/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2002 Doug Rabson * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include #include #include #include #include #include int stclohz; /* Statistics clock frequency */ static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, RLIMIT_MEMLOCK, RLIMIT_AS }; struct l_sysinfo { l_long uptime; /* Seconds since boot */ l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ #define LINUX_SYSINFO_LOADS_SCALE 65536 l_ulong totalram; /* Total usable main memory size */ l_ulong freeram; /* Available memory size */ l_ulong sharedram; /* Amount of shared memory */ l_ulong bufferram; /* Memory used by buffers */ l_ulong totalswap; /* Total swap space size */ l_ulong freeswap; /* swap space still available */ l_ushort procs; /* Number of current processes */ l_ushort pads; l_ulong totalhigh; l_ulong freehigh; l_uint mem_unit; char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ }; struct l_pselect6arg { l_uintptr_t ss; l_size_t ss_len; }; static int linux_utimensat_lts_to_ts(struct l_timespec *, struct timespec *); #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int linux_utimensat_lts64_to_ts(struct l_timespec64 *, struct timespec *); #endif static int linux_common_utimensat(struct thread *, int, const char *, struct timespec *, int); static int linux_common_pselect6(struct thread *, l_int, l_fd_set *, l_fd_set *, l_fd_set *, struct timespec *, l_uintptr_t *); static int linux_common_ppoll(struct thread *, struct pollfd *, uint32_t, struct timespec *, l_sigset_t *, l_size_t); static int linux_pollin(struct thread *, struct pollfd *, struct pollfd *, u_int); static int linux_pollout(struct thread *, struct pollfd *, struct pollfd *, u_int); int linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) { struct l_sysinfo sysinfo; int i, j; struct timespec ts; bzero(&sysinfo, sizeof(sysinfo)); getnanouptime(&ts); if (ts.tv_nsec != 0) ts.tv_sec++; sysinfo.uptime = ts.tv_sec; /* Use the information from the mib to get our load averages */ for (i = 0; i < 3; i++) sysinfo.loads[i] = averunnable.ldavg[i] * LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; sysinfo.totalram = physmem * PAGE_SIZE; sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; /* * sharedram counts pages allocated to named, swap-backed objects such * as shared memory segments and tmpfs files. There is no cheap way to * compute this, so just leave the field unpopulated. Linux itself only * started setting this field in the 3.x timeframe. */ sysinfo.sharedram = 0; sysinfo.bufferram = 0; swap_pager_status(&i, &j); sysinfo.totalswap = i * PAGE_SIZE; sysinfo.freeswap = (i - j) * PAGE_SIZE; sysinfo.procs = nprocs; /* * Platforms supported by the emulation layer do not have a notion of * high memory. */ sysinfo.totalhigh = 0; sysinfo.freehigh = 0; sysinfo.mem_unit = 1; return (copyout(&sysinfo, args->info, sizeof(sysinfo))); } #ifdef LINUX_LEGACY_SYSCALLS int linux_alarm(struct thread *td, struct linux_alarm_args *args) { struct itimerval it, old_it; u_int secs; int error __diagused; secs = args->secs; /* * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 * to match kern_setitimer()'s limit to avoid error from it. * * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit * platforms. */ if (secs > INT32_MAX / 2) secs = INT32_MAX / 2; it.it_value.tv_sec = secs; it.it_value.tv_usec = 0; timevalclear(&it.it_interval); error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); KASSERT(error == 0, ("kern_setitimer returns %d", error)); if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || old_it.it_value.tv_usec >= 500000) old_it.it_value.tv_sec++; td->td_retval[0] = old_it.it_value.tv_sec; return (0); } #endif int linux_brk(struct thread *td, struct linux_brk_args *args) { struct vmspace *vm = td->td_proc->p_vmspace; uintptr_t new, old; old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); new = (uintptr_t)args->dsend; if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) td->td_retval[0] = (register_t)new; else td->td_retval[0] = (register_t)old; return (0); } #ifdef LINUX_LEGACY_SYSCALLS int linux_select(struct thread *td, struct linux_select_args *args) { l_timeval ltv; struct timeval tv0, tv1, utv, *tvp; int error; /* * Store current time for computation of the amount of * time left. */ if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) goto select_out; utv.tv_sec = ltv.tv_sec; utv.tv_usec = ltv.tv_usec; if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timevalclear(&utv); } microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_select(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, LINUX_NFDBITS); if (error) goto select_out; if (args->timeout) { if (td->td_retval[0]) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); ltv.tv_sec = utv.tv_sec; ltv.tv_usec = utv.tv_usec; if ((error = copyout(<v, args->timeout, sizeof(ltv)))) goto select_out; } select_out: return (error); } #endif int linux_mremap(struct thread *td, struct linux_mremap_args *args) { uintptr_t addr; size_t len; int error = 0; if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { td->td_retval[0] = 0; return (EINVAL); } /* * Check for the page alignment. * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. */ if (args->addr & PAGE_MASK) { td->td_retval[0] = 0; return (EINVAL); } args->new_len = round_page(args->new_len); args->old_len = round_page(args->old_len); if (args->new_len > args->old_len) { td->td_retval[0] = 0; return (ENOMEM); } if (args->new_len < args->old_len) { addr = args->addr + args->new_len; len = args->old_len - args->new_len; error = kern_munmap(td, addr, len); } td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; return (error); } #define LINUX_MS_ASYNC 0x0001 #define LINUX_MS_INVALIDATE 0x0002 #define LINUX_MS_SYNC 0x0004 int linux_msync(struct thread *td, struct linux_msync_args *args) { return (kern_msync(td, args->addr, args->len, args->fl & ~LINUX_MS_SYNC)); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot)); } int linux_madvise(struct thread *td, struct linux_madvise_args *uap) { return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav)); } int linux_mmap2(struct thread *td, struct linux_mmap2_args *uap) { #if defined(LINUX_ARCHWANT_MMAP2PGOFF) /* * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is * implemented with mmap2 syscall and the offset is represented in * multiples of page size. */ return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE)); #else return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot, uap->flags, uap->fd, uap->pgoff)); #endif } #ifdef LINUX_LEGACY_SYSCALLS int linux_time(struct thread *td, struct linux_time_args *args) { struct timeval tv; l_time_t tm; int error; microtime(&tv); tm = tv.tv_sec; if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) return (error); td->td_retval[0] = tm; return (0); } #endif struct l_times_argv { l_clock_t tms_utime; l_clock_t tms_stime; l_clock_t tms_cutime; l_clock_t tms_cstime; }; /* * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK * auxiliary vector entry. */ #define CLK_TCK 100 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \ CONVNTCK(r) : CONVOTCK(r)) int linux_times(struct thread *td, struct linux_times_args *args) { struct timeval tv, utime, stime, cutime, cstime; struct l_times_argv tms; struct proc *p; int error; if (args->buf != NULL) { p = td->td_proc; PROC_LOCK(p); PROC_STATLOCK(p); calcru(p, &utime, &stime); PROC_STATUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = CONVTCK(utime); tms.tms_stime = CONVTCK(stime); tms.tms_cutime = CONVTCK(cutime); tms.tms_cstime = CONVTCK(cstime); if ((error = copyout(&tms, args->buf, sizeof(tms)))) return (error); } microuptime(&tv); td->td_retval[0] = (int)CONVTCK(tv); return (0); } int linux_newuname(struct thread *td, struct linux_newuname_args *args) { struct l_new_utsname utsname; char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; char *p; linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); bzero(&utsname, sizeof(utsname)); strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); for (p = utsname.version; *p != '\0'; ++p) if (*p == '\n') { *p = '\0'; break; } #if defined(__amd64__) /* * On amd64, Linux uname(2) needs to return "x86_64" * for both 64-bit and 32-bit applications. On 32-bit, * the string returned by getauxval(AT_PLATFORM) needs * to remain "i686", though. */ #if defined(COMPAT_LINUX32) if (linux32_emulate_i386) strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); else #endif strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); #elif defined(__aarch64__) strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME); #elif defined(__i386__) strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); #endif return (copyout(&utsname, args->buf, sizeof(utsname))); } struct l_utimbuf { l_time_t l_actime; l_time_t l_modtime; }; #ifdef LINUX_LEGACY_SYSCALLS int linux_utime(struct thread *td, struct linux_utime_args *args) { struct timeval tv[2], *tvp; struct l_utimbuf lut; int error; if (args->times) { if ((error = copyin(args->times, &lut, sizeof lut)) != 0) return (error); tv[0].tv_sec = lut.l_actime; tv[0].tv_usec = 0; tv[1].tv_sec = lut.l_modtime; tv[1].tv_usec = 0; tvp = tv; } else tvp = NULL; return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, tvp, UIO_SYSSPACE)); } #endif #ifdef LINUX_LEGACY_SYSCALLS int linux_utimes(struct thread *td, struct linux_utimes_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; int error; if (args->tptr != NULL) { if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0) return (error); tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, tvp, UIO_SYSSPACE)); } #endif static int linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times) { if (l_times->tv_nsec != LINUX_UTIME_OMIT && l_times->tv_nsec != LINUX_UTIME_NOW && (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) return (EINVAL); times->tv_sec = l_times->tv_sec; switch (l_times->tv_nsec) { case LINUX_UTIME_OMIT: times->tv_nsec = UTIME_OMIT; break; case LINUX_UTIME_NOW: times->tv_nsec = UTIME_NOW; break; default: times->tv_nsec = l_times->tv_nsec; } return (0); } static int linux_common_utimensat(struct thread *td, int ldfd, const char *pathname, struct timespec *timesp, int lflags) { int dfd, flags = 0; dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd; if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH)) return (EINVAL); if (timesp != NULL) { /* This breaks POSIX, but is what the Linux kernel does * _on purpose_ (documented in the man page for utimensat(2)), * so we must follow that behaviour. */ if (timesp[0].tv_nsec == UTIME_OMIT && timesp[1].tv_nsec == UTIME_OMIT) return (0); } if (lflags & LINUX_AT_SYMLINK_NOFOLLOW) flags |= AT_SYMLINK_NOFOLLOW; if (lflags & LINUX_AT_EMPTY_PATH) flags |= AT_EMPTY_PATH; if (pathname != NULL) return (kern_utimensat(td, dfd, pathname, UIO_USERSPACE, timesp, UIO_SYSSPACE, flags)); if (lflags != 0) return (EINVAL); return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE)); } int linux_utimensat(struct thread *td, struct linux_utimensat_args *args) { struct l_timespec l_times[2]; struct timespec times[2], *timesp; int error; if (args->times != NULL) { error = copyin(args->times, l_times, sizeof(l_times)); if (error != 0) return (error); error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]); if (error != 0) return (error); error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]); if (error != 0) return (error); timesp = times; } else timesp = NULL; return (linux_common_utimensat(td, args->dfd, args->pathname, timesp, args->flags)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times) { /* Zero out the padding in compat mode. */ l_times->tv_nsec &= 0xFFFFFFFFUL; if (l_times->tv_nsec != LINUX_UTIME_OMIT && l_times->tv_nsec != LINUX_UTIME_NOW && (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) return (EINVAL); times->tv_sec = l_times->tv_sec; switch (l_times->tv_nsec) { case LINUX_UTIME_OMIT: times->tv_nsec = UTIME_OMIT; break; case LINUX_UTIME_NOW: times->tv_nsec = UTIME_NOW; break; default: times->tv_nsec = l_times->tv_nsec; } return (0); } int linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args) { struct l_timespec64 l_times[2]; struct timespec times[2], *timesp; int error; if (args->times64 != NULL) { error = copyin(args->times64, l_times, sizeof(l_times)); if (error != 0) return (error); error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]); if (error != 0) return (error); error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]); if (error != 0) return (error); timesp = times; } else timesp = NULL; return (linux_common_utimensat(td, args->dfd, args->pathname, timesp, args->flags)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ #ifdef LINUX_LEGACY_SYSCALLS int linux_futimesat(struct thread *td, struct linux_futimesat_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; if (args->utimes != NULL) { if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0) return (error); tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, tvp, UIO_SYSSPACE)); } #endif static int linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp, int options, void *rup, l_siginfo_t *infop) { l_siginfo_t lsi; siginfo_t siginfo; struct __wrusage wru; int error, status, tmpstat, sig; error = kern_wait6(td, idtype, id, &status, options, rup != NULL ? &wru : NULL, &siginfo); if (error == 0 && statusp) { tmpstat = status & 0xffff; if (WIFSIGNALED(tmpstat)) { tmpstat = (tmpstat & 0xffffff80) | bsd_to_linux_signal(WTERMSIG(tmpstat)); } else if (WIFSTOPPED(tmpstat)) { tmpstat = (tmpstat & 