/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Portions Copyright 2016 Ruslan Bukin
*
* $FreeBSD$
*
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
extern dtrace_id_t dtrace_probeid_error;
extern int (*dtrace_invop_jump_addr)(struct trapframe *);
extern void dtrace_getnanotime(struct timespec *tsp);
int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
void dtrace_invop_init(void);
void dtrace_invop_uninit(void);
typedef struct dtrace_invop_hdlr {
int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
struct dtrace_invop_hdlr *dtih_next;
} dtrace_invop_hdlr_t;
dtrace_invop_hdlr_t *dtrace_invop_hdlr;
int
dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
{
dtrace_invop_hdlr_t *hdlr;
int rval;
for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
return (rval);
return (0);
}
void
dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
{
dtrace_invop_hdlr_t *hdlr;
hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
hdlr->dtih_func = func;
hdlr->dtih_next = dtrace_invop_hdlr;
dtrace_invop_hdlr = hdlr;
}
void
dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
{
dtrace_invop_hdlr_t *hdlr, *prev;
hdlr = dtrace_invop_hdlr;
prev = NULL;
for (;;) {
if (hdlr == NULL)
panic("attempt to remove non-existent invop handler");
if (hdlr->dtih_func == func)
break;
prev = hdlr;
hdlr = hdlr->dtih_next;
}
if (prev == NULL) {
ASSERT(dtrace_invop_hdlr == hdlr);
dtrace_invop_hdlr = hdlr->dtih_next;
} else {
ASSERT(dtrace_invop_hdlr != hdlr);
prev->dtih_next = hdlr->dtih_next;
}
kmem_free(hdlr, 0);
}
/*ARGSUSED*/
void
dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
{
(*func)(0, (uintptr_t)VM_MIN_KERNEL_ADDRESS);
}
void
dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
{
cpuset_t cpus;
if (cpu == DTRACE_CPUALL)
cpus = all_cpus;
else
CPU_SETOF(cpu, &cpus);
smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
smp_no_rendevous_barrier, arg);
}
static void
dtrace_sync_func(void)
{
}
void
dtrace_sync(void)
{
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
}
/*
* DTrace needs a high resolution time function which can
* be called from a probe context and guaranteed not to have
* instrumented with probes itself.
*
* Returns nanoseconds since boot.
*/
uint64_t
dtrace_gethrtime()
{
struct timespec curtime;
nanouptime(&curtime);
return (curtime.tv_sec * 1000000000UL + curtime.tv_nsec);
}
uint64_t
dtrace_gethrestime(void)
{
struct timespec current_time;
dtrace_getnanotime(¤t_time);
return (current_time.tv_sec * 1000000000UL + current_time.tv_nsec);
}
/* Function to handle DTrace traps during probes. See riscv/riscv/trap.c */
int
dtrace_trap(struct trapframe *frame, u_int type)
{
/*
* A trap can occur while DTrace executes a probe. Before
* executing the probe, DTrace blocks re-scheduling and sets
* a flag in it's per-cpu flags to indicate that it doesn't
* want to fault. On returning from the probe, the no-fault
* flag is cleared and finally re-scheduling is enabled.
*
* Check if DTrace has enabled 'no-fault' mode:
*
*/
if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
/*
* There are only a couple of trap types that are expected.
* All the rest will be handled in the usual way.
*/
switch (type) {
case EXCP_FAULT_LOAD:
case EXCP_FAULT_STORE:
case EXCP_FAULT_FETCH:
/* Flag a bad address. */
cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
cpu_core[curcpu].cpuc_dtrace_illval = 0;
/*
* Offset the instruction pointer to the instruction
* following the one causing the fault.
*/
frame->tf_sepc += 4;
return (1);
default:
/* Handle all other traps in the usual way. */
break;
}
}
/* Handle the trap in the usual way. */
return (0);
}
void
dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
int fault, int fltoffs, uintptr_t illval)
{
dtrace_probe(dtrace_probeid_error, (uint64_t)(uintptr_t)state,
(uintptr_t)epid,
(uintptr_t)which, (uintptr_t)fault, (uintptr_t)fltoffs);
}
static int
dtrace_invop_start(struct trapframe *frame)
{
int data, invop, reg, update_sp;
register_t arg1, arg2;
register_t *sp;
uint32_t imm;
InstFmt i;
int offs;
int tmp;
invop = dtrace_invop(frame->tf_sepc, frame, frame->tf_sepc);
if (invop == RISCV_INSN_RET) {
frame->tf_sepc = frame->tf_ra;
return (0);
}
if ((invop & SD_RA_SP_MASK) == SD_RA_SP) {
i.word = invop;
imm = i.SType.imm0_4 | (i.SType.imm5_11 << 5);
sp = (register_t *)((uint8_t *)frame->tf_sp + imm);
*sp = frame->tf_ra;
frame->tf_sepc += INSN_SIZE;
return (0);
}
return (-1);
}
void
dtrace_invop_init(void)
{
dtrace_invop_jump_addr = dtrace_invop_start;
}
void
dtrace_invop_uninit(void)
{
dtrace_invop_jump_addr = 0;
}