/*- * Copyright (c) 2007 Roman Divacky * Copyright (c) 2014 Dmitry Chagin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include /* * epoll defines 'struct epoll_event' with the field 'data' as 64 bits * on all architectures. But on 32 bit architectures BSD 'struct kevent' only * has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied * data verbatuim. Therefore we allocate 64-bit memory block to pass * user supplied data for every file descriptor. */ typedef uint64_t epoll_udata_t; struct epoll_emuldata { uint32_t fdc; /* epoll udata max index */ epoll_udata_t udata[1]; /* epoll user data vector */ }; #define EPOLL_DEF_SZ 16 #define EPOLL_SIZE(fdn) \ (sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t)) struct epoll_event { uint32_t events; epoll_udata_t data; } #if defined(__amd64__) __attribute__((packed)) #endif ; #define LINUX_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) static void epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata); static int epoll_to_kevent(struct thread *td, struct file *epfp, int fd, struct epoll_event *l_event, int *kev_flags, struct kevent *kevent, int *nkevents); static void kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event); static int epoll_kev_copyout(void *arg, struct kevent *kevp, int count); static int epoll_kev_copyin(void *arg, struct kevent *kevp, int count); static int epoll_delete_event(struct thread *td, struct file *epfp, int fd, int filter); static int epoll_delete_all_events(struct thread *td, struct file *epfp, int fd); struct epoll_copyin_args { struct kevent *changelist; }; struct epoll_copyout_args { struct epoll_event *leventlist; struct proc *p; uint32_t count; int error; }; /* eventfd */ typedef uint64_t eventfd_t; static fo_rdwr_t eventfd_read; static fo_rdwr_t eventfd_write; static fo_ioctl_t eventfd_ioctl; static fo_poll_t eventfd_poll; static fo_kqfilter_t eventfd_kqfilter; static fo_stat_t eventfd_stat; static fo_close_t eventfd_close; static fo_fill_kinfo_t eventfd_fill_kinfo; static struct fileops eventfdops = { .fo_read = eventfd_read, .fo_write = eventfd_write, .fo_truncate = invfo_truncate, .fo_ioctl = eventfd_ioctl, .fo_poll = eventfd_poll, .fo_kqfilter = eventfd_kqfilter, .fo_stat = eventfd_stat, .fo_close = eventfd_close, .fo_chmod = invfo_chmod, .fo_chown = invfo_chown, .fo_sendfile = invfo_sendfile, .fo_fill_kinfo = eventfd_fill_kinfo, .fo_flags = DFLAG_PASSABLE }; static void filt_eventfddetach(struct knote *kn); static int filt_eventfdread(struct knote *kn, long hint); static int filt_eventfdwrite(struct knote *kn, long hint); static struct filterops eventfd_rfiltops = { .f_isfd = 1, .f_detach = filt_eventfddetach, .f_event = filt_eventfdread }; static struct filterops eventfd_wfiltops = { .f_isfd = 1, .f_detach = filt_eventfddetach, .f_event = filt_eventfdwrite }; /* timerfd */ typedef uint64_t timerfd_t; static fo_rdwr_t timerfd_read; static fo_poll_t timerfd_poll; static fo_kqfilter_t timerfd_kqfilter; static fo_stat_t timerfd_stat; static fo_close_t timerfd_close; static fo_fill_kinfo_t timerfd_fill_kinfo; static struct fileops timerfdops = { .fo_read = timerfd_read, .fo_write = invfo_rdwr, .fo_truncate = invfo_truncate, .fo_ioctl = eventfd_ioctl, .fo_poll = timerfd_poll, .fo_kqfilter = timerfd_kqfilter, .fo_stat = timerfd_stat, .fo_close = timerfd_close, .fo_chmod = invfo_chmod, .fo_chown = invfo_chown, .fo_sendfile = invfo_sendfile, .fo_fill_kinfo = timerfd_fill_kinfo, .fo_flags = DFLAG_PASSABLE }; static void filt_timerfddetach(struct knote *kn); static int filt_timerfdread(struct knote *kn, long hint); static struct filterops timerfd_rfiltops = { .f_isfd = 1, .f_detach = filt_timerfddetach, .f_event = filt_timerfdread }; struct eventfd { eventfd_t efd_count; uint32_t efd_flags; struct selinfo efd_sel; struct mtx