0xffff00ff) | (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32)) if (WSTOPSIG(status) == SIGTRAP) { tmpstat = linux_ptrace_status(td, siginfo.si_pid, tmpstat); } #endif } else if (WIFCONTINUED(tmpstat)) { tmpstat = 0xffff; } error = copyout(&tmpstat, statusp, sizeof(int)); } if (error == 0 && rup != NULL) error = linux_copyout_rusage(&wru.wru_self, rup); if (error == 0 && infop != NULL && td->td_retval[0] != 0) { sig = bsd_to_linux_signal(siginfo.si_signo); siginfo_to_lsiginfo(&siginfo, &lsi, sig); error = copyout(&lsi, infop, sizeof(lsi)); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_waitpid(struct thread *td, struct linux_waitpid_args *args) { struct linux_wait4_args wait4_args = { .pid = args->pid, .status = args->status, .options = args->options, .rusage = NULL, }; return (linux_wait4(td, &wait4_args)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_wait4(struct thread *td, struct linux_wait4_args *args) { struct proc *p; int options, id, idtype; if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) return (EINVAL); /* -INT_MIN is not defined. */ if (args->pid == INT_MIN) return (ESRCH); options = 0; linux_to_bsd_waitopts(args->options, &options); /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; if (args->pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (args->pid < 0) { idtype = P_PGID; id = (id_t)-args->pid; } else if (args->pid == 0) { idtype = P_PGID; p = td->td_proc; PROC_LOCK(p); id = p->p_pgid; PROC_UNLOCK(p); } else { idtype = P_PID; id = (id_t)args->pid; } return (linux_common_wait(td, idtype, id, args->status, options, args->rusage, NULL)); } int linux_waitid(struct thread *td, struct linux_waitid_args *args) { idtype_t idtype; int error, options; struct proc *p; pid_t id; if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED | LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) return (EINVAL); options = 0; linux_to_bsd_waitopts(args->options, &options); id = args->id; switch (args->idtype) { case LINUX_P_ALL: idtype = P_ALL; break; case LINUX_P_PID: if (args->id <= 0) return (EINVAL); idtype = P_PID; break; case LINUX_P_PGID: if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) { p = td->td_proc; PROC_LOCK(p); id = p->p_pgid; PROC_UNLOCK(p); } else if (args->id <= 0) return (EINVAL); idtype = P_PGID; break; case LINUX_P_PIDFD: LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype"); return (ENOSYS); default: return (EINVAL); } error = linux_common_wait(td, idtype, id, NULL, options, args->rusage, args->info); td->td_retval[0] = 0; return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_mknod(struct thread *td, struct linux_mknod_args *args) { int error; switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE, args->mode, linux_decode_dev(args->dev)); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } return (error); } #endif int linux_mknodat(struct thread *td, struct linux_mknodat_args *args) { int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE, args->mode, linux_decode_dev(args->dev)); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, dfd, args->filename, UIO_USERSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } return (error); } /* * UGH! This is just about the dumbest idea I've ever heard!! */ int linux_personality(struct thread *td, struct linux_personality_args *args) { struct linux_pemuldata *pem; struct proc *p = td->td_proc; uint32_t old; PROC_LOCK(p); pem = pem_find(p); old = pem->persona; if (args->per != 0xffffffff) pem->persona = args->per; PROC_UNLOCK(p); td->td_retval[0] = old; return (0); } struct l_itimerval { l_timeval it_interval; l_timeval it_value; }; #define B2L_ITIMERVAL(bip, lip) \ (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; int linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv, oitv; if (uap->itv == NULL) { uap->itv = uap->oitv; return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); } error = copyin(uap->itv, &ls, sizeof(ls)); if (error != 0) return (error); B2L_ITIMERVAL(&aitv, &ls); error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); B2L_ITIMERVAL(&ls, &oitv); return (copyout(&ls, uap->oitv, sizeof(ls))); } int linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv; error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); B2L_ITIMERVAL(&ls, &aitv); return (copyout(&ls, uap->itv, sizeof(ls))); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_nice(struct thread *td, struct linux_nice_args *args) { return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_setgroups(struct thread *td, struct linux_setgroups_args *args) { struct ucred *newcred, *oldcred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int ngrp, error; struct proc *p; ngrp = args->gidsetsize; if (ngrp < 0 || ngrp >= ngroups_max + 1) return (EINVAL); linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); if (error) goto out; newcred = crget(); crextend(newcred, ngrp + 1); p = td->td_proc; PROC_LOCK(p); oldcred = p->p_ucred; crcopy(newcred, oldcred); /* * cr_groups[0] holds egid. Setting the whole set from * the supplied set will cause egid to be changed too. * Keep cr_groups[0] unchanged to prevent that. */ if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { PROC_UNLOCK(p); crfree(newcred); goto out; } if (ngrp > 0) { newcred->cr_ngroups = ngrp + 1; bsd_gidset = newcred->cr_groups; ngrp--; while (ngrp >= 0) { bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; ngrp--; } } else newcred->cr_ngroups = 1; setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); error = 0; out: free(linux_gidset, M_LINUX); return (error); } int linux_getgroups(struct thread *td, struct linux_getgroups_args *args) { struct ucred *cred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int bsd_gidsetsz, ngrp, error; cred = td->td_ucred; bsd_gidset = cred->cr_groups; bsd_gidsetsz = cred->cr_ngroups - 1; /* * cr_groups[0] holds egid. Returning the whole set * here will cause a duplicate. Exclude cr_groups[0] * to prevent that. */ if ((ngrp = args->gidsetsize) == 0) { td->td_retval[0] = bsd_gidsetsz; return (0); } if (ngrp < bsd_gidsetsz) return (EINVAL); ngrp = 0; linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), M_LINUX, M_WAITOK); while (ngrp < bsd_gidsetsz) { linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; ngrp++; } error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); free(linux_gidset, M_LINUX); if (error) return (error); td->td_retval[0] = ngrp; return (0); } static bool linux_get_dummy_limit(l_uint resource, struct rlimit *rlim) { if (linux_dummy_rlimits == 0) return (false); switch (resource) { case LINUX_RLIMIT_LOCKS: case LINUX_RLIMIT_SIGPENDING: case LINUX_RLIMIT_MSGQUEUE: case LINUX_RLIMIT_RTTIME: rlim->rlim_cur = LINUX_RLIM_INFINITY; rlim->rlim_max = LINUX_RLIM_INFINITY; return (true); case LINUX_RLIMIT_NICE: case LINUX_RLIMIT_RTPRIO: rlim->rlim_cur = 