struct thread *td, struct linux_brk_args *args) { struct vmspace *vm = td->td_proc->p_vmspace; vm_offset_t new, old; struct obreak_args /* { char * nsize; } */ tmp; #ifdef DEBUG if (ldebug(brk)) printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend); #endif old = (vm_offset_t)vm->vm_daddr + ctob(vm->vm_dsize); new = (vm_offset_t)args->dsend; tmp.nsize = (char *)new; if (((caddr_t)new > vm->vm_daddr) && !sys_obreak(td, &tmp)) td->td_retval[0] = (long)new; else td->td_retval[0] = (long)old; return (0); } #if defined(__i386__) /* XXX: what about amd64/linux32? */ int linux_uselib(struct thread *td, struct linux_uselib_args *args) { struct nameidata ni; struct vnode *vp; struct exec *a_out; struct vattr attr; vm_offset_t vmaddr; unsigned long file_offset; unsigned long bss_size; char *library; ssize_t aresid; int error, locked, writecount; LCONVPATHEXIST(td, args->library, &library); #ifdef DEBUG if (ldebug(uselib)) printf(ARGS(uselib, "%s"), library); #endif a_out = NULL; locked = 0; vp = NULL; NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, library, td); error = namei(&ni); LFREEPATH(library); if (error) goto cleanup; vp = ni.ni_vp; NDFREE(&ni, NDF_ONLY_PNBUF); /* * From here on down, we have a locked vnode that must be unlocked. * XXX: The code below largely duplicates exec_check_permissions(). */ locked = 1; /* Writable? */ error = VOP_GET_WRITECOUNT(vp, &writecount); if (error != 0) goto cleanup; if (writecount != 0) { error = ETXTBSY; goto cleanup; } /* Executable? */ error = VOP_GETATTR(vp, &attr, td->td_ucred); if (error) goto cleanup; if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { /* EACCESS is what exec(2) returns. */ error = ENOEXEC; goto cleanup; } /* Sensible size? */ if (attr.va_size == 0) { error = ENOEXEC; goto cleanup; } /* Can we access it? */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) goto cleanup; /* * XXX: This should use vn_open() so that it is properly authorized, * and to reduce code redundancy all over the place here. * XXX: Not really, it duplicates far more of exec_check_permissions() * than vn_open(). */ #ifdef MAC error = mac_vnode_check_open(td->td_ucred, vp, VREAD); if (error) goto cleanup; #endif error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error) goto cleanup; /* Pull in executable header into exec_map */ error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); if (error) goto cleanup; /* Is it a Linux binary ? */ if (((a_out->a_magic >> 16) & 0xff) != 0x64) { error = ENOEXEC; goto cleanup; } /* * While we are here, we should REALLY do some more checks */ /* Set file/virtual offset based on a.out variant. */ switch ((int)(a_out->a_magic & 0xffff)) { case 0413: /* ZMAGIC */ file_offset = 1024; break; case 0314: /* QMAGIC */ file_offset = 0; break; default: error = ENOEXEC; goto cleanup; } bss_size = round_page(a_out->a_bss); /* Check various fields in header for validity/bounds. */ if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { error = ENOEXEC; goto cleanup; } /* text + data can't exceed file size */ if (a_out->a_data + a_out->a_text > attr.va_size) { error = EFAULT; goto cleanup; } /* * text/data/bss must not exceed limits * XXX - this is not complete. it should check current usage PLUS * the resources needed by this library. */ PROC_LOCK(td->td_proc); if (a_out->a_text > maxtsiz || a_out->a_data + bss_size > lim_cur(td->td_proc, RLIMIT_DATA) || racct_set(td->td_proc, RACCT_DATA, a_out->a_data + bss_size) != 0) { PROC_UNLOCK(td->td_proc); error = ENOMEM; goto cleanup; } PROC_UNLOCK(td->td_proc); /* * Prevent more writers. * XXX: Note that if any of the VM operations fail below we don't * clear this flag. */ VOP_SET_TEXT(vp); /* * Lock no longer needed */ locked = 0; VOP_UNLOCK(vp, 0); /* * Check if file_offset page aligned. Currently we cannot handle * misalinged file offsets, and so we read in the entire image * (what a waste). */ if (file_offset & PAGE_MASK) { #ifdef DEBUG printf("uselib: Non page aligned binary %lu\n", file_offset); #endif /* Map text+data read/write/execute */ /* a_entry is the load address and is page aligned */ vmaddr = trunc_page(a_out->a_entry); /* get anon user