/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * Portions Copyright 2012,2013 Justin Hibbits * * $FreeBSD$ */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "regset.h" /* Offset to the LR Save word (ppc32) */ #define RETURN_OFFSET 4 /* Offset to LR Save word (ppc64). CR Save area sits between back chain and LR */ #define RETURN_OFFSET64 16 #ifdef __powerpc64__ #define OFFSET 4 /* Account for the TOC reload slot */ #else #define OFFSET 0 #endif #define INKERNEL(x) ((x) <= VM_MAX_KERNEL_ADDRESS && \ (x) >= VM_MIN_KERNEL_ADDRESS) static __inline int dtrace_sp_inkernel(uintptr_t sp, int aframes) { vm_offset_t callpc; #ifdef __powerpc64__ callpc = *(vm_offset_t *)(sp + RETURN_OFFSET64); #else callpc = *(vm_offset_t *)(sp + RETURN_OFFSET); #endif if ((callpc & 3) || (callpc < 0x100)) return (0); /* * trapexit() and asttrapexit() are sentinels * for kernel stack tracing. * * Special-case this for 'aframes == 0', because fbt sets aframes to the * trap callchain depth, so we want to break out of it. */ if ((callpc + OFFSET == (vm_offset_t) &trapexit || callpc + OFFSET == (vm_offset_t) &asttrapexit) && aframes != 0) return (0); return (1); } static __inline uintptr_t dtrace_next_sp(uintptr_t sp) { vm_offset_t callpc; #ifdef __powerpc64__ callpc = *(vm_offset_t *)(sp + RETURN_OFFSET64); #else callpc = *(vm_offset_t *)(sp + RETURN_OFFSET); #endif /* * trapexit() and asttrapexit() are sentinels * for kernel stack tracing. * * Special-case this for 'aframes == 0', because fbt sets aframes to the * trap callchain depth, so we want to break out of it. */ if ((callpc + OFFSET == (vm_offset_t) &trapexit || callpc + OFFSET == (vm_offset_t) &asttrapexit)) /* Access the trap frame */ #ifdef __powerpc64__ return (*(uintptr_t *)sp + 48 + sizeof(register_t)); #else return (*(uintptr_t *)sp + 8 + sizeof(register_t)); #endif return (*(uintptr_t*)sp); } static __inline uintptr_t dtrace_get_pc(uintptr_t sp) { vm_offset_t callpc; #ifdef __powerpc64__ callpc = *(vm_offset_t *)(sp + RETURN_OFFSET64); #else callpc = *(vm_offset_t *)(sp + RETURN_OFFSET); #endif /* * trapexit() and asttrapexit() are sentinels * for kernel stack tracing. * * Special-case this for 'aframes == 0', because fbt sets aframes to the * trap callchain depth, so we want to break out of it. */ if ((callpc + OFFSET == (vm_offset_t) &trapexit || callpc + OFFSET == (vm_offset_t) &asttrapexit)) /* Access the trap frame */ #ifdef __powerpc64__ return (*(uintptr_t *)sp + 48 + offsetof(struct trapframe, lr)); #else return (*(uintptr_t *)sp + 8 + offsetof(struct trapframe, lr)); #endif return (callpc); } greg_t dtrace_getfp(void) { return (greg_t)__builtin_frame_address(0); } void dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *intrpc) { int depth = 0; uintptr_t osp, sp; vm_offset_t callpc; pc_t caller = (pc_t) solaris_cpu[curcpu].cpu_dtrace_caller; osp = PAGE_SIZE; if (intrpc != 0) pcstack[depth++] = (pc_t) intrpc; aframes++; sp = dtrace_getfp(); while (depth < pcstack_limit) { if (sp <= osp) break; if (!dtrace_sp_inkernel(sp, aframes)) break; callpc = dtrace_get_pc(sp); if (aframes > 0) { aframes--; if ((aframes == 0) && (caller != 0)) { pcstack[depth++] = caller; } } else { pcstack[depth++] = callpc; } osp = sp; sp = dtrace_next_sp(sp); } for (; depth < pcstack_limit; depth++) { pcstack[depth] = 0; } } static int dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, uintptr_t sp) { proc_t *p = curproc; int ret = 0; ASSERT(pcstack == NULL || pcstack_limit > 0); while (pc != 0) { ret++; if (pcstack != NULL) { *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) break; } if (sp == 0) break; if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET)); sp = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64)); sp = dtrace_fuword64((void *)sp); } } return (ret); } void dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; int n; if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->srr0; sp = tf->fixreg[1]; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->lr; } n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp); ASSERT(n >= 0); ASSERT(n <= pcstack_limit); pcstack += n; pcstack_limit -= n; zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } int dtrace_getustackdepth(void) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; int n = 0; if (p == NULL || (tf = curthread->td_frame) == NULL) return (0); if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) return (-1); pc = tf->srr0; sp = tf->fixreg[1]; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *) sp); } else pc = dtrace_fuword64((void *) sp); n++; } n += dtrace_getustack_common(NULL, 0, pc, sp); return (n); } void dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; #ifdef notyet /* XXX signal stack */ uintptr_t oldcontext; size_t s1, s2; #endif if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->srr0; sp = tf->fixreg[1]; #ifdef notyet /* XXX signal stack */ oldcontext = lwp->lwp_oldcontext; s1 = sizeof (struct xframe) + 2 * sizeof (long); s2 = s1 + sizeof (siginfo_t); #endif if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { *pcstack++ = (uint64_t)pc; *fpstack++ = 0; pcstack_limit--; if (pcstack_limit <= 0) return; if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)sp); } } while (pc != 0) { *pcstack++ = (uint64_t)pc; *fpstack++ = sp; pcstack_limit--; if (pcstack_limit <= 0) break; if (sp == 