efd_lock; }; struct timerfd { clockid_t tfd_clockid; struct itimerspec tfd_time; struct callout tfd_callout; timerfd_t tfd_count; bool tfd_canceled; struct selinfo tfd_sel; struct mtx tfd_lock; }; static int eventfd_create(struct thread *td, uint32_t initval, int flags); static void linux_timerfd_expire(void *); static void linux_timerfd_curval(struct timerfd *, struct itimerspec *); static void epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata) { struct linux_pemuldata *pem; struct epoll_emuldata *emd; struct proc *p; p = td->td_proc; pem = pem_find(p); KASSERT(pem != NULL, ("epoll proc emuldata not found.\n")); LINUX_PEM_XLOCK(pem); if (pem->epoll == NULL) { emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK); emd->fdc = fd; pem->epoll = emd; } else { emd = pem->epoll; if (fd > emd->fdc) { emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK); emd->fdc = fd; pem->epoll = emd; } } emd->udata[fd] = udata; LINUX_PEM_XUNLOCK(pem); } static int epoll_create_common(struct thread *td, int flags) { int error; error = kern_kqueue(td, flags, NULL); if (error != 0) return (error); epoll_fd_install(td, EPOLL_DEF_SZ, 0); return (0); } #ifdef LINUX_LEGACY_SYSCALLS int linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args) { /* * args->size is unused. Linux just tests it * and then forgets it as well. */ if (args->size <= 0) return (EINVAL); return (epoll_create_common(td, 0)); } #endif int linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args) { int flags; if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0) return (EINVAL); flags = 0; if ((args->flags & LINUX_O_CLOEXEC) != 0) flags |= O_CLOEXEC; return (epoll_create_common(td, flags)); } /* Structure converting function from epoll to kevent. */ static int epoll_to_kevent(struct thread *td, struct file *epfp, int fd, struct epoll_event *l_event, int *kev_flags, struct kevent *kevent, int *nkevents) { uint32_t levents = l_event->events; struct linux_pemuldata *pem; struct proc *p; /* flags related to how event is registered */ if ((levents & LINUX_EPOLLONESHOT) != 0) *kev_flags |= EV_ONESHOT; if ((levents & LINUX_EPOLLET) != 0) *kev_flags |= EV_CLEAR; if ((levents & LINUX_EPOLLERR) != 0) *kev_flags |= EV_ERROR; if ((levents & LINUX_EPOLLRDHUP) != 0) *kev_flags |= EV_EOF; /* flags related to what event is registered */ if ((levents & LINUX_EPOLL_EVRD) != 0) { EV_SET(kevent++, fd, EVFILT_READ, *kev_flags, 0, 0, 0); ++(*nkevents); } if ((levents & LINUX_EPOLL_EVWR) != 0) { EV_SET(kevent++, fd, EVFILT_WRITE, *kev_flags, 0, 0, 0); ++(*nkevents); } if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) { p = td->td_proc; pem = pem_find(p); KASSERT(pem != NULL, ("epoll proc emuldata not found.\n")); KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n")); LINUX_PEM_XLOCK(pem); if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) { pem->flags |= LINUX_XUNSUP_EPOLL; LINUX_PEM_XUNLOCK(pem); linux_msg(td, "epoll_ctl unsupported flags: 0x%x\n", levents); } else LINUX_PEM_XUNLOCK(pem); return (EINVAL); } return (0); } /* * Structure converting function from kevent to epoll. In a case * this is called on error in registration we store the error in * event->data and pick it up later in linux_epoll_ctl(). */ static void kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event) { if ((kevent->flags & EV_ERROR) != 0) { l_event->events = LINUX_EPOLLERR; return; } /* XXX EPOLLPRI, EPOLLHUP */ switch (kevent->filter) { case EVFILT_READ: l_event->events = LINUX_EPOLLIN; if ((kevent->flags & EV_EOF) != 0) l_event->events |= LINUX_EPOLLRDHUP; break; case EVFILT_WRITE: l_event->events = LINUX_EPOLLOUT; break; } } /* * Copyout callback used by kevent. This converts kevent * events to epoll events and copies them back to the * userspace. This is also called on error on registering * of the filter. */ static int epoll_kev_copyout(void *arg, struct kevent *kevp, int count) { struct epoll_copyout_args *args; struct linux_pemuldata *pem; struct epoll_emuldata *emd; struct epoll_event *eep; int error, fd, i; args = (struct epoll_copyout_args*) arg; eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO); pem = pem_find(args->p); KASSERT(pem != NULL, ("epoll proc emuldata not found.