mapping, read+write+execute */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, td->td_ucred, NOCRED, &aresid, td); if (error != 0) goto cleanup; if (aresid != 0) { error = ENOEXEC; goto cleanup; } } else { #ifdef DEBUG printf("uselib: Page aligned binary %lu\n", file_offset); #endif /* * for QMAGIC, a_entry is 20 bytes beyond the load address * to skip the executable header */ vmaddr = trunc_page(a_out->a_entry); /* * Map it all into the process's space as a single * copy-on-write "data" segment. */ error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr, a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); if (error) goto cleanup; } #ifdef DEBUG printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0], ((long *)vmaddr)[1]); #endif if (bss_size != 0) { /* Calculate BSS start address */ vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + a_out->a_data; /* allocate some 'anon' space */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; } cleanup: /* Unlock vnode if needed */ if (locked) VOP_UNLOCK(vp, 0); /* Release the temporary mapping. */ if (a_out) kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); return (error); } #endif /* __i386__ */ int linux_select(struct thread *td, struct linux_select_args *args) { l_timeval ltv; struct timeval tv0, tv1, utv, *tvp; int error; #ifdef DEBUG if (ldebug(select)) printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds, (void *)args->readfds, (void *)args->writefds, (void *)args->exceptfds, (void *)args->timeout); #endif /* * Store current time for computation of the amount of * time left. */ if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) goto select_out; utv.tv_sec = ltv.tv_sec; utv.tv_usec = ltv.tv_usec; #ifdef DEBUG if (ldebug(select)) printf(LMSG("incoming timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timevalclear(&utv); } microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_select(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, sizeof(l_int) * 8); #ifdef DEBUG if (ldebug(select)) printf(LMSG("real select returns %d"), error); #endif if (error) goto select_out; if (args->timeout) { if (td->td_retval[0]) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); #ifdef DEBUG if (ldebug(select)) printf(LMSG("outgoing timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif ltv.tv_sec = utv.tv_sec; ltv.tv_usec = utv.tv_usec; if ((error = copyout(<v, args->timeout, sizeof(ltv)))) goto select_out; } select_out: #ifdef DEBUG if (ldebug(select)) printf(LMSG("select_out -> %d"), error); #endif return (error); } int linux_mremap(struct thread *td, struct linux_mremap_args *args) { struct munmap_args /* { void *addr; size_t len; } */ bsd_args; int error = 0; #ifdef DEBUG if (ldebug(mremap)) printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"), (void *)(uintptr_t)args->addr, (unsigned long)args->old_len, (unsigned long)args->new_len, (unsigned long)args->flags); #endif if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { td->td_retval[0] = 0; return (EINVAL); } /* * Check for the page alignment. * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. */ if (args->addr & PAGE_MASK) { td->td_retval[0] = 0; return (EINVAL); } args->new_len = round_page(args->new_len); args->old_len = round_page(args->old_len); if (args->new_len > args->old_len) { td->td_retval[0] = 0; return (ENOMEM); } if (args->new_len < args->old_len) { bsd_args.addr = (caddr_t)((uintptr_t)args->addr + args->new_len); bsd_args.len = args->old_len - args->new_len; error = sys_munmap(td, &bsd_args); } td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; return (error); } #define LINUX_MS_ASYNC 0x0001 #define LINUX_MS_INVALIDATE 0x0002 #define LINUX_MS_SYNC 0x0004 int linux_msync(struct thread *td, struct linux_msync_args *args) { struct msync_args bsd_args; bsd_args.addr = (caddr_t)(uintptr_t)args->addr; bsd_args.len = (uintptr_t)args->len; bsd_args.flags = args->fl & ~LINUX_MS_SYNC; return (sys_msync(td, &bsd_args)); } int linux_time(struct thread *td, struct linux_time_args *args) { struct timeval tv; l_time_t tm; int error; #ifdef DEBUG if (ldebug(time)) printf(ARGS(time, "*")); #endif microtime(&tv); tm = tv.tv_sec; if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) return (error); td->td_retval[0] = tm; return (0); } struct l_times_argv { l_clock_t tms_utime; l_clock_t tms_stime; l_clock_t tms_cutime; l_clock_t tms_cstime; }; /* * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK * auxiliary vector entry. */ #define CLK_TCK 100 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ CONVNTCK(r) : CONVOTCK(r)) int linux_times(struct thread *td, struct linux_times_args *args) { struct timeval tv, utime, stime, cutime, cstime; struct l_times_argv tms; struct proc *p; int error; #ifdef DEBUG if (ldebug(times)) printf(ARGS(times, "*")); #endif if (args->buf != NULL) { p = td->td_proc; PROC_LOCK(p); PROC_SLOCK(p); calcru(p, &utime, &stime); PROC_SUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = CONVTCK(utime); tms.tms_stime = CONVTCK(stime); tms.tms_cutime = CONVTCK(cutime); tms.tms_cstime = CONVTCK(cstime); if ((error = copyout(&tms, args->buf, sizeof(tms)))) return (error); } microuptime(&tv); td->td_retval[0] = (int)CONVTCK(tv); return (0); } int linux_newuname(struct thread *td, struct linux_newuname_args *args) { struct l_new_utsname utsname; char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; char *p; #ifdef DEBUG if (ldebug(newuname)) printf(ARGS(newuname, "*")); #endif linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); bzero(&utsname, sizeof(utsname)); strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); for (p = utsname.version; *p != '\0'; ++p) if (*p == '\n') { *p = '\0'; break; } strlcpy(utsname.machine, linux_platform, LINUX_MAX_UTSNAME); return (copyout(&utsname, args->buf, sizeof(utsname))); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) struct l_utimbuf { l_time_t l_actime; l_time_t l_modtime; }; int linux_utime(struct thread *td, struct linux_utime_args *args) { struct timeval tv[2], *tvp; struct l_utimbuf lut; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utime)) printf(ARGS(utime, "%s, *"), fname); #endif if (args->times) { if ((error = copyin(args->times, &lut, sizeof lut))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = lut.l_actime; tv[0].tv_usec = 0; tv[1].tv_sec = lut.l_modtime; tv[1].tv_usec = 0; tvp = tv; } else tvp = NULL; error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_utimes(struct thread *td, struct linux_utimes_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utimes)) printf(ARGS(utimes, "%s, *"), fname); #endif if (args->tptr != NULL) { if ((error = copyin(args->tptr, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_futimesat(struct thread *td, struct linux_futimesat_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); #ifdef DEBUG if (ldebug(futimesat)) printf(ARGS(futimesat, "%s, *"), fname); #endif if (args->utimes != NULL) { if ((error = copyin(args->utimes, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_common_wait(struct thread *td, int pid, int *status, int options, struct rusage *ru) { int error, tmpstat; error = kern_wait(td, pid, &tmpstat, options, ru); if (error) return (error); if (status) { tmpstat &= 0xffff; if (WIFSIGNALED(tmpstat)) tmpstat = (tmpstat & 0xffffff80) | BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat)); else if (WIFSTOPPED(tmpstat)) tmpstat = (tmpstat & 0xffff00ff) | (BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8); error = copyout(&tmpstat, status, sizeof(int)); } return (error); } int linux_waitpid(struct thread *td, struct linux_waitpid_args *args) { int options; #ifdef DEBUG if (ldebug(waitpid)) printf(ARGS(waitpid, "%d, %p, %d"), args->pid, (void *)args->status, args->options); #endif /* * this is necessary because the test in kern_wait doesn't work * because we mess with the options here */ if (args->options & ~(WUNTRACED | WNOHANG | WCONTINUED | __WCLONE)) return (EINVAL); options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; return (linux_common_wait(td, args->pid, args->status, options, NULL)); } int linux_mknod(struct thread *td, struct linux_mknod_args *args) { char *path; int error; LCONVPATHCREAT(td, args->path, &path); #ifdef DEBUG if (ldebug(mknod)) printf(ARGS(mknod, "%s, %d, %d"), path, args->mode, args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } int linux_mknodat(struct thread *td, struct linux_mknodat_args *args) { char *path; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHCREAT_AT(td, args->filename, &path, dfd); #ifdef DEBUG if (ldebug(mknodat)) printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, dfd, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } /* * UGH! This is just about the dumbest idea I've ever heard!! */ int linux_personality(struct thread *td, struct linux_personality_args *args) { #ifdef DEBUG if (ldebug(personality)) printf(ARGS(personality, "%lu"), (unsigned long)args->per); #endif if (args->per != 0) return (EINVAL); /* Yes Jim, it's still a Linux... */ td->td_retval[0] = 0; return (0); } struct l_itimerval { l_timeval it_interval; l_timeval it_value; }; #define B2L_ITIMERVAL(bip, lip) \ (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; int linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv, oitv; #ifdef DEBUG if (ldebug(setitimer)) printf(ARGS(setitimer, "%p, %p"), (void *)uap->itv, (void *)uap->oitv); #endif if (uap->itv == NULL) { uap->itv = uap->oitv; return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); } error = copyin(uap->itv, &ls, sizeof(ls)); if (error != 0) return (error); B2L_ITIMERVAL(&aitv, &ls); #ifdef DEBUG if (ldebug(setitimer)) { printf("setitimer: value: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec); printf("setitimer: interval: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec); } #endif error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); B2L_ITIMERVAL(&ls, &oitv); return (copyout(&ls, uap->oitv, sizeof(ls))); } int linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv; #ifdef DEBUG if (ldebug(getitimer)) printf(ARGS(getitimer, "%p"), (void *)uap->itv); #endif error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); B2L_ITIMERVAL(&ls, &aitv); return (copyout(&ls, uap->itv, sizeof(ls))); } int linux_nice(struct thread *td, struct linux_nice_args *args) { struct setpriority_args bsd_args; bsd_args.which = PRIO_PROCESS; bsd_args.who = 0; /* current process */ bsd_args.prio = args->inc; return (sys_setpriority(td, &bsd_args)); } int linux_setgroups(struct thread *td, struct linux_setgroups_args *args) { struct ucred *newcred, *oldcred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int ngrp, error; struct proc *p; ngrp = args->gidsetsize; if (ngrp < 0 || ngrp >= ngroups_max + 1) return (EINVAL); linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_TEMP, M_WAITOK); error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); if (error) goto out; newcred = crget(); p = td->td_proc; PROC_LOCK(p); oldcred = crcopysafe(p, newcred); /* * cr_groups[0] holds egid. Setting the whole set from * the supplied set will cause egid to be changed too. * Keep cr_groups[0] unchanged to prevent that. */ if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) { PROC_UNLOCK(p); crfree(newcred); goto out; } if (ngrp > 0) { newcred->cr_ngroups = ngrp + 1; bsd_gidset = newcred->cr_groups; ngrp--; while (ngrp >= 0) { bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; ngrp--; } } else newcred->cr_ngroups = 1; setsugid(p); p->p_ucred = newcred; PROC_UNLOCK(p); crfree(oldcred); error = 0; out: free(linux_gidset, M_TEMP); return (error); } int linux_getgroups(struct thread *td, struct linux_getgroups_args *args) { struct ucred *cred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int bsd_gidsetsz, ngrp, error; cred = td->td_ucred; bsd_gidset = cred->cr_groups; bsd_gidsetsz = cred->cr_ngroups - 1; /* * cr_groups[0] holds egid. Returning the whole set * here will cause a duplicate. Exclude cr_groups[0] * to prevent that. */ if ((ngrp = args->gidsetsize) == 0) { td->td_retval[0] = bsd_gidsetsz; return (0); } if (ngrp < bsd_gidsetsz) return (EINVAL); ngrp = 0; linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), M_TEMP, M_WAITOK); while (ngrp < bsd_gidsetsz) { linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; ngrp++; } error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); free(linux_gidset, M_TEMP); if (error) return (error); td->td_retval[0] = ngrp; return (0); } int linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) { struct rlimit bsd_rlim; struct l_rlimit rlim; u_int which; int error; #ifdef DEBUG if (ldebug(setrlimit)) printf(ARGS(setrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); error = copyin(args->rlim, &rlim, sizeof(rlim)); if (error) return (error); bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; return (kern_setrlimit(td, which, &bsd_rlim)); } int linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(old_getrlimit)) printf(ARGS(old_getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); #ifdef COMPAT_LINUX32 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; if (rlim.rlim_cur == UINT_MAX) rlim.rlim_cur = INT_MAX; rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; if (rlim.rlim_max == UINT_MAX) rlim.rlim_max = INT_MAX; #else rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; if (rlim.rlim_cur == ULONG_MAX) rlim.rlim_cur = LONG_MAX; rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; if (rlim.rlim_max == ULONG_MAX) rlim.rlim_max = LONG_MAX; #endif return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(getrlimit)) printf(ARGS(getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_sched_setscheduler(struct thread *td, struct linux_sched_setscheduler_args *args) { struct sched_setscheduler_args bsd; #ifdef DEBUG if (ldebug(sched_setscheduler)) printf(ARGS(sched_setscheduler, "%d, %d, %p"), args->pid, args->policy, (const void *)args->param); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } bsd.pid = args->pid; bsd.param = (struct sched_param *)args->param; return (sys_sched_setscheduler(td, &bsd)); } int linux_sched_getscheduler(struct thread *td, struct linux_sched_getscheduler_args *args) { struct sched_getscheduler_args bsd; int error; #ifdef DEBUG if (ldebug(sched_getscheduler)) printf(ARGS(sched_getscheduler, "%d"), args->pid); #endif bsd.pid = args->pid; error = sys_sched_getscheduler(td, &bsd); switch (td->td_retval[0]) { case SCHED_OTHER: td->td_retval[0] = LINUX_SCHED_OTHER; break; case SCHED_FIFO: td->td_retval[0] = LINUX_SCHED_FIFO; break; case SCHED_RR: td->td_retval[0] = LINUX_SCHED_RR; break; } return (error); } int linux_sched_get_priority_max(struct thread *td, struct linux_sched_get_priority_max_args *args) { struct sched_get_priority_max_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_max)) printf(ARGS(sched_get_priority_max, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_max(td, &bsd)); } int linux_sched_get_priority_min(struct thread *td, struct linux_sched_get_priority_min_args *args) { struct sched_get_priority_min_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_min)) printf(ARGS(sched_get_priority_min, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_min(td, &bsd)); } #define REBOOT_CAD_ON 0x89abcdef #define REBOOT_CAD_OFF 0 #define REBOOT_HALT 0xcdef0123 #define REBOOT_RESTART 0x01234567 #define REBOOT_RESTART2 0xA1B2C3D4 #define REBOOT_POWEROFF 0x4321FEDC #define REBOOT_MAGIC1 0xfee1dead #define REBOOT_MAGIC2 0x28121969 #define REBOOT_MAGIC2A 0x05121996 #define REBOOT_MAGIC2B 0x16041998 int linux_reboot(struct thread *td, struct linux_reboot_args *args) { struct reboot_args bsd_args; #ifdef DEBUG if (ldebug(reboot)) printf(ARGS(reboot, "0x%x"), args->cmd); #endif if (args->magic1 != REBOOT_MAGIC1) return (EINVAL); switch (args->magic2) { case REBOOT_MAGIC2: case REBOOT_MAGIC2A: case REBOOT_MAGIC2B: break; default: return (EINVAL); } switch (args->cmd) { case REBOOT_CAD_ON: case REBOOT_CAD_OFF: return (priv_check(td, PRIV_REBOOT)); case REBOOT_HALT: bsd_args.opt = RB_HALT; break; case REBOOT_RESTART: case REBOOT_RESTART2: bsd_args.opt = 0; break; case REBOOT_POWEROFF: bsd_args.opt = RB_POWEROFF; break; default: return (EINVAL); } return (sys_reboot(td, &bsd_args)); } /* * The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify * td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that * are assumed to be preserved. The following lightweight syscalls fixes * this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c * * linux_getpid() - MP SAFE * linux_getgid() - MP SAFE * linux_getuid() - MP SAFE */ int linux_getpid(struct thread *td, struct linux_getpid_args *args) { struct linux_emuldata *em; #ifdef DEBUG if (ldebug(getpid)) printf(ARGS(getpid, "")); #endif if (linux_use26(td)) { em = em_find(td->td_proc, EMUL_DONTLOCK); KASSERT(em != NULL, ("getpid: emuldata not found.