/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD$ * */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #define DELAYBRANCH(x) ((int)(x) < 0) extern uintptr_t dtrace_in_probe_addr; extern int dtrace_in_probe; extern dtrace_id_t dtrace_probeid_error; extern int (*dtrace_invop_jump_addr)(struct trapframe *); extern void dtrace_getnanotime(struct timespec *tsp); int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); void dtrace_invop_init(void); void dtrace_invop_uninit(void); typedef struct dtrace_invop_hdlr { int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); struct dtrace_invop_hdlr *dtih_next; } dtrace_invop_hdlr_t; dtrace_invop_hdlr_t *dtrace_invop_hdlr; int dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t arg0) { dtrace_invop_hdlr_t *hdlr; int rval; for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) if ((rval = hdlr->dtih_func(addr, stack, arg0)) != 0) return (rval); return (0); } void dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr; hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); hdlr->dtih_func = func; hdlr->dtih_next = dtrace_invop_hdlr; dtrace_invop_hdlr = hdlr; } void dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; for (;;) { if (hdlr == NULL) panic("attempt to remove non-existent invop handler"); if (hdlr->dtih_func == func) break; prev = hdlr; hdlr = hdlr->dtih_next; } if (prev == NULL) { ASSERT(dtrace_invop_hdlr == hdlr); dtrace_invop_hdlr = hdlr->dtih_next; } else { ASSERT(dtrace_invop_hdlr != hdlr); prev->dtih_next = hdlr->dtih_next; } kmem_free(hdlr, 0); } /*ARGSUSED*/ void dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) { /* * No toxic regions? */ } void dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) { cpuset_t cpus; if (cpu == DTRACE_CPUALL) cpus = all_cpus; else CPU_SETOF(cpu, &cpus); smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func, smp_no_rendevous_barrier, arg); } static void dtrace_sync_func(void) { } void dtrace_sync(void) { dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); } static int64_t tgt_cpu_tsc; static int64_t hst_cpu_tsc; static int64_t timebase_skew[MAXCPU]; static uint64_t nsec_scale; /* See below for the explanation of this macro. */ /* This is taken from the amd64 dtrace_subr, to provide a synchronized timer * between multiple processors in dtrace. Since PowerPC Timebases can be much * lower than x86, the scale shift is 26 instead of 28, allowing for a 15.63MHz * timebase. */ #define SCALE_SHIFT 26 static void dtrace_gethrtime_init_cpu(void *arg) { uintptr_t cpu = (uintptr_t) arg; if (cpu == curcpu) tgt_cpu_tsc = mftb(); else hst_cpu_tsc = mftb(); } static void dtrace_gethrtime_init(void *arg) { struct pcpu *pc; uint64_t tb_f; cpuset_t map; int i; tb_f = cpu_tickrate(); /* * The following line checks that nsec_scale calculated below * doesn't overflow 32-bit unsigned integer, so that it can multiply * another 32-bit integer without overflowing 64-bit. * Thus minimum supported Timebase frequency is 15.63MHz. */ KASSERT(tb_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("Timebase frequency is too low")); /* * We scale up NANOSEC/tb_f ratio to preserve as much precision * as possible. * 2^26 factor was chosen quite arbitrarily from practical * considerations: * - it supports TSC frequencies as low as 15.63MHz (see above); */ nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tb_f; /* The current CPU is the reference one. */ sched_pin(); timebase_skew[curcpu] = 0; CPU_FOREACH(i) { if (i == curcpu) continue; pc = pcpu_find(i); CPU_SETOF(PCPU_GET(cpuid), &map); CPU_SET(pc->pc_cpuid, &map); smp_rendezvous_cpus(map, NULL, dtrace_gethrtime_init_cpu, smp_no_rendevous_barrier, (void *)(uintptr_t) i); timebase_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; } sched_unpin(); } SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); /* * DTrace needs a high resolution time function which can * be called from a probe context and guaranteed not to have * instrumented with probes itself. * * Returns nanoseconds since boot. */ uint64_t dtrace_gethrtime() { uint64_t timebase; uint32_t lo; uint32_t hi; /* * We split timebase value into lower and higher 32-bit halves and separately * scale them with nsec_scale, then we scale them down by 2^28 * (see nsec_scale calculations) taking into account 32-bit shift of * the higher half and finally add. */ timebase = mftb() - timebase_skew[curcpu]; lo = timebase; hi = timebase >> 32; return (((lo * nsec_scale) >> SCALE_SHIFT) + ((hi * nsec_scale) << (32 - SCALE_SHIFT))); } uint64_t dtrace_gethrestime(void) { struct timespec curtime; dtrace_getnanotime(&curtime); return (curtime.tv_sec * 1000000000UL + curtime.tv_nsec); } /* Function to handle DTrace traps during probes. See powerpc/powerpc/trap.c */ int dtrace_trap(struct trapframe *frame, u_int type) { /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * Check if DTrace has enabled 'no-fault' mode: */ if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { /* * There are only a couple of trap types that are expected. * All the rest will be handled in the usual way. */ switch (type) { /* Page fault. */ case EXC_DSI: case EXC_DSE: /* Flag a bad address. */ cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; cpu_core[curcpu].cpuc_dtrace_illval = frame->cpu.aim.dar; /* * Offset the instruction pointer to the instruction * following the one causing the fault. */ frame->srr0 += sizeof(int); return (1); case EXC_ISI: case EXC_ISE: /* Flag a bad address. */ cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; cpu_core[curcpu].cpuc_dtrace_illval = frame->srr0; /* * Offset the instruction pointer to the instruction * following the one causing the fault. */ frame->srr0 += sizeof(int); return (1); default: /* Handle all other traps in the usual way. */ break; } } /* Handle the trap in the usual way. */ return (0); } void dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, int fault, int fltoffs, uintptr_t illval) { dtrace_probe(dtrace_probeid_error, (uint64_t)(uintptr_t)state, (uintptr_t)epid, (uintptr_t)which, (uintptr_t)fault, (uintptr_t)fltoffs); } static int dtrace_invop_start(struct trapframe *frame) { switch (dtrace_invop(frame->srr0, (uintptr_t *)frame, frame->fixreg[3])) { case DTRACE_INVOP_JUMP: break; case DTRACE_INVOP_BCTR: frame->srr0 = frame->ctr; break; case DTRACE_INVOP_BLR: frame->srr0 = frame->lr; break; case DTRACE_INVOP_MFLR_R0: frame->fixreg[0] = frame->lr; frame->srr0 = frame->srr0 + 4; break; default: return (-1); break; } return (0); } void dtrace_invop_init(void) { dtrace_invop_jump_addr = dtrace_invop_start; } void dtrace_invop_uninit(void) { dtrace_invop_jump_addr = 0; }