0; rlim->rlim_max = 0; return (true); default: return (false); } } int linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) { struct rlimit bsd_rlim; struct l_rlimit rlim; u_int which; int error; if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); error = copyin(args->rlim, &rlim, sizeof(rlim)); if (error) return (error); bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; return (kern_setrlimit(td, which, &bsd_rlim)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) { struct l_rlimit rlim; struct rlimit bsd_rlim; u_int which; if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { rlim.rlim_cur = bsd_rlim.rlim_cur; rlim.rlim_max = bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); lim_rlimit(td, which, &bsd_rlim); #ifdef COMPAT_LINUX32 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; if (rlim.rlim_cur == UINT_MAX) rlim.rlim_cur = INT_MAX; rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; if (rlim.rlim_max == UINT_MAX) rlim.rlim_max = INT_MAX; #else rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; if (rlim.rlim_cur == ULONG_MAX) rlim.rlim_cur = LONG_MAX; rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; if (rlim.rlim_max == ULONG_MAX) rlim.rlim_max = LONG_MAX; #endif return (copyout(&rlim, args->rlim, sizeof(rlim))); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) { struct l_rlimit rlim; struct rlimit bsd_rlim; u_int which; if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { rlim.rlim_cur = bsd_rlim.rlim_cur; rlim.rlim_max = bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); lim_rlimit(td, which, &bsd_rlim); rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_sched_setscheduler(struct thread *td, struct linux_sched_setscheduler_args *args) { struct sched_param sched_param; struct thread *tdt; int error, policy; switch (args->policy) { case LINUX_SCHED_OTHER: policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: policy = SCHED_FIFO; break; case LINUX_SCHED_RR: policy = SCHED_RR; break; default: return (EINVAL); } error = copyin(args->param, &sched_param, sizeof(sched_param)); if (error) return (error); if (linux_map_sched_prio) { switch (policy) { case SCHED_OTHER: if (sched_param.sched_priority != 0) return (EINVAL); sched_param.sched_priority = PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; break; case SCHED_FIFO: case SCHED_RR: if (sched_param.sched_priority < 1 || sched_param.sched_priority >= LINUX_MAX_RT_PRIO) return (EINVAL); /* * Map [1, LINUX_MAX_RT_PRIO - 1] to * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). */ sched_param.sched_priority = (sched_param.sched_priority - 1) * (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / (LINUX_MAX_RT_PRIO - 1); break; } } tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_setscheduler(td, tdt, policy, &sched_param); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getscheduler(struct thread *td, struct linux_sched_getscheduler_args *args) { struct thread *tdt; int error, policy; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getscheduler(td, tdt, &policy); PROC_UNLOCK(tdt->td_proc); switch (policy) { case SCHED_OTHER: td->td_retval[0] = LINUX_SCHED_OTHER; break; case SCHED_FIFO: td->td_retval[0] = LINUX_SCHED_FIFO; break; case SCHED_RR: td->td_retval[0] = LINUX_SCHED_RR; break; } return (error); } int linux_sched_get_priority_max(struct thread *td, struct linux_sched_get_priority_max_args *args) { struct sched_get_priority_max_args bsd; if (linux_map_sched_prio) { switch (args->policy) { case LINUX_SCHED_OTHER: td->td_retval[0] = 0; return (0); case LINUX_SCHED_FIFO: case LINUX_SCHED_RR: td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; return (0); default: return (EINVAL); } } switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_max(td, &bsd)); } int linux_sched_get_priority_min(struct thread *td, struct linux_sched_get_priority_min_args *args) { struct sched_get_priority_min_args bsd; if (linux_map_sched_prio) { switch (args->policy) { case LINUX_SCHED_OTHER: td->td_retval[0] = 0; return (0); case LINUX_SCHED_FIFO: case LINUX_SCHED_RR: td->td_retval[0] = 1; return (0); default: return (EINVAL); } } switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_min(td, &bsd)); } #define REBOOT_CAD_ON 0x89abcdef #define REBOOT_CAD_OFF 0 #define REBOOT_HALT 0xcdef0123 #define REBOOT_RESTART 0x01234567 #define REBOOT_RESTART2 0xA1B2C3D4 #define REBOOT_POWEROFF 0x4321FEDC #define REBOOT_MAGIC1 0xfee1dead #define REBOOT_MAGIC2 0x28121969 #define REBOOT_MAGIC2A 0x05121996 #define REBOOT_MAGIC2B 0x16041998 int linux_reboot(struct thread *td, struct linux_reboot_args *args) { struct reboot_args bsd_args; if (args->magic1 != REBOOT_MAGIC1) return (EINVAL); switch (args->magic2) { case REBOOT_MAGIC2: case REBOOT_MAGIC2A: case REBOOT_MAGIC2B: break; default: return (EINVAL); } switch (args->cmd) { case REBOOT_CAD_ON: case REBOOT_CAD_OFF: return (priv_check(td, PRIV_REBOOT)); case REBOOT_HALT: bsd_args.opt = RB_HALT; break; case REBOOT_RESTART: case REBOOT_RESTART2: bsd_args.opt = 0; break; case REBOOT_POWEROFF: bsd_args.opt = RB_POWEROFF; break; default: return (EINVAL); } return (sys_reboot(td, &bsd_args)); } int linux_getpid(struct thread *td, struct linux_getpid_args *args) { td->td_retval[0] = td->td_proc->p_pid; return (0); } int linux_gettid(struct thread *td, struct linux_gettid_args *args) { struct linux_emuldata *em; em = em_find(td); KASSERT(em != NULL, ("gettid: emuldata not found.\n")); td->td_retval[0] = em->em_tid; return (0); } int linux_getppid(struct thread *td, struct linux_getppid_args *args) { td->td_retval[0] = kern_getppid(td); return (0); } int linux_getgid(struct thread *td, struct linux_getgid_args *args) { td->td_retval[0] = td->td_ucred->cr_rgid; return (0); } int linux_getuid(struct thread *td, struct linux_getuid_args *args) { td->td_retval[0] = td->td_ucred->cr_ruid; return (0); } int linux_getsid(struct thread *td, struct linux_getsid_args *args) { return (kern_getsid(td, args->pid)); } int linux_getpriority(struct thread *td, struct linux_getpriority_args *args) { int error; error = kern_getpriority(td, args->which, args->who); td->td_retval[0] = 20 - td->td_retval[0]; return (error); } int linux_sethostname(struct thread *td, struct linux_sethostname_args *args) { int name[2]; name[0] = CTL_KERN; name[1] = KERN_HOSTNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, args->len, 0, 0)); } int linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) { int name[2]; name[0] = CTL_KERN; name[1] = KERN_NISDOMAINNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, args->len, 0, 0)); } int linux_exit_group(struct thread *td, struct linux_exit_group_args *args) { LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, args->error_code); /* * XXX: we should send a signal to the parent if * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) * as it doesnt occur often. */ exit1(td, args->error_code, 0); /* NOTREACHED */ } #define _LINUX_CAPABILITY_VERSION_1 0x19980330 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 struct l_user_cap_header { l_int version; l_int pid; }; struct l_user_cap_data { l_int effective; l_int permitted; l_int inheritable; }; int linux_capget(struct thread *td, struct linux_capget_args *uap) { struct l_user_cap_header luch; struct l_user_cap_data lucd[2]; int error, u32s; if (uap->hdrp == NULL) return (EFAULT); error = copyin(uap->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); switch (luch.version) { case _LINUX_CAPABILITY_VERSION_1: u32s = 1; break; case _LINUX_CAPABILITY_VERSION_2: case _LINUX_CAPABILITY_VERSION_3: u32s = 2; break; default: luch.version = _LINUX_CAPABILITY_VERSION_1; error = copyout(&luch, uap->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); if (uap->datap) { /* * The current implementation doesn't support setting * a capability (it's essentially a stub) so indicate * that no capabilities are currently set or available * to request. */ memset(&lucd, 0, u32s * sizeof(lucd[0])); error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); } return (error); } int linux_capset(struct thread *td, struct linux_capset_args *uap) { struct l_user_cap_header luch; struct l_user_cap_data lucd[2]; int error, i, u32s; if (uap->hdrp == NULL || uap->datap == NULL) return (EFAULT); error = copyin(uap->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); switch (luch.version) { case _LINUX_CAPABILITY_VERSION_1: u32s = 1; break; case _LINUX_CAPABILITY_VERSION_2: case _LINUX_CAPABILITY_VERSION_3: u32s = 2; break; default: luch.version = _LINUX_CAPABILITY_VERSION_1; error = copyout(&luch, uap->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); if (error != 0) return (error); /* We currently don't support setting any capabilities. */ for (i = 0; i < u32s; i++) { if (lucd[i].effective || lucd[i].permitted || lucd[i].inheritable) { linux_msg(td, "capset[%d] effective=0x%x, permitted=0x%x, " "inheritable=0x%x is not implemented", i, (int)lucd[i].effective, (int)lucd[i].permitted, (int)lucd[i].inheritable); return (EPERM); } } return (0); } int linux_prctl(struct thread *td, struct linux_prctl_args *args) { int error = 0, max_size, arg; struct proc *p = td->td_proc; char comm[LINUX_MAX_COMM_LEN]; int pdeath_signal, trace_state; switch (args->option) { case LINUX_PR_SET_PDEATHSIG: if (!LINUX_SIG_VALID(args->arg2)) return (EINVAL); pdeath_signal = linux_to_bsd_signal(args->arg2); return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, &pdeath_signal)); case LINUX_PR_GET_PDEATHSIG: error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, &pdeath_signal); if (error != 0) return (error); pdeath_signal = bsd_to_linux_signal(pdeath_signal); return (copyout(&pdeath_signal, (void *)(register_t)args->arg2, sizeof(pdeath_signal))); /* * In Linux, this flag controls if set[gu]id processes can coredump. * There are additional semantics imposed on processes that cannot * coredump: * - Such processes can not be ptraced. * - There are some semantics around ownership of process-related files * in the /proc namespace. * * In FreeBSD, we can (and by default, do) disable setuid coredump * system-wide with 'sugid_coredump.' We control tracability on a * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag). * By happy coincidence, P2_NOTRACE also prevents coredumping. So the * procctl is roughly analogous to Linux's DUMPABLE. * * So, proxy these knobs to the corresponding PROC_TRACE setting. */ case LINUX_PR_GET_DUMPABLE: error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS, &trace_state); if (error != 0) return (error); td->td_retval[0] = (trace_state != -1); return (0); case LINUX_PR_SET_DUMPABLE: /* * It is only valid for userspace to set one of these two * flags, and only one at a time. */ switch (args->arg2) { case LINUX_SUID_DUMP_DISABLE: trace_state = PROC_TRACE_CTL_DISABLE_EXEC; break; case LINUX_SUID_DUMP_USER: trace_state = PROC_TRACE_CTL_ENABLE; break; default: return (EINVAL); } return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL, &trace_state)); case LINUX_PR_GET_KEEPCAPS: /* * Indicate that we always clear the effective and * permitted capability sets when the user id becomes * non-zero (actually the capability sets are simply * always zero in the current implementation). */ td->td_retval[0] = 0; break; case LINUX_PR_SET_KEEPCAPS: /* * Ignore requests to keep the effective and permitted * capability sets when the user id becomes non-zero. */ break; case LINUX_PR_SET_NAME: /* * To be on the safe side we need to make sure to not * overflow the size a Linux program expects. We already * do this here in the copyin, so that we don't need to * check on copyout. */ max_size = MIN(sizeof(comm), sizeof(p->p_comm)); error = copyinstr((void *)(register_t)args->arg2, comm, max_size, NULL); /* Linux silently truncates the name if it is too long. */ if (error == ENAMETOOLONG) { /* * XXX: copyinstr() isn't documented to populate the * array completely, so do a copyin() to be on the * safe side. This should be changed in case * copyinstr() is changed to guarantee this. */ error = copyin((void *)(register_t)args->arg2, comm, max_size - 1); comm[max_size - 1] = '\0'; } if (error) return (error); PROC_LOCK(p); strlcpy(p->p_comm, comm, sizeof(p->p_comm)); PROC_UNLOCK(p); break; case LINUX_PR_GET_NAME: PROC_LOCK(p); strlcpy(comm, p->p_comm, sizeof(comm)); PROC_UNLOCK(p); error = copyout(comm, (void *)(register_t)args->arg2, strlen(comm) + 1); break; case LINUX_PR_GET_SECCOMP: case LINUX_PR_SET_SECCOMP: /* * Same as returned by Linux without CONFIG_SECCOMP enabled. */ error = EINVAL; break; case LINUX_PR_CAPBSET_READ: #if 0 /* * This makes too much noise with Ubuntu Focal. */ linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d", (int)args->arg2); #endif error = EINVAL; break; case LINUX_PR_SET_NO_NEW_PRIVS: arg = args->arg2 == 1 ? PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE; error = kern_procctl(td, P_PID, p->p_pid, PROC_NO_NEW_PRIVS_CTL, &arg); break; case LINUX_PR_SET_PTRACER: linux_msg(td, "unsupported prctl PR_SET_PTRACER"); error = EINVAL; break; default: linux_msg(td, "unsupported prctl option %d", args->option); error = EINVAL; break; } return (error); } int linux_sched_setparam(struct thread *td, struct linux_sched_setparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error, policy; error = copyin(uap->param, &sched_param, sizeof(sched_param)); if (error) return (error); tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); if (linux_map_sched_prio) { error = kern_sched_getscheduler(td, tdt, &policy); if (error) goto out; switch (policy) { case SCHED_OTHER: if (sched_param.sched_priority != 