\n")); td->td_retval[0] = em->shared->group_pid; } else { td->td_retval[0] = td->td_proc->p_pid; } return (0); } int linux_gettid(struct thread *td, struct linux_gettid_args *args) { #ifdef DEBUG if (ldebug(gettid)) printf(ARGS(gettid, "")); #endif td->td_retval[0] = td->td_proc->p_pid; return (0); } int linux_getppid(struct thread *td, struct linux_getppid_args *args) { struct linux_emuldata *em; struct proc *p, *pp; #ifdef DEBUG if (ldebug(getppid)) printf(ARGS(getppid, "")); #endif if (!linux_use26(td)) { PROC_LOCK(td->td_proc); td->td_retval[0] = td->td_proc->p_pptr->p_pid; PROC_UNLOCK(td->td_proc); return (0); } em = em_find(td->td_proc, EMUL_DONTLOCK); KASSERT(em != NULL, ("getppid: process emuldata not found.\n")); /* find the group leader */ p = pfind(em->shared->group_pid); if (p == NULL) { #ifdef DEBUG printf(LMSG("parent process not found.\n")); #endif return (0); } pp = p->p_pptr; /* switch to parent */ PROC_LOCK(pp); PROC_UNLOCK(p); /* if its also linux process */ if (pp->p_sysent == &elf_linux_sysvec) { em = em_find(pp, EMUL_DONTLOCK); KASSERT(em != NULL, ("getppid: parent emuldata not found.\n")); td->td_retval[0] = em->shared->group_pid; } else td->td_retval[0] = pp->p_pid; PROC_UNLOCK(pp); return (0); } int linux_getgid(struct thread *td, struct linux_getgid_args *args) { #ifdef DEBUG if (ldebug(getgid)) printf(ARGS(getgid, "")); #endif td->td_retval[0] = td->td_ucred->cr_rgid; return (0); } int linux_getuid(struct thread *td, struct linux_getuid_args *args) { #ifdef DEBUG if (ldebug(getuid)) printf(ARGS(getuid, "")); #endif td->td_retval[0] = td->td_ucred->cr_ruid; return (0); } int linux_getsid(struct thread *td, struct linux_getsid_args *args) { struct getsid_args bsd; #ifdef DEBUG if (ldebug(getsid)) printf(ARGS(getsid, "%i"), args->pid); #endif bsd.pid = args->pid; return (sys_getsid(td, &bsd)); } int linux_nosys(struct thread *td, struct nosys_args *ignore) { return (ENOSYS); } int linux_getpriority(struct thread *td, struct linux_getpriority_args *args) { struct getpriority_args bsd_args; int error; #ifdef DEBUG if (ldebug(getpriority)) printf(ARGS(getpriority, "%i, %i"), args->which, args->who); #endif bsd_args.which = args->which; bsd_args.who = args->who; error = sys_getpriority(td, &bsd_args); td->td_retval[0] = 20 - td->td_retval[0]; return (error); } int linux_sethostname(struct thread *td, struct linux_sethostname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(sethostname)) printf(ARGS(sethostname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_HOSTNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, args->len, 0, 0)); } int linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(setdomainname)) printf(ARGS(setdomainname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_NISDOMAINNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, args->len, 0, 0)); } int linux_exit_group(struct thread *td, struct linux_exit_group_args *args) { struct linux_emuldata *em; #ifdef DEBUG if (ldebug(exit_group)) printf(ARGS(exit_group, "%i"), args->error_code); #endif em = em_find(td->td_proc, EMUL_DONTLOCK); if (em->shared->refs > 1) { EMUL_SHARED_WLOCK(&emul_shared_lock); em->shared->flags |= EMUL_SHARED_HASXSTAT; em->shared->xstat = W_EXITCODE(args->error_code, 0); EMUL_SHARED_WUNLOCK(&emul_shared_lock); if (linux_use26(td)) linux_kill_threads(td, SIGKILL); } /* * XXX: we should send a signal to the parent if * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) * as it doesnt occur often. */ exit1(td, W_EXITCODE(args->error_code, 0)); return (0); } #define _LINUX_CAPABILITY_VERSION 0x19980330 struct l_user_cap_header { l_int version; l_int pid; }; struct l_user_cap_data { l_int effective; l_int permitted; l_int inheritable; }; int linux_capget(struct thread *td, struct linux_capget_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); if (args->datap) { /* * The current implementation doesn't