0) break; #ifdef notyet /* XXX signal stack */ if (oldcontext == sp + s1 || oldcontext == sp + s2) { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fulword(&gregs[REG_FP]); pc = dtrace_fulword(&gregs[REG_PC]); oldcontext = dtrace_fulword(&ucp->uc_link); } else #endif /* XXX */ { if (SV_PROC_FLAG(p, SV_ILP32)) { pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET)); sp = dtrace_fuword32((void *)sp); } else { pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64)); sp = dtrace_fuword64((void *)sp); } } /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } /*ARGSUSED*/ uint64_t dtrace_getarg(int arg, int aframes) { uintptr_t val; uintptr_t *fp = (uintptr_t *)dtrace_getfp(); uintptr_t *stack; int i; /* * A total of 8 arguments are passed via registers; any argument with * index of 7 or lower is therefore in a register. */ int inreg = 7; for (i = 1; i <= aframes; i++) { fp = (uintptr_t *)*fp; /* * On ppc32 AIM, and booke, trapexit() is the immediately following * label. On ppc64 AIM trapexit() follows a nop. */ #ifdef __powerpc64__ if ((long)(fp[2]) + 4 == (long)trapexit) { #else if ((long)(fp[1]) == (long)trapexit) { #endif /* * In the case of powerpc, we will use the pointer to the regs * structure that was pushed when we took the trap. To get this * structure, we must increment beyond the frame structure. If the * argument that we're seeking is passed on the stack, we'll pull * the true stack pointer out of the saved registers and decrement * our argument by the number of arguments passed in registers; if * the argument we're seeking is passed in regsiters, we can just * load it directly. */ #ifdef __powerpc64__ struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 48); #else struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 8); #endif if (arg <= inreg) { stack = &rp->fixreg[3]; } else { stack = (uintptr_t *)(rp->fixreg[1]); arg -= inreg; } goto load; } } /* * We know that we did not come through a trap to get into * dtrace_probe() -- the provider simply called dtrace_probe() * directly. As this is the case, we need to shift the argument * that we're looking for: the probe ID is the first argument to * dtrace_probe(), so the argument n will actually be found where * one would expect to find argument (n + 1). */ arg++; if (arg <= inreg) { /* * This shouldn't happen. If the argument is passed in a * register then it should have been, well, passed in a * register... */ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } arg -= (inreg + 1); stack = fp + 2; load: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); val = stack[arg]; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); return (val); } int dtrace_getstackdepth(int aframes) { int depth = 0; uintptr_t osp, sp; vm_offset_t callpc; osp = PAGE_SIZE; aframes++; sp = dtrace_getfp(); depth++; for(;;) { if (sp <= osp) break; if (!dtrace_sp_inkernel(sp, aframes)) break; if (aframes == 0) depth++; else aframes--; osp = sp; sp = dtrace_next_sp(sp); } if (depth < aframes) return (0); return (depth); } ulong_t dtrace_getreg(struct trapframe *rp, uint_t reg) { if (reg < 32) return (rp->fixreg[reg]); switch (reg) { case 33: return (rp->lr); case 34: return (rp->cr); case 35: return (rp->xer); case 36: return (rp->ctr); case 37: return (rp->srr0); case 38: return (rp->srr1); case 39: return (rp->exc); default: DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } } static int dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) { ASSERT(INKERNEL(kaddr) && kaddr + size >= kaddr); if (uaddr + size > VM_MAXUSER_ADDRESS || uaddr + size < uaddr) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = uaddr; return (0); } return (1); } void dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) if (copyin((const void *)uaddr, (void *)kaddr, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } void dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) { if (copyout((const void *)kaddr, (void *)uaddr, size)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } void dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { size_t actual; int error; if (dtrace_copycheck(uaddr, kaddr, size)) { error = copyinstr((const void *)uaddr, (void *)kaddr, size, &actual); /* ENAMETOOLONG is not a fault condition. */ if (error && error != ENAMETOOLONG) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } /* * The bulk of this function could be replaced to match dtrace_copyinstr() * if we ever implement a copyoutstr(). */ void dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { size_t len; if (dtrace_copycheck(uaddr, kaddr, size)) { len = strlen((const char *)kaddr); if (len > size) len = size; if (copyout((const void *)kaddr, (void *)uaddr, len)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } } uint8_t dtrace_fuword8(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (fubyte(uaddr)); } uint16_t dtrace_fuword16(void *uaddr) { uint16_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; } uint32_t dtrace_fuword32(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (fuword32(uaddr)); } uint64_t dtrace_fuword64(void *uaddr) { uint64_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; } uintptr_t dtrace_fulword(void *uaddr) { uintptr_t ret = 0; if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) { if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; } } return ret; }