0) { error = EINVAL; goto out; } sched_param.sched_priority = PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; break; case SCHED_FIFO: case SCHED_RR: if (sched_param.sched_priority < 1 || sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { error = EINVAL; goto out; } /* * Map [1, LINUX_MAX_RT_PRIO - 1] to * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). */ sched_param.sched_priority = (sched_param.sched_priority - 1) * (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / (LINUX_MAX_RT_PRIO - 1); break; } } error = kern_sched_setparam(td, tdt, &sched_param); out: PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getparam(struct thread *td, struct linux_sched_getparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error, policy; tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getparam(td, tdt, &sched_param); if (error) { PROC_UNLOCK(tdt->td_proc); return (error); } if (linux_map_sched_prio) { error = kern_sched_getscheduler(td, tdt, &policy); PROC_UNLOCK(tdt->td_proc); if (error) return (error); switch (policy) { case SCHED_OTHER: sched_param.sched_priority = 0; break; case SCHED_FIFO: case SCHED_RR: /* * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). */ sched_param.sched_priority = (sched_param.sched_priority * (LINUX_MAX_RT_PRIO - 1) + (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; break; } } else PROC_UNLOCK(tdt->td_proc); error = copyout(&sched_param, uap->param, sizeof(sched_param)); return (error); } /* * Get affinity of a process. */ int linux_sched_getaffinity(struct thread *td, struct linux_sched_getaffinity_args *args) { struct thread *tdt; cpuset_t *mask; size_t size; int error; id_t tid; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); tid = tdt->td_tid; PROC_UNLOCK(tdt->td_proc); mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO); size = min(args->len, sizeof(cpuset_t)); error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, tid, size, mask); if (error == ERANGE) error = EINVAL; if (error == 0) error = copyout(mask, args->user_mask_ptr, size); if (error == 0) td->td_retval[0] = size; free(mask, M_LINUX); return (error); } /* * Set affinity of a process. */ int linux_sched_setaffinity(struct thread *td, struct linux_sched_setaffinity_args *args) { struct thread *tdt; cpuset_t *mask; int cpu, error; size_t len; id_t tid; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); tid = tdt->td_tid; PROC_UNLOCK(tdt->td_proc); len = min(args->len, sizeof(cpuset_t)); mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); error = copyin(args->user_mask_ptr, mask, len); if (error != 0) goto out; /* Linux ignore high bits */ CPU_FOREACH_ISSET(cpu, mask) if (cpu > mp_maxid) CPU_CLR(cpu, mask); error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, tid, mask); if (error == EDEADLK) error = EINVAL; out: free(mask, M_TEMP); return (error); } struct linux_rlimit64 { uint64_t rlim_cur; uint64_t rlim_max; }; int linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) { struct rlimit rlim, nrlim; struct linux_rlimit64 lrlim; struct proc *p; u_int which; int flags; int error; if (args->new == NULL && args->old != NULL) { if (linux_get_dummy_limit(args->resource, &rlim)) { lrlim.rlim_cur = rlim.rlim_cur; lrlim.rlim_max = rlim.rlim_max; return (copyout(&lrlim, args->old, sizeof(lrlim))); } } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); if (args->new != NULL) { /* * Note. Unlike FreeBSD where rlim is signed 64-bit Linux * rlim is unsigned 64-bit. FreeBSD treats negative limits * as INFINITY so we do not need a conversion even. */ error = copyin(args->new, &nrlim, sizeof(nrlim)); if (error != 0) return (error); } flags = PGET_HOLD | PGET_NOTWEXIT; if (args->new != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; if (args->pid == 0) { p = td->td_proc; PHOLD(p); } else { error = pget(args->pid, flags, &p); if (error != 0) return (error); } if (args->old != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); if (rlim.rlim_cur == RLIM_INFINITY) lrlim.rlim_cur = LINUX_RLIM_INFINITY; else lrlim.rlim_cur = rlim.rlim_cur; if (rlim.rlim_max == RLIM_INFINITY) lrlim.rlim_max = LINUX_RLIM_INFINITY; else lrlim.rlim_max = rlim.rlim_max; error = copyout(&lrlim, args->old, sizeof(lrlim)); if (error != 0) goto out; } if (args->new != NULL) error = kern_proc_setrlimit(td, p, which, &nrlim); out: PRELE(p); return (error); } int linux_pselect6(struct thread *td, struct linux_pselect6_args *args) { struct timespec ts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec(&ts, args->tsp); if (error != 0) return (error); tsp = &ts; } else tsp = NULL; error = linux_common_pselect6(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tsp, args->sig); if (args->tsp != NULL) linux_put_timespec(&ts, args->tsp); return (error); } static int linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds, l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp, l_uintptr_t *sig) { struct timeval utv, tv0, tv1, *tvp; struct l_pselect6arg lpse6; sigset_t *ssp; sigset_t ss; int error; ssp = NULL; if (sig != NULL) { error = copyin(sig, &lpse6, sizeof(lpse6)); if (error != 0) return (error); error = linux_copyin_sigset(td, PTRIN(lpse6.ss), lpse6.ss_len, &ss, &ssp); if (error != 0) return (error); } else ssp = NULL; /* * Currently glibc changes nanosecond number to microsecond. * This mean losing precision but for now it is hardly seen. */ if (tsp != NULL) { TIMESPEC_TO_TIMEVAL(&utv, tsp); if (itimerfix(&utv)) return (EINVAL); microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_pselect(td, nfds, readfds, writefds, exceptfds, tvp, ssp, LINUX_NFDBITS); if (tsp != NULL) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); TIMEVAL_TO_TIMESPEC(&utv, tsp); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_pselect6_time64(struct thread *td, struct linux_pselect6_time64_args *args) { struct timespec ts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec64(&ts, args->tsp); if (error != 0) return (error); tsp = &ts; } else tsp = NULL; error = linux_common_pselect6(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tsp, args->sig); if (args->tsp != NULL) linux_put_timespec64(&ts, args->tsp); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_ppoll(struct thread *td, struct linux_ppoll_args *args) { struct timespec uts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec(&uts, args->tsp); if (error != 0) return (error); tsp = &uts; } else tsp = NULL; error = linux_common_ppoll(td, args->fds, args->nfds, tsp, args->sset, args->ssize); if (error == 0 && args->tsp != NULL) error = linux_put_timespec(&uts, args->tsp); return (error); } static int linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds, struct timespec *tsp, l_sigset_t *sset, l_size_t ssize) { struct timespec ts0, ts1; struct pollfd stackfds[32]; struct pollfd *kfds; sigset_t *ssp; sigset_t ss; int error; if (kern_poll_maxfds(nfds)) return (EINVAL); if (sset != NULL) { error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp); if (error != 0) return (error); } else ssp = NULL; if (tsp != NULL) nanotime(&ts0); if (nfds > nitems(stackfds)) kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); else kfds = stackfds; error = linux_pollin(td, kfds, fds, nfds); if (error != 0) goto out; error = kern_poll_kfds(td, kfds, nfds, tsp, ssp); if (error == 0) error = linux_pollout(td, kfds, fds, nfds); if (error == 0 && tsp != NULL) { if (td->td_retval[0]) { nanotime(&ts1); timespecsub(&ts1, &ts0, &ts1); timespecsub(tsp, &ts1, tsp); if (tsp->tv_sec < 0) timespecclear(tsp); } else timespecclear(tsp); } out: if (nfds > nitems(stackfds)) free(kfds, M_TEMP); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args) { struct timespec uts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec64(&uts, args->tsp); if (error != 0) return (error); tsp = &uts; } else tsp = NULL; error = linux_common_ppoll(td, args->fds, args->nfds, tsp, args->sset, args->ssize); if (error == 0 && args->tsp != NULL) error = linux_put_timespec64(&uts, args->tsp); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ static int linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) { int error; u_int i; error = copyin(ufds, fds, nfd * sizeof(*fds)); if (error != 0) return (error); for (i = 0; i < nfd; i++) { if (fds->events != 0) linux_to_bsd_poll_events(td, fds->fd, fds->events, &fds->events); fds++; } return (0); } static int linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) { int error = 0; u_int i, n = 0; for (i = 0; i < nfd; i++) { if (fds->revents != 0) { bsd_to_linux_poll_events(fds->revents, &fds->revents); n++; } error = copyout(&fds->revents, &ufds->revents, sizeof(ufds->revents)); if (error) return (error); fds++; ufds++; } td->td_retval[0] = n; return (0); } static int linux_sched_rr_get_interval_common(struct thread *td, pid_t pid, struct timespec *ts) { struct thread *tdt; int error; /* * According to man in case the invalid pid specified * EINVAL should be returned. */ if (pid < 0) return (EINVAL); tdt = linux_tdfind(td, pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_rr_get_interval_td(td, tdt, ts); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_rr_get_interval(struct thread *td, struct linux_sched_rr_get_interval_args *uap) { struct timespec ts; int error; error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); if (error != 0) return (error); return (linux_put_timespec(&ts, uap->interval)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_sched_rr_get_interval_time64(struct thread *td, struct linux_sched_rr_get_interval_time64_args *uap) { struct timespec ts; int error; error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); if (error != 0) return (error); return (linux_put_timespec64(&ts, uap->interval)); } #endif /* * In case when the Linux thread is the initial thread in * the thread group thread id is equal to the process id. * Glibc depends on this magic (assert in pthread_getattr_np.c). */ struct thread * linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) { struct linux_emuldata *em; struct thread *tdt; struct proc *p; tdt = NULL; if (tid == 0 || tid == td->td_tid) { if (pid != -1 && td->td_proc->p_pid != pid) return (NULL); PROC_LOCK(td->td_proc); return (td); } else if (tid > PID_MAX) return (tdfind(tid, pid)); /* * Initial thread where the tid equal to the pid. */ p = pfind(tid); if (p != NULL) { if (SV_PROC_ABI(p) != SV_ABI_LINUX || (pid != -1 && tid != pid)) { /* * p is not a Linuxulator process. */ PROC_UNLOCK(p); return (NULL); } FOREACH_THREAD_IN_PROC(p, tdt) { em = em_find(tdt); if (tid == em->em_tid) return (tdt); } PROC_UNLOCK(p); } return (NULL); } void linux_to_bsd_waitopts(int options, int *bsdopts) { if (options & LINUX_WNOHANG) *bsdopts |= WNOHANG; if (options & LINUX_WUNTRACED) *bsdopts |= WUNTRACED; if (options & LINUX_WEXITED) *bsdopts |= WEXITED; if (options & LINUX_WCONTINUED) *bsdopts |= WCONTINUED; if (options & LINUX_WNOWAIT) *bsdopts |= WNOWAIT; if (options & __WCLONE) *bsdopts |= WLINUXCLONE; } int linux_getrandom(struct thread *td, struct linux_getrandom_args *args) { struct uio uio; struct iovec iov; int error; if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) return (EINVAL); if (args->count > INT_MAX) args->count = INT_MAX; iov.iov_base = args->buf; iov.iov_len = args->count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_resid = iov.iov_len; uio.uio_segflg = UIO_USERSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); if (error == 0) td->td_retval[0] = args->count - uio.uio_resid; return (error); } int linux_mincore(struct thread *td, struct linux_mincore_args *args) { /* Needs to be page-aligned */ if (args->start & PAGE_MASK) return (EINVAL); return (kern_mincore(td, args->start, args->len, args->vec)); } #define SYSLOG_TAG "<6>" int linux_syslog(struct thread *td, struct linux_syslog_args *args) { char buf[128], *src, *dst; u_int seq; int buflen, error; if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { linux_msg(td, "syslog unsupported type 0x%x", args->type); return (EINVAL); } if (args->len < 6) { td->td_retval[0] = 0; return (0); } error = priv_check(td, PRIV_MSGBUF); if (error) return (error); mtx_lock(&msgbuf_lock); msgbuf_peekbytes(msgbufp, NULL, 0, &seq); mtx_unlock(&msgbuf_lock); dst = args->buf; error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); /* The -1 is to skip the trailing '\0'. */ dst += sizeof(SYSLOG_TAG) - 1; while (error == 0) { mtx_lock(&msgbuf_lock); buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); mtx_unlock(&msgbuf_lock); if (buflen == 0) break; for (src = buf; src < buf + buflen && error == 0; src++) { if (*src == '\0') continue; if (dst >= args->buf + args->len) goto out; error = copyout(src, dst, 1); dst++; if (*src == '\n' && *(src + 1) != '<' && dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); dst += sizeof(SYSLOG_TAG) - 1; } } } out: td->td_retval[0] = dst - args->buf; return (error); } int linux_getcpu(struct thread *td, struct linux_getcpu_args *args) { int cpu, error, node; cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ error = 0; node = cpuid_to_pcpu[cpu]->pc_domain; if (args->cpu != NULL) error = copyout(&cpu, args->cpu, sizeof(l_int)); if (args->node != NULL) error = copyout(&node, args->node, sizeof(l_int)); return (error); } #if defined(__i386__) || defined(__amd64__) int linux_poll(struct thread *td, struct linux_poll_args *args) { struct timespec ts, *tsp; if (args->timeout != INFTIM) { if (args->timeout < 0) return (EINVAL); ts.tv_sec = args->timeout / 1000; ts.tv_nsec = (args->timeout % 1000) * 1000000; tsp = &ts; } else tsp = NULL; return (linux_common_ppoll(td, args->fds, args->nfds, tsp, NULL, 