support setting * a capability (it's essentially a stub) so indicate * that no capabilities are currently set or available * to request. */ bzero (&lucd, sizeof(lucd)); error = copyout(&lucd, args->datap, sizeof(lucd)); } return (error); } int linux_capset(struct thread *td, struct linux_capset_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL || args->datap == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); error = copyin(args->datap, &lucd, sizeof(lucd)); if (error != 0) return (error); /* We currently don't support setting any capabilities. */ if (lucd.effective || lucd.permitted || lucd.inheritable) { linux_msg(td, "capset effective=0x%x, permitted=0x%x, " "inheritable=0x%x is not implemented", (int)lucd.effective, (int)lucd.permitted, (int)lucd.inheritable); return (EPERM); } return (0); } int linux_prctl(struct thread *td, struct linux_prctl_args *args) { int error = 0, max_size; struct proc *p = td->td_proc; char comm[LINUX_MAX_COMM_LEN]; struct linux_emuldata *em; int pdeath_signal; #ifdef DEBUG if (ldebug(prctl)) printf(ARGS(prctl, "%d, %d, %d, %d, %d"), args->option, args->arg2, args->arg3, args->arg4, args->arg5); #endif switch (args->option) { case LINUX_PR_SET_PDEATHSIG: if (!LINUX_SIG_VALID(args->arg2)) return (EINVAL); em = em_find(p, EMUL_DOLOCK); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); em->pdeath_signal = args->arg2; EMUL_UNLOCK(&emul_lock); break; case LINUX_PR_GET_PDEATHSIG: em = em_find(p, EMUL_DOLOCK); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); pdeath_signal = em->pdeath_signal; EMUL_UNLOCK(&emul_lock); error = copyout(&pdeath_signal, (void *)(register_t)args->arg2, sizeof(pdeath_signal)); break; case LINUX_PR_GET_KEEPCAPS: /* * Indicate that we always clear the effective and * permitted capability sets when the user id becomes * non-zero (actually the capability sets are simply * always zero in the current implementation). */ td->td_retval[0] = 0; break; case LINUX_PR_SET_KEEPCAPS: /* * Ignore requests to keep the effective and permitted * capability sets when the user id becomes non-zero. */ break; case LINUX_PR_SET_NAME: /* * To be on the safe side we need to make sure to not * overflow the size a linux program expects. We already * do this here in the copyin, so that we don't need to * check on copyout. */ max_size = MIN(sizeof(comm), sizeof(p->p_comm)); error = copyinstr((void *)(register_t)args->arg2, comm, max_size, NULL); /* Linux silently truncates the name if it is too long. */ if (error == ENAMETOOLONG) { /* * XXX: copyinstr() isn't documented to populate the * array completely, so do a copyin() to be on the * safe side. This should be changed in case * copyinstr() is changed to guarantee this. */ error = copyin((void *)(register_t)args->arg2, comm, max_size - 1); comm[max_size - 1] = '\0'; } if (error) return (error); PROC_LOCK(p); strlcpy(p->p_comm, comm, sizeof(p->p_comm)); PROC_UNLOCK(p); break; case LINUX_PR_GET_NAME: PROC_LOCK(p); strlcpy(comm, p->p_comm, sizeof(comm)); PROC_UNLOCK(p); error = copyout(comm, (void *)(register_t)args->arg2, strlen(comm) + 1); break; default: error = EINVAL; break; } return (error); } /* * Get affinity of a process. */ int linux_sched_getaffinity(struct thread *td, struct linux_sched_getaffinity_args *args) { int error; struct cpuset_getaffinity_args cga; #ifdef DEBUG if (ldebug(sched_getaffinity)) printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); cga.level = CPU_LEVEL_WHICH; cga.which = CPU_WHICH_PID; cga.id = args->pid; cga.cpusetsize = sizeof(cpuset_t); cga.mask = (cpuset_t *) args->user_mask_ptr; if ((error = sys_cpuset_getaffinity(td, &cga)) == 0) td->td_retval[0] = sizeof(cpuset_t); return (error); } /* * Set affinity of a process. */ int linux_sched_setaffinity(struct thread *td, struct linux_sched_setaffinity_args *args) { struct cpuset_setaffinity_args csa; #ifdef DEBUG if (ldebug(sched_setaffinity)) printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); csa.level = CPU_LEVEL_WHICH; csa.which = CPU_WHICH_PID; csa.id = args->pid; csa.cpusetsize = sizeof(cpuset_t); csa.mask = (cpuset_t *) args->user_mask_ptr; return (sys_cpuset_setaffinity(td, &csa)); }