\n")); LINUX_PEM_SLOCK(pem); emd = pem->epoll; KASSERT(emd != NULL, ("epoll proc epolldata not found.\n")); for (i = 0; i < count; i++) { kevent_to_epoll(&kevp[i], &eep[i]); fd = kevp[i].ident; KASSERT(fd <= emd->fdc, ("epoll user data vector" " is too small.\n")); eep[i].data = emd->udata[fd]; } LINUX_PEM_SUNLOCK(pem); error = copyout(eep, args->leventlist, count * sizeof(*eep)); if (error == 0) { args->leventlist += count; args->count += count; } else if (args->error == 0) args->error = error; free(eep, M_EPOLL); return (error); } /* * Copyin callback used by kevent. This copies already * converted filters from kernel memory to the kevent * internal kernel memory. Hence the memcpy instead of * copyin. */ static int epoll_kev_copyin(void *arg, struct kevent *kevp, int count) { struct epoll_copyin_args *args; args = (struct epoll_copyin_args*) arg; memcpy(kevp, args->changelist, count * sizeof(*kevp)); args->changelist += count; return (0); } /* * Load epoll filter, convert it to kevent filter * and load it into kevent subsystem. */ int linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args) { struct file *epfp, *fp; struct epoll_copyin_args ciargs; struct kevent kev[2]; struct kevent_copyops k_ops = { &ciargs, NULL, epoll_kev_copyin}; struct epoll_event le; cap_rights_t rights; int kev_flags; int nchanges = 0; int error; if (args->op != LINUX_EPOLL_CTL_DEL) { error = copyin(args->event, &le, sizeof(le)); if (error != 0) return (error); } error = fget(td, args->epfd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &epfp); if (error != 0) return (error); if (epfp->f_type != DTYPE_KQUEUE) { error = EINVAL; goto leave1; } /* Protect user data vector from incorrectly supplied fd. */ error = fget(td, args->fd, cap_rights_init(&rights, CAP_POLL_EVENT), &fp); if (error != 0) goto leave1; /* Linux disallows spying on himself */ if (epfp == fp) { error = EINVAL; goto leave0; } ciargs.changelist = kev; if (args->op != LINUX_EPOLL_CTL_DEL) { kev_flags = EV_ADD | EV_ENABLE; error = epoll_to_kevent(td, epfp, args->fd, &le, &kev_flags, kev, &nchanges); if (error != 0) goto leave0; } switch (args->op) { case LINUX_EPOLL_CTL_MOD: error = epoll_delete_all_events(td, epfp, args->fd); if (error != 0) goto leave0; break; case LINUX_EPOLL_CTL_ADD: /* * kqueue_register() return ENOENT if event does not exists * and the EV_ADD flag is not set. */ kev[0].flags &= ~EV_ADD; error = kqfd_register(args->epfd, &kev[0], td, 1); if (error != ENOENT) { error = EEXIST; goto leave0; } error = 0; kev[0].flags |= EV_ADD; break; case LINUX_EPOLL_CTL_DEL: /* CTL_DEL means unregister this fd with this epoll */ error = epoll_delete_all_events(td, epfp, args->fd); goto leave0; default: error = EINVAL; goto leave0; } epoll_fd_install(td, args->fd, le.data); error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL); leave0: fdrop(fp, td); leave1: fdrop(epfp, td); return (error); } /* * Wait for a filter to be triggered on the epoll file descriptor. */ static int linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events, int maxevents, int timeout, sigset_t *uset) { struct epoll_copyout_args coargs; struct kevent_copyops k_ops = { &coargs, epoll_kev_copyout, NULL}; struct timespec ts, *tsp; cap_rights_t rights; struct file *epfp; sigset_t omask; int error; if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS) return (EINVAL); error = fget(td, epfd, cap_rights_init(&rights, CAP_KQUEUE_EVENT), &epfp); if (error != 0) return (error); if (epfp->f_type != DTYPE_KQUEUE) { error = EINVAL; goto leave1; } if (uset != NULL) { error = kern_sigprocmask(td, SIG_SETMASK, uset, &omask, 0); if (error != 0) goto leave1; td->td_pflags |= TDP_OLDMASK; /* * Make sure that ast() is called on return to * usermode and TDP_OLDMASK is cleared, restoring old * sigmask. */ thread_lock(td); td->td_flags |= TDF_ASTPENDING; thread_unlock(td); } coargs.leventlist = events; coargs.p = td->td_proc; coargs.count = 0; coargs.error = 0; if (timeout != -1) { if (timeout < 0) { error = EINVAL; goto leave0; } /* Convert from milliseconds to timespec. */ ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; tsp = &ts; } else { tsp = NULL; } error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp); if (error == 0 && coargs.error != 0) error = coargs.error; /* * kern_kevent might return ENOMEM which is not expected from epoll_wait. * Maybe we should translate that but I don't think it matters at all. */ if (error == 0) td->td_retval[0] = coargs.count; leave0: if (uset != NULL) error = kern_sigprocmask(td, SIG_SETMASK, &omask, NULL, 0); leave1: fdrop(epfp, td); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args) { return (linux_epoll_wait_common(td, args->epfd, args->events, args->maxevents, args->timeout, NULL)); } #endif int linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args) { sigset_t mask, *pmask; l_sigset_t lmask; int error; if (args->mask != NULL) { if (args->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(args->mask, &lmask, sizeof(l_sigset_t)); if (error != 0) return (error); linux_to_bsd_sigset(&lmask, &mask); pmask = &mask; } else pmask = NULL; return (linux_epoll_wait_common(td, args->epfd, args->events, args->maxevents, args->timeout, pmask)); } static int epoll_delete_event(struct thread *td, struct file *epfp, int fd, int filter) { struct epoll_copyin_args ciargs; struct kevent kev; struct kevent_copyops k_ops = { &ciargs, NULL, epoll_kev_copyin}; ciargs.changelist = &kev; EV_SET(&kev, fd, filter, EV_DELETE | EV_DISABLE, 0, 0, 0); return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL)); } static int epoll_delete_all_events(struct thread *td, struct file *epfp, int fd) { int error1, error2; error1 = epoll_delete_event(td, epfp, fd, EVFILT_READ); error2 = epoll_delete_event(td, epfp, fd, EVFILT_WRITE); /* return 0 if at least one result positive */ return (error1 == 0 ? 0 : error2); } static int eventfd_create(struct thread *td, uint32_t initval, int flags) { struct filedesc *fdp; struct eventfd *efd; struct file *fp; int fflags, fd, error; fflags = 0; if ((flags & LINUX_O_CLOEXEC) != 0) fflags |= O_CLOEXEC; fdp = td->td_proc->p_fd; error = falloc(td, &fp, &fd, fflags); if (error != 0) return (error); efd = malloc(sizeof(*efd), M_EPOLL, M_WAITOK | M_ZERO); efd->efd_flags = flags; efd->efd_count = initval; mtx_init(&efd->efd_lock, "eventfd", NULL, MTX_DEF); knlist_init_mtx(&efd->efd_sel.si_note, &efd->efd_lock); fflags = FREAD | FWRITE; if ((flags & LINUX_O_NONBLOCK) != 0) fflags |= FNONBLOCK; finit(fp, fflags, DTYPE_LINUXEFD, efd, &eventfdops); fdrop(fp, td); td->td_retval[0] = fd; return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_eventfd(struct thread *td, struct linux_eventfd_args *args) { return (eventfd_create(td, args->initval, 0)); } #endif int linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args) { if ((args->flags & ~(LINUX_O_CLOEXEC|LINUX_O_NONBLOCK|LINUX_EFD_SEMAPHORE)) != 0) return (EINVAL); return (eventfd_create(td, args->initval, args->flags)); } static int eventfd_close(struct file *fp, struct thread *td) { struct eventfd *efd; efd = fp->f_data; if (fp->f_type != DTYPE_LINUXEFD || efd == NULL) return (EINVAL); seldrain(&efd->efd_sel); knlist_destroy(&efd->efd_sel.si_note); fp->f_ops = &badfileops; mtx_destroy(&efd->efd_lock); free(efd, M_EPOLL); return (0); } static int eventfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct eventfd *efd; eventfd_t count; int error; efd = fp->f_data; if (fp->f_type != DTYPE_LINUXEFD || efd == NULL) return (EINVAL); if (uio->uio_resid < sizeof(eventfd_t)) return (EINVAL); error = 0; mtx_lock(&efd->efd_lock); retry: if (efd->efd_count == 0) { if ((fp->f_flag & FNONBLOCK) != 0) { mtx_unlock(&efd->efd_lock); return (EAGAIN); } error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdrd", 0); if (error == 0) goto retry; } if (error == 0) { if ((efd->efd_flags & LINUX_EFD_SEMAPHORE) != 0) { count = 1; --efd->efd_count; } else { count = efd->efd_count; efd->efd_count = 0; } KNOTE_LOCKED(&efd->efd_sel.si_note, 0); selwakeup(&efd->efd_sel); wakeup(&efd->efd_count); mtx_unlock(&efd->efd_lock); error = uiomove(&count, sizeof(eventfd_t), uio); } else mtx_unlock(&efd->efd_lock); return (error); } static int eventfd_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct eventfd *efd; eventfd_t count; int error; efd = fp->f_data; if (fp->f_type != DTYPE_LINUXEFD || efd == NULL) return (EINVAL); if (uio->uio_resid < sizeof(eventfd_t)) return (EINVAL); error = uiomove(&count, sizeof(eventfd_t), uio); if (error != 0) return (error); if (count == UINT64_MAX) return (EINVAL); mtx_lock(&efd->efd_lock); retry: if (UINT64_MAX - efd->efd_count <= count) { if ((fp->f_flag & FNONBLOCK) != 0) { mtx_unlock(&efd->efd_lock); /* Do not not return the number of bytes written */ uio->uio_resid += sizeof(eventfd_t); return (EAGAIN); } error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdwr", 0); if (error == 0) goto retry; } if (error == 0) { efd->efd_count += count; KNOTE_LOCKED(&efd->efd_sel.si_note, 0); selwakeup(&efd->efd_sel); wakeup(&efd->efd_count); } mtx_unlock(&efd->efd_lock); return (error); } static int eventfd_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct eventfd *efd; int revents = 0; efd = fp->f_data; if (fp->f_type != DTYPE_LINUXEFD || efd == NULL) return (POLLERR); mtx_lock(&efd->efd_lock); if ((events & (POLLIN|POLLRDNORM)) && efd->efd_count > 0) revents |= events & (POLLIN|POLLRDNORM); if ((events & (POLLOUT|POLLWRNORM)) && UINT64_MAX - 1 > efd->efd_count) revents |= events & (POLLOUT|POLLWRNORM); if (revents == 0) selrecord(td, &efd->efd_sel); mtx_unlock(&efd->efd_lock); return (revents); } /*ARGSUSED*/ static int eventfd_kqfilter(struct file *fp, struct knote *kn) { struct eventfd *efd; efd = fp->f_data; if (fp->f_type != DTYPE_LINUXEFD || efd == NULL) return (EINVAL); mtx_lock(&efd->efd_lock); switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &eventfd_rfiltops; break; case EVFILT_WRITE: kn->kn_fop = &eventfd_wfiltops; break; default: mtx_unlock(&efd->efd_lock); return (EINVAL); } kn->kn_hook = efd; knlist_add(&efd->efd_sel.si_note, kn, 1); mtx_unlock(&efd->efd_lock); return (0); } static void filt_eventfddetach(struct knote *kn) { struct eventfd *efd = kn->kn_hook; mtx_lock(&efd->efd_lock); knlist_remove(&efd->efd_sel.si_note, kn, 1); mtx_unlock(&efd->efd_lock); } /*ARGSUSED*/ static int filt_eventfdread(struct knote *kn, long hint) { struct eventfd *efd = kn->kn_hook; int ret; mtx_assert(&efd->efd_lock, MA_OWNED); ret = (efd->efd_count > 0); return (ret); } /*ARGSUSED*/ static int filt_eventfdwrite(struct knote *kn, long hint) { struct eventfd *efd = kn->kn_hook; int ret; mtx_assert(&efd->efd_lock, MA_OWNED); ret = (UINT64_MAX - 1 > efd->efd_count); return (ret); } /*ARGSUSED*/ static int eventfd_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, struct thread *td) { if (fp->f_data == NULL || (fp->f_type != DTYPE_LINUXEFD && fp->f_type != DTYPE_LINUXTFD)) return (EINVAL); switch (cmd) { case FIONBIO: if ((*(int *)data)) atomic_set_int(&fp->f_flag, FNONBLOCK); else atomic_clear_int(&fp->f_flag, FNONBLOCK); case FIOASYNC: return (0); default: return (ENXIO); } } /*ARGSUSED*/ static int eventfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred, struct thread *td) { return (ENXIO); } /*ARGSUSED*/ static int eventfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { kif->kf_type = KF_TYPE_UNKNOWN; return (0); } int linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args) { struct filedesc *fdp; struct timerfd *tfd; struct file *fp; clockid_t clockid; int fflags, fd, error; if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0) return (EINVAL); error = linux_to_native_clockid(&clockid, args->clockid); if (error != 0) return (error); if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC) return (EINVAL); fflags = 0; if ((args->flags & LINUX_TFD_CLOEXEC) != 0) fflags |= O_CLOEXEC; fdp = td->td_proc->p_fd; error = falloc(td, &fp, &fd, fflags); if (error != 0) return (error); tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO); tfd->tfd_clockid = clockid; mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF); callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0); knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock); fflags = FREAD; if ((args->flags & LINUX_O_NONBLOCK) != 0) fflags |= FNONBLOCK; finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops); fdrop(fp, td); td->td_retval[0] = fd; return (error); } static int timerfd_close(struct file *fp, struct thread *td) { struct timerfd *tfd; tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) return (EINVAL); timespecclear(&tfd->tfd_time.it_value); timespecclear(&tfd->tfd_time.it_interval); mtx_lock(&tfd->tfd_lock); callout_drain(&tfd->tfd_callout); mtx_unlock(&tfd->tfd_lock); seldrain(&tfd->tfd_sel); knlist_destroy(&tfd->tfd_sel.si_note); fp->f_ops = &badfileops; mtx_destroy(&tfd->tfd_lock); free(tfd, M_EPOLL); return (0); } static int timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct timerfd *tfd; timerfd_t count; int error; tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) return (EINVAL); if (uio->uio_resid < sizeof(timerfd_t)) return (EINVAL); error = 0; mtx_lock(&tfd->tfd_lock); retry: if (tfd->tfd_canceled) { tfd->tfd_count = 0; mtx_unlock(&tfd->tfd_lock); return (ECANCELED); } if (tfd->tfd_count == 0) { if ((fp->f_flag & FNONBLOCK) != 0) { mtx_unlock(&tfd->tfd_lock); return (EAGAIN); } error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0); if (error == 0) goto retry; } if (error == 0) { count = tfd->tfd_count; tfd->tfd_count = 0; mtx_unlock(&tfd->tfd_lock); error = uiomove(&count, sizeof(timerfd_t), uio); } else mtx_unlock(&tfd->tfd_lock); return (error); } static int timerfd_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct timerfd *tfd; int revents = 0; tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) return (POLLERR); mtx_lock(&tfd->tfd_lock); if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0) revents |= events & (POLLIN|POLLRDNORM); if (revents == 0) selrecord(td, &tfd->tfd_sel); mtx_unlock(&tfd->tfd_lock); return (revents); } /*ARGSUSED*/ static int timerfd_kqfilter(struct file *fp, struct knote *kn) { struct timerfd *tfd; tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) return (EINVAL); if (kn->kn_filter == EVFILT_READ) kn->kn_fop = &timerfd_rfiltops; else return (EINVAL); kn->kn_hook = tfd; knlist_add(&tfd->tfd_sel.si_note, kn, 0); return (0); } static void filt_timerfddetach(struct knote *kn) { struct timerfd *tfd = kn->kn_hook; mtx_lock(&tfd->tfd_lock); knlist_remove(&tfd->tfd_sel.si_note, kn, 1); mtx_unlock(&tfd->tfd_lock); } /*ARGSUSED*/ static int filt_timerfdread(struct knote *kn, long hint) { struct timerfd *tfd = kn->kn_hook; return (tfd->tfd_count > 0); } /*ARGSUSED*/ static int timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred, struct thread *td) { return (ENXIO); } /*ARGSUSED*/ static int timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { kif->kf_type = KF_TYPE_UNKNOWN; return (0); } static void linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts) { if (tfd->tfd_clockid == CLOCK_REALTIME) getnanotime(ts); else /* CLOCK_MONOTONIC */ getnanouptime(ts); } static void linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots) { struct timespec cts; linux_timerfd_clocktime(tfd, &cts); *ots = tfd->tfd_time; if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) { timespecsub(&ots->it_value, &cts); if (ots->it_value.tv_sec < 0 || (ots->it_value.tv_sec == 0 && ots->it_value.tv_nsec == 0)) { ots->it_value.tv_sec = 0; ots->it_value.tv_nsec = 1; } } } int linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args) { struct l_itimerspec lots; struct itimerspec ots; struct timerfd *tfd; struct file *fp; int error; error = fget(td, args->fd, &cap_read_rights, &fp); if (error != 0) return (error); tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) { error = EINVAL; goto out; } mtx_lock(&tfd->tfd_lock); linux_timerfd_curval(tfd, &ots); mtx_unlock(&tfd->tfd_lock); error = native_to_linux_itimerspec(&lots, &ots); if (error == 0) error = copyout(&lots, args->old_value, sizeof(lots)); out: fdrop(fp, td); return (error); } int linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args) { struct l_itimerspec lots; struct itimerspec nts, ots; struct timespec cts, ts; struct timerfd *tfd; struct timeval tv; struct file *fp; int error; if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0) return (EINVAL); error = copyin(args->new_value, &lots, sizeof(lots)); if (error != 0) return (error); error = linux_to_native_itimerspec(&nts, &lots); if (error != 0) return (error); error = fget(td, args->fd, &cap_write_rights, &fp); if (error != 0) return (error); tfd = fp->f_data; if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) { error = EINVAL; goto out; } mtx_lock(&tfd->tfd_lock); if (!timespecisset(&nts.it_value)) timespecclear(&nts.it_interval); if (args->old_value != NULL) linux_timerfd_curval(tfd, &ots); tfd->tfd_time = nts; if (timespecisset(&nts.it_value)) { linux_timerfd_clocktime(tfd, &cts); ts = nts.it_value; if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) { timespecadd(&tfd->tfd_time.it_value, &cts); } else { timespecsub(&ts, &cts); } TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&tfd->tfd_callout, tvtohz(&tv), linux_timerfd_expire, tfd); tfd->tfd_canceled = false; } else { tfd->tfd_canceled = true; callout_stop(&tfd->tfd_callout); } mtx_unlock(&tfd->tfd_lock); if (args->old_value != NULL) { error = native_to_linux_itimerspec(&lots, &ots); if (error == 0) error = copyout(&lots, args->old_value, sizeof(lots)); } out: fdrop(fp, td); return (error); } static void linux_timerfd_expire(void *arg) { struct timespec cts, ts; struct timeval tv; struct timerfd *tfd; tfd = (struct timerfd *)arg; linux_timerfd_clocktime(tfd, &cts); if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) { if (timespecisset(&tfd->tfd_time.it_interval)) timespecadd(&tfd->tfd_time.it_value, &tfd->tfd_time.it_interval); else /* single shot timer */ timespecclear(&tfd->tfd_time.it_value); if (timespecisset(&tfd->tfd_time.it_value)) { ts = tfd->tfd_time.it_value; timespecsub(&ts, &cts); TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&tfd->tfd_callout, tvtohz(&tv), linux_timerfd_expire, tfd); } tfd->tfd_count++; KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0); selwakeup(&tfd->tfd_sel); wakeup(&tfd->tfd_count); } else if (timespecisset(&tfd->tfd_time.it_value)) { ts = tfd->tfd_time.it_value; timespecsub(&ts, &cts); TIMESPEC_TO_TIMEVAL(&tv, &ts); callout_reset(&tfd->tfd_callout, tvtohz(&tv), linux_timerfd_expire, tfd); } }