/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD$ */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "regset.h" uint8_t dtrace_fuword8_nocheck(void *); uint16_t dtrace_fuword16_nocheck(void *); uint32_t dtrace_fuword32_nocheck(void *); uint64_t dtrace_fuword64_nocheck(void *); int dtrace_ustackdepth_max = 2048; void dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *intrpc) { int depth = 0; register_t rbp; struct amd64_frame *frame; vm_offset_t callpc; pc_t caller = (pc_t) solaris_cpu[curcpu].cpu_dtrace_caller; if (intrpc != 0) pcstack[depth++] = (pc_t) intrpc; aframes++; __asm __volatile("movq %%rbp,%0" : "=r" (rbp)); frame = (struct amd64_frame *)rbp; while (depth < pcstack_limit) { if (!INKERNEL((long) frame)) break; callpc = frame->f_retaddr; if (!INKERNEL(callpc)) break; if (aframes > 0) { aframes--; if ((aframes == 0) && (caller != 0)) { pcstack[depth++] = caller; } } else { pcstack[depth++] = callpc; } if (frame->f_frame <= frame || (vm_offset_t)frame->f_frame >= curthread->td_kstack + curthread->td_kstack_pages * PAGE_SIZE) break; frame = frame->f_frame; } for (; depth < pcstack_limit; depth++) { pcstack[depth] = 0; } } static int dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, uintptr_t sp) { uintptr_t oldsp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; int ret = 0; ASSERT(pcstack == NULL || pcstack_limit > 0); ASSERT(dtrace_ustackdepth_max > 0); while (pc != 0) { /* * We limit the number of times we can go around this * loop to account for a circular stack. */ if (ret++ >= dtrace_ustackdepth_max) { *flags |= CPU_DTRACE_BADSTACK; cpu_core[curcpu].cpuc_dtrace_illval = sp; break; } if (pcstack != NULL) { *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) break; } if (sp == 0) break; oldsp = sp; pc = dtrace_fuword64((void *)(sp + offsetof(struct amd64_frame, f_retaddr))); sp = dtrace_fuword64((void *)sp); if (sp == oldsp) { *flags |= CPU_DTRACE_BADSTACK; cpu_core[curcpu].cpuc_dtrace_illval = sp; break; } