/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * Portions Copyright 2012,2013 Justin Hibbits */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "regset.h" /* Offset to the LR Save word (ppc32) */ #define RETURN_OFFSET 4 /* Offset to LR Save word (ppc64). CR Save area sits between back chain and LR */ #define RETURN_OFFSET64 16 #ifdef __powerpc64__ #define OFFSET 4 /* Account for the TOC reload slot */ #define FRAME_OFFSET 48 #else #define OFFSET 0 #define FRAME_OFFSET 8 #endif #define INKERNEL(x) (((x) <= VM_MAX_KERNEL_ADDRESS && \ (x) >= VM_MIN_KERNEL_ADDRESS) || \ (PMAP_HAS_DMAP && (x) >= DMAP_BASE_ADDRESS && \ (x) <= DMAP_MAX_ADDRESS)) static __inline int dtrace_sp_inkernel(uintptr_t sp) { struct trapframe *frame; vm_offset_t callpc; /* Not within the kernel, or not aligned. */ if (!INKERNEL(sp) || (sp & 0xf) != 0) return (0); #ifdef __powerpc64__ callpc = *(vm_offset_t *)(sp + RETURN_OFFSET64); #else callpc = *(vm_offset_t *)(sp + RETURN_OFFSET); #endif if ((callpc & 3) || (callpc < 0x100)) return (0); /* * trapexit() and asttrapexit() are sentinels * for kernel stack tracing. */ if (callpc + OFFSET == (vm_offset_t) &trapexit || callpc + OFFSET == (vm_offset_t) &asttrapexit) { frame = (struct trapframe *)(sp + FRAME_OFFSET); return ((frame->srr1 & PSL_PR) == 0); } return (1); } static __inline void dtrace_next_sp_pc(uintptr_t sp, uintptr_t *nsp, uintptr_t *pc, uintptr_t *lr) { vm_offset_t callpc; struct trapframe *frame; if (lr != 0 && *lr != 0) callpc = *lr; else #ifdef __powerpc64__ callpc = *(vm_offset_t *)(sp + RETURN_OFFSET64); #else callpc = *(vm_offset_t *)(sp + RETURN_OFFSET); #endif /* * trapexit() and asttrapexit() are sentinels * for kernel stack tracing. */ if ((callpc + OFFSET == (vm_offset_t) &trapexit || callpc + OFFSET == (vm_offset_t) &asttrapexit)) { /* Access the trap frame */ frame = (struct trapframe *)(sp + FRAME_OFFSET); if (nsp != NULL) *nsp = frame->fixreg[1]; if (pc != NULL) *pc = frame->srr0; if (lr != NULL) *lr = frame->lr; return; } if (nsp != NULL) *nsp = *(uintptr_t *)sp; if (pc != NULL) *pc = callpc; /* lr is only valid for trap frames */ if (lr != NULL) *lr = 0; } void dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *intrpc) { int depth = 0; uintptr_t osp, sp, lr = 0; vm_offset_t callpc; pc_t caller = (pc_t) solaris_cpu[curcpu].cpu_dtrace_caller; osp = PAGE_SIZE; if (intrpc != 0) pcstack[depth++] = (pc_t) intrpc; aframes++; sp = (uintptr_t)__builtin_frame_address(0); while (depth < pcstack_limit) { if (sp <= osp) break; if (!dtrace_sp_inkernel(sp)) break; osp = sp; dtrace_next_sp_pc(osp, &sp, &callpc, &lr); if (aframes > 0) { aframes--; if ((aframes == 0) && (caller != 0)) { pcstack[depth++] = caller; } } else { pcstack[depth++] = callpc; } } for (; depth < pcstack_limit; depth++) { pcstack[depth] = 0; } } static int dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, uintptr_t sp) { proc_t *p = curproc; int ret = 0; ASSERT(pcstack == NULL || pcstack_limit > 0); while (pc != 0) { ret++; if (pcstack != NULL) { *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) break; } if (sp == 0) break; if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET)); sp = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64)); sp = dtrace_fuword64((void *)sp); } } return (ret); } void dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; int n; if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->srr0; sp = tf->fixreg[1]; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->lr; } n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp); ASSERT(n >= 0); ASSERT(n <= pcstack_limit); pcstack += n; pcstack_limit -= n; zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } int dtrace_getustackdepth(void) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; int n = 0; if (p == NULL || (tf = curthread->td_frame) == NULL) return (0); if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) return (-1); pc = tf->srr0; sp = tf->fixreg[1]; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *) sp); } else pc = dtrace_fuword64((void *) sp); n++; } n += dtrace_getustack_common(NULL, 0, pc, sp); return (n); } void dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; #ifdef notyet /* XXX signal stack */ uintptr_t oldcontext; size_t s1, s2; #endif if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->srr0; sp = tf->fixreg[1]; #ifdef notyet /* XXX signal stack */ oldcontext = lwp->lwp_oldcontext; s1 = sizeof (struct xframe) + 2 * sizeof (long); s2 = s1 + sizeof (siginfo_t); #endif if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { *pcstack++ = (uint64_t)pc; *fpstack++ = 0; pcstack_limit--; if (pcstack_limit <= 0) return; if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)sp); } } while (pc != 0) { *pcstack++ = (uint64_t)pc; *fpstack++ = sp; pcstack_limit--; if (pcstack_limit <= 0) break; if (sp == 0) break; #ifdef notyet /* XXX signal stack */ if (oldcontext == sp + s1 || oldcontext == sp + s2) { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fulword(&gregs[REG_FP]); pc = dtrace_fulword(&gregs[REG_PC]); oldcontext = dtrace_fulword(&ucp->uc_link); } else #endif /* XXX */ { if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET)); sp = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64)); sp = dtrace_fuword64((void *)sp); } } /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } /*ARGSUSED*/ uint64_t dtrace_getarg(int arg, int aframes) { uintptr_t val; uintptr_t *fp = (uintptr_t *)__builtin_frame_address(0); uintptr_t *stack; int i; /* * A total of 8 arguments are passed via registers; any argument with * index of 7 or lower is therefore in a register. */ int inreg = 7; for (i = 1; i <= aframes; i++) { fp = (uintptr_t *)*fp; /* * On ppc32 trapexit() is the immediately following label. On * ppc64 AIM trapexit() follows a nop. */ #ifdef __powerpc64__ if ((long)(fp[2]) + 4 == (long)trapexit) { #else if ((long)(fp[1]) == (long)trapexit) { #endif /* * In the case of powerpc, we will use the pointer to the regs * structure that was pushed when we took the trap. To get this * structure, we must increment beyond the frame structure. If the * argument that we're seeking is passed on the stack, we'll pull * the true stack pointer out of the saved registers and decrement * our argument by the number of arguments passed in registers; if * the argument we're seeking is passed in regsiters, we can just * load it directly. */ #ifdef __powerpc64__ struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 48); #else struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 8); #endif if (arg <= inreg) { stack = &rp->fixreg[3]; } else { stack = (uintptr_t *)(rp->fixreg[1]); arg -= inreg; } goto load; } } /* * We know that we did not come through a trap to get into * dtrace_probe() -- the provider simply called dtrace_probe() * directly. As this is the case, we need to shift the argument * that we're looking for: the probe ID is the first argument to * dtrace_probe(), so the argument n will actually be found where * one would expect to find argument (n + 1). */ arg++; if (arg <= inreg) { /* * This shouldn't happen. If the argument is passed in a * register then it should have been, well, passed in a * register... */ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } arg -= (inreg + 1); stack = fp + 2; load: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); val = stack[arg]; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); return (val); } int dtrace_getstackdepth(int aframes) { int depth = 0; uintptr_t osp, sp; vm_offset_t callpc; osp = PAGE_SIZE; sp = (uintptr_t)__builtin_frame_address(0); for(;;) { if (sp <= osp) break; if (!dtrace_sp_inkernel(sp)) break; depth++; osp = sp; dtrace_next_sp_pc(sp, &sp, NULL, NULL); } if (depth < aframes) return (0); return (depth - aframes); } ulong_t dtrace_getreg(struct trapframe *frame, uint_t reg) { if (reg < 32) return (frame->fixreg[reg]); switch (reg) { case 32: return (frame->lr); case 33: return (frame->cr); case 34: return (frame->xer); case 35: return (frame->ctr); case 36: return (frame->srr0); case 37: return (frame->srr1); case 38: return (frame->exc); default: DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } } static int dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) { ASSERT(INKERNEL(kaddr) && kaddr + size >= kaddr); if (uaddr + size > VM_MAXUSER_ADDRESS || uaddr + size < uaddr) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = uaddr; return (0); } return (1); } void dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) if (copyin((const void *)uaddr, (void *)kaddr, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } void dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) { if (copyout((const void *)kaddr, (void *)uaddr, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } void dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { size_t actual; int error; if (dtrace_copycheck(uaddr, kaddr, size)) { error = copyinstr((const void *)uaddr, (void *)kaddr, size, &actual); /* ENAMETOOLONG is not a fault condition. */ if (error && error != ENAMETOOLONG) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } /* * The bulk of this function could be replaced to match dtrace_copyinstr() * if we ever implement a copyoutstr(). */ void dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { size_t len; if (dtrace_copycheck(uaddr, kaddr, size)) { len = strlen((const char *)kaddr); if (len > size) len = size; if (copyout((const void *)kaddr, (void *)uaddr, len)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } uint8_t dtrace_fuword8(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (fubyte(uaddr)); } uint16_t dtrace_fuword16(void *uaddr) { uint16_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; } uint32_t dtrace_fuword32(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (fuword32(uaddr)); } uint64_t dtrace_fuword64(void *uaddr) { uint64_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; } uintptr_t dtrace_fulword(void *uaddr) { uintptr_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; }