0)); } #endif /* __i386__ || __amd64__ */ int linux_seccomp(struct thread *td, struct linux_seccomp_args *args) { switch (args->op) { case LINUX_SECCOMP_GET_ACTION_AVAIL: return (EOPNOTSUPP); default: /* * Ignore unknown operations, just like Linux kernel built * without CONFIG_SECCOMP. */ return (EINVAL); } } /* * Custom version of exec_copyin_args(), to copy out argument and environment * strings from the old process address space into the temporary string buffer. * Based on freebsd32_exec_copyin_args. */ static int linux_exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, l_uintptr_t *argv, l_uintptr_t *envv) { char *argp, *envp; l_uintptr_t *ptr, arg; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ error = exec_args_add_fname(args, fname, segflg); if (error != 0) goto err_exit; /* * extract arguments first */ ptr = argv; for (;;) { error = copyin(ptr++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; argp = PTRIN(arg); error = exec_args_add_arg(args, argp, UIO_USERSPACE); if (error != 0) goto err_exit; } /* * This comment is from Linux do_execveat_common: * When argv is empty, add an empty string ("") as argv[0] to * ensure confused userspace programs that start processing * from argv[1] won't end up walking envp. */ if (args->argc == 0 && (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0)) goto err_exit; /* * extract environment strings */ if (envv) { ptr = envv; for (;;) { error = copyin(ptr++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; envp = PTRIN(arg); error = exec_args_add_env(args, envp, UIO_USERSPACE); if (error != 0) goto err_exit; } } return (0); err_exit: exec_free_args(args); return (error); } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; int error; LINUX_CTR(execve); error = linux_exec_copyin_args(&eargs, args->path, UIO_USERSPACE, args->argp, args->envp); if (error == 0) error = linux_common_execve(td, &eargs); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } static void linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp) { struct rtprio rtp2; pri_to_rtp(td1, &rtp2); if (rtp2.type < rtp->type || (rtp2.type == rtp->type && rtp2.prio < rtp->prio)) { rtp->type = rtp2.type; rtp->prio = rtp2.prio; } } #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX static int linux_rtprio2ioprio(struct rtprio *rtp) { int ioprio, prio; switch (rtp->type) { case RTP_PRIO_IDLE: prio = RTP_PRIO_MIN; ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio); break; case RTP_PRIO_NORMAL: prio = rtp->prio / LINUX_PRIO_DIVIDER; ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio); break; case RTP_PRIO_REALTIME: prio = rtp->prio / LINUX_PRIO_DIVIDER; ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio); break; default: prio = RTP_PRIO_MIN; ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio); break; } return (ioprio); } static int linux_ioprio2rtprio(int ioprio, struct rtprio *rtp) { switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) { case LINUX_IOPRIO_CLASS_IDLE: rtp->prio = RTP_PRIO_MIN; rtp->type = RTP_PRIO_IDLE; break; case LINUX_IOPRIO_CLASS_BE: rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; rtp->type = RTP_PRIO_NORMAL; break; case LINUX_IOPRIO_CLASS_RT: rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER; rtp->type = RTP_PRIO_REALTIME; break; default: return (EINVAL); } return (0); } #undef LINUX_PRIO_DIVIDER int linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args) { struct thread *td1; struct rtprio rtp; struct pgrp *pg; struct proc *p; int error, found; p = NULL; td1 = NULL; error = 0; found = 0; rtp.type = RTP_PRIO_IDLE; rtp.prio = RTP_PRIO_MAX; switch (args->which) { case LINUX_IOPRIO_WHO_PROCESS: if (args->who == 0) { td1 = td; p = td1->td_proc; PROC_LOCK(p); } else if (args->who > PID_MAX) { td1 = linux_tdfind(td, args->who, -1); if (td1 != NULL) p = td1->td_proc; } else p = pfind(args->who); if (p == NULL) return (ESRCH); if ((error = p_cansee(td, p))) { PROC_UNLOCK(p); break; } if (td1 != NULL) { pri_to_rtp(td1, &rtp); } else { FOREACH_THREAD_IN_PROC(p, td1) { linux_up_rtprio_if(td1, &rtp); } } found++; PROC_UNLOCK(p); break; case LINUX_IOPRIO_WHO_PGRP: sx_slock(&proctree_lock); if (args->who == 0) { pg = td->td_proc->p_pgrp; PGRP_LOCK(pg); } else { pg = pgfind(args->who); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; break; } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && p_cansee(td, p) == 0) { FOREACH_THREAD_IN_PROC(p, td1) { linux_up_rtprio_if(td1, &rtp); found++; } } PROC_UNLOCK(p); } PGRP_UNLOCK(pg); break; case LINUX_IOPRIO_WHO_USER: if (args->who == 0) args->who = td->td_ucred->cr_uid; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && p->p_ucred->cr_uid == args->who && p_cansee(td, p) == 0) { FOREACH_THREAD_IN_PROC(p, td1) { linux_up_rtprio_if(td1, &rtp); found++; } } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); break; default: error = EINVAL; break; } if (error == 0) { if (found != 0) td->td_retval[0] = linux_rtprio2ioprio(&rtp); else error = ESRCH; } return (error); } int linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args) { struct thread *td1; struct rtprio rtp; struct pgrp *pg; struct proc *p; int error; if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0) return (error); /* Attempts to set high priorities (REALTIME) require su privileges. */ if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) return (error); p = NULL; td1 = NULL; switch (args->which) { case LINUX_IOPRIO_WHO_PROCESS: if (args->who == 0) { td1 = td; p = td1->td_proc; PROC_LOCK(p); } else if (args->who > PID_MAX) { td1 = linux_tdfind(td, args->who, -1); if (td1 != NULL) p = td1->td_proc; } else p = pfind(args->who); if (p == NULL) return (ESRCH); if ((error = p_cansched(td, p))) { PROC_UNLOCK(p); break; } if (td1 != NULL) { error = rtp_to_pri(&rtp, td1); } else { FOREACH_THREAD_IN_PROC(p, td1) { if ((error = rtp_to_pri(&rtp, td1)) != 0) break; } } PROC_UNLOCK(p); break; case LINUX_IOPRIO_WHO_PGRP: sx_slock(&proctree_lock); if (args->who == 0) { pg = td->td_proc->p_pgrp; PGRP_LOCK(pg); } else { pg = pgfind(args->who); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; break; } } sx_sunlock(&proctree_lock); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && p_cansched(td, p) == 0) { FOREACH_THREAD_IN_PROC(p, td1) { if ((error = rtp_to_pri(&rtp, td1)) != 0) break; } } PROC_UNLOCK(p); if (error != 0) break; } PGRP_UNLOCK(pg); break; case LINUX_IOPRIO_WHO_USER: if (args->who == 0) args->who = td->td_ucred->cr_uid; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NORMAL && p->p_ucred->cr_uid == args->who && p_cansched(td, p) == 0) { FOREACH_THREAD_IN_PROC(p, td1) { if ((error = rtp_to_pri(&rtp, td1)) != 0) break; } } PROC_UNLOCK(p); if (error != 0) break; } sx_sunlock(&allproc_lock); break; default: error = EINVAL; break; } return (error); }