/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * Portions Copyright 2006-2008 John Birrell jb@freebsd.org * */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PROF_NAMELEN 15 #define PROF_PROFILE 0 #define PROF_TICK 1 #define PROF_PREFIX_PROFILE "profile-" #define PROF_PREFIX_TICK "tick-" /* * Regardless of platform, there are five artificial frames in the case of the * profile provider: * * profile_fire * cyclic_expire * cyclic_fire * [ cbe ] * [ locore ] * * On amd64, there are two frames associated with locore: one in locore, and * another in common interrupt dispatch code. (i386 has not been modified to * use this common layer.) Further, on i386, the interrupted instruction * appears as its own stack frame. All of this means that we need to add one * frame for amd64, and then take one away for both amd64 and i386. * * All of the above constraints lead to the mess below. Yes, the profile * provider should ideally figure this out on-the-fly by hiting one of its own * probes and then walking its own stack trace. This is complicated, however, * and the static definition doesn't seem to be overly brittle. Still, we * allow for a manual override in case we get it completely wrong. */ #ifdef __amd64 #define PROF_ARTIFICIAL_FRAMES 10 #else #ifdef __i386 #define PROF_ARTIFICIAL_FRAMES 6 #endif #endif #ifdef __powerpc__ /* * This value is bogus just to make module compilable on powerpc */ #define PROF_ARTIFICIAL_FRAMES 8 #endif struct profile_probe_percpu; #ifdef __arm__ #define PROF_ARTIFICIAL_FRAMES 3 #endif #ifdef __aarch64__ #define PROF_ARTIFICIAL_FRAMES 12 #endif #ifdef __riscv #define PROF_ARTIFICIAL_FRAMES 12 #endif typedef struct profile_probe { char prof_name[PROF_NAMELEN]; dtrace_id_t prof_id; int prof_kind; #ifdef illumos hrtime_t prof_interval; cyclic_id_t prof_cyclic; #else sbintime_t prof_interval; struct callout prof_cyclic; sbintime_t prof_expected; struct profile_probe_percpu **prof_pcpus; #endif } profile_probe_t; typedef struct profile_probe_percpu { hrtime_t profc_expected; hrtime_t profc_interval; profile_probe_t *profc_probe; #ifdef __FreeBSD__ struct callout profc_cyclic; #endif } profile_probe_percpu_t; static int profile_unload(void); static void profile_create(hrtime_t, char *, int); static void profile_destroy(void *, dtrace_id_t, void *); static void profile_enable(void *, dtrace_id_t, void *); static void profile_disable(void *, dtrace_id_t, void *); static void profile_load(void *); static void profile_provide(void *, dtrace_probedesc_t *); static int profile_rates[] = { 97, 199, 499, 997, 1999, 4001, 4999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static int profile_ticks[] = { 1, 10, 100, 500, 1000, 5000, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * profile_max defines the upper bound on the number of profile probes that * can exist (this is to prevent malicious or clumsy users from exhausing * system resources by creating a slew of profile probes). At mod load time, * this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's * present in the profile.conf file. */ #define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */ static uint32_t profile_max = PROFILE_MAX_DEFAULT; /* maximum number of profile probes */ static uint32_t profile_total; /* current number of profile probes */ static dtrace_pattr_t profile_attr = { { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, }; static dtrace_pops_t profile_pops = { .dtps_provide = profile_provide, .dtps_provide_module = NULL, .dtps_enable = profile_enable, .dtps_disable = profile_disable, .dtps_suspend = NULL, .dtps_resume = NULL, .dtps_getargdesc = NULL, .dtps_getargval = NULL, .dtps_usermode = NULL, .dtps_destroy = profile_destroy }; static dtrace_provider_id_t profile_id; static hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */ static int profile_aframes = PROF_ARTIFICIAL_FRAMES; SYSCTL_DECL(_kern_dtrace); SYSCTL_NODE(_kern_dtrace, OID_AUTO, profile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "DTrace profile parameters"); SYSCTL_INT(_kern_dtrace_profile, OID_AUTO, aframes, CTLFLAG_RW, &profile_aframes, 0, "Skipped frames for profile provider"); static sbintime_t nsec_to_sbt(hrtime_t nsec) { time_t sec; /* * We need to calculate nsec * 2^32 / 10^9 * Seconds and nanoseconds are split to avoid overflow. */ sec = nsec / NANOSEC; nsec = nsec % NANOSEC; return (((sbintime_t)sec << 32) | ((sbintime_t)nsec << 32) / NANOSEC); } static hrtime_t sbt_to_nsec(sbintime_t sbt) { return ((sbt >> 32) * NANOSEC + (((uint32_t)sbt * (hrtime_t)NANOSEC) >> 32)); } static void profile_probe(profile_probe_t *prof, hrtime_t late) { struct thread *td; struct trapframe *frame; uintfptr_t pc, upc; td = curthread; pc = upc = 0; /* * td_intr_frame can be unset if this is a catch-up event upon waking up * from idle sleep. This can only happen on a CPU idle thread. Use a * representative arg0 value in this case so that one of the probe * arguments is non-zero. */ frame = td->td_intr_frame; if (frame != NULL) { if (TRAPF_USERMODE(frame)) upc = TRAPF_PC(frame); else { pc = TRAPF_PC(frame); td->t_dtrace_trapframe = frame; } } else if (TD_IS_IDLETHREAD(td)) pc = (uintfptr_t)&cpu_idle; dtrace_probe(prof->prof_id, pc, upc, late, 0, 0); td->t_dtrace_trapframe = NULL; } static void profile_fire(void *arg) { profile_probe_percpu_t *pcpu = arg; profile_probe_t *prof = pcpu->profc_probe; hrtime_t late; late = sbt_to_nsec(sbinuptime() - pcpu->profc_expected); profile_probe(prof, late); pcpu->profc_expected += pcpu->profc_interval; callout_schedule_sbt_curcpu(&pcpu->profc_cyclic, pcpu->profc_expected, 0, C_DIRECT_EXEC | C_ABSOLUTE); } static void profile_tick(void *arg) { profile_probe_t *prof = arg; profile_probe(prof, 0); prof->prof_expected += prof->prof_interval; callout_schedule_sbt(&prof->prof_cyclic, prof->prof_expected, 0, C_DIRECT_EXEC | C_ABSOLUTE); } static void profile_create(hrtime_t interval, char *name, int kind) { profile_probe_t *prof; if (interval < profile_interval_min) return; if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0) return; atomic_add_32(&profile_total, 1); if (profile_total > profile_max) { atomic_add_32(&profile_total, -1); return; } prof = kmem_zalloc(sizeof (profile_probe_t), KM_SLEEP); (void) strcpy(prof->prof_name, name); #ifdef illumos prof->prof_interval = interval; prof->prof_cyclic = CYCLIC_NONE; #else prof->prof_interval = nsec_to_sbt(interval); callout_init(&prof->prof_cyclic, 1); #endif prof->prof_kind = kind; prof->prof_id = dtrace_probe_create(profile_id, NULL, NULL, name, profile_aframes, prof); } /*ARGSUSED*/ static void profile_provide(void *arg, dtrace_probedesc_t *desc) { int i, j, rate, kind; hrtime_t val = 0, mult = 1, len = 0; char *name, *suffix = NULL; const struct { char *prefix; int kind; } types[] = { { PROF_PREFIX_PROFILE, PROF_PROFILE }, { PROF_PREFIX_TICK, PROF_TICK }, { 0, 0 } }; const struct { char *name; hrtime_t mult; } suffixes[] = { { "ns", NANOSEC / NANOSEC }, { "nsec", NANOSEC / NANOSEC }, { "us", NANOSEC / MICROSEC }, { "usec", NANOSEC / MICROSEC }, { "ms", NANOSEC / MILLISEC }, { "msec", NANOSEC / MILLISEC }, { "s", NANOSEC / SEC }, { "sec", NANOSEC / SEC }, { "m", NANOSEC * (hrtime_t)60 }, { "min", NANOSEC * (hrtime_t)60 }, { "h", NANOSEC * (hrtime_t)(60 * 60) }, { "hour", NANOSEC * (hrtime_t)(60 * 60) }, { "d", NANOSEC * (hrtime_t)(24 * 60 * 60) }, { "day", NANOSEC * (hrtime_t)(24 * 60 * 60) }, { "hz", 0 }, { NULL } }; if (desc == NULL) { char n[PROF_NAMELEN]; /* * If no description was provided, provide all of our probes. */ for (i = 0; i < sizeof (profile_rates) / sizeof (int); i++) { if ((rate = profile_rates[i]) == 0) continue; (void) snprintf(n, PROF_NAMELEN, "%s%d", PROF_PREFIX_PROFILE, rate); profile_create(NANOSEC / rate, n, PROF_PROFILE); } for (i = 0; i < sizeof (profile_ticks) / sizeof (int); i++) { if ((rate = profile_ticks[i]) == 0) continue; (void) snprintf(n, PROF_NAMELEN, "%s%d", PROF_PREFIX_TICK, rate); profile_create(NANOSEC / rate, n, PROF_TICK); } return; } name = desc->dtpd_name; for (i = 0; types[i].prefix != NULL; i++) { len = strlen(types[i].prefix); if (strncmp(name, types[i].prefix, len) != 0) continue; break; } if (types[i].prefix == NULL) return; kind = types[i].kind; j = strlen(name) - len; /* * We need to start before any time suffix. */ for (j = strlen(name); j >= len; j--) { if (name[j] >= '0' && name[j] <= '9') break; suffix = &name[j]; } ASSERT(suffix != NULL); /* * Now determine the numerical value present in the probe name. */ for (; j >= len; j--) { if (name[j] < '0' || name[j] > '9') return; val += (name[j] - '0') * mult; mult *= (hrtime_t)10; } if (val == 0) return; /* * Look-up the suffix to determine the multiplier. */ for (i = 0, mult = 0; suffixes[i].name != NULL; i++) { if (strcasecmp(suffixes[i].name, suffix) == 0) { mult = suffixes[i].mult; break; } } if (suffixes[i].name == NULL && *suffix != '\0') return; if (mult == 0) { /* * The default is frequency-per-second. */ val = NANOSEC / val; } else { val *= mult; } profile_create(val, name, kind); } /* ARGSUSED */ static void profile_destroy(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; #ifdef illumos ASSERT(prof->prof_cyclic == CYCLIC_NONE); #else ASSERT(!callout_active(&prof->prof_cyclic) && prof->prof_pcpus == NULL); #endif kmem_free(prof, sizeof (profile_probe_t)); ASSERT(profile_total >= 1); atomic_add_32(&profile_total, -1); } #ifdef illumos /*ARGSUSED*/ static void profile_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) { profile_probe_t *prof = arg; profile_probe_percpu_t *pcpu; pcpu = kmem_zalloc(sizeof (profile_probe_percpu_t), KM_SLEEP); pcpu->profc_probe = prof; hdlr->cyh_func = profile_fire; hdlr->cyh_arg = pcpu; when->cyt_interval = prof->prof_interval; when->cyt_when = gethrtime() + when->cyt_interval; pcpu->profc_expected = when->cyt_when; pcpu->profc_interval = when->cyt_interval; } /*ARGSUSED*/ static void profile_offline(void *arg, cpu_t *cpu, void *oarg) { profile_probe_percpu_t *pcpu = oarg; ASSERT(pcpu->profc_probe == arg); kmem_free(pcpu, sizeof (profile_probe_percpu_t)); } /* ARGSUSED */ static void profile_enable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; cyc_omni_handler_t omni; cyc_handler_t hdlr; cyc_time_t when; ASSERT(prof->prof_interval != 0); ASSERT(MUTEX_HELD(&cpu_lock)); if (prof->prof_kind == PROF_TICK) { hdlr.cyh_func = profile_tick; hdlr.cyh_arg = prof; when.cyt_interval = prof->prof_interval; when.cyt_when = gethrtime() + when.cyt_interval; } else { ASSERT(prof->prof_kind == PROF_PROFILE); omni.cyo_online = profile_online; omni.cyo_offline = profile_offline; omni.cyo_arg = prof; } if (prof->prof_kind == PROF_TICK) { prof->prof_cyclic = cyclic_add(&hdlr, &when); } else { prof->prof_cyclic = cyclic_add_omni(&omni); } } /* ARGSUSED */ static void profile_disable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; ASSERT(prof->prof_cyclic != CYCLIC_NONE); ASSERT(MUTEX_HELD(&cpu_lock)); cyclic_remove(prof->prof_cyclic); prof->prof_cyclic = CYCLIC_NONE; } #else static void profile_enable_omni(profile_probe_t *prof) { profile_probe_percpu_t *pcpu; int cpu; prof->prof_pcpus = kmem_zalloc((mp_maxid + 1) * sizeof(pcpu), KM_SLEEP); CPU_FOREACH(cpu) { pcpu = kmem_zalloc(sizeof(profile_probe_percpu_t), KM_SLEEP); prof->prof_pcpus[cpu] = pcpu; pcpu->profc_probe = prof; pcpu->profc_expected = sbinuptime() + prof->prof_interval; pcpu->profc_interval = prof->prof_interval; callout_init(&pcpu->profc_cyclic, 1); callout_reset_sbt_on(&pcpu->profc_cyclic, pcpu->profc_expected, 0, profile_fire, pcpu, cpu, C_DIRECT_EXEC | C_ABSOLUTE); } } static void profile_disable_omni(profile_probe_t *prof) { profile_probe_percpu_t *pcpu; int cpu; ASSERT(prof->prof_pcpus != NULL); CPU_FOREACH(cpu) { pcpu = prof->prof_pcpus[cpu]; ASSERT(pcpu->profc_probe == prof); ASSERT(callout_active(&pcpu->profc_cyclic)); callout_stop(&pcpu->profc_cyclic); callout_drain(&pcpu->profc_cyclic); kmem_free(pcpu, sizeof(profile_probe_percpu_t)); } kmem_free(prof->prof_pcpus, (mp_maxid + 1) * sizeof(pcpu)); prof->prof_pcpus = NULL; } /* ARGSUSED */ static void profile_enable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; if (prof->prof_kind == PROF_TICK) { prof->prof_expected = sbinuptime() + prof->prof_interval; callout_reset_sbt(&prof->prof_cyclic, prof->prof_expected, 0, profile_tick, prof, C_DIRECT_EXEC | C_ABSOLUTE); } else { ASSERT(prof->prof_kind == PROF_PROFILE); profile_enable_omni(prof); } } /* ARGSUSED */ static void profile_disable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; if (prof->prof_kind == PROF_TICK) { ASSERT(callout_active(&prof->prof_cyclic)); callout_stop(&prof->prof_cyclic); callout_drain(&prof->prof_cyclic); } else { ASSERT(prof->prof_kind == PROF_PROFILE); profile_disable_omni(prof); } } #endif static void profile_load(void *dummy) { if (dtrace_register("profile", &profile_attr, DTRACE_PRIV_USER, NULL, &profile_pops, NULL, &profile_id) != 0) return; } static int profile_unload(void) { int error = 0; if ((error = dtrace_unregister(profile_id)) != 0) return (error); return (error); } /* ARGSUSED */ static int profile_modevent(module_t mod __unused, int type, void *data __unused) { int error = 0; switch (type) { case MOD_LOAD: break; case MOD_UNLOAD: break; case MOD_SHUTDOWN: break; default: error = EOPNOTSUPP; break; } return (error); } SYSINIT(profile_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, profile_load, NULL); SYSUNINIT(profile_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, profile_unload, NULL); DEV_MODULE(profile, profile_modevent, NULL); MODULE_VERSION(profile, 1); MODULE_DEPEND(profile, dtrace, 1, 1, 1); MODULE_DEPEND(profile, opensolaris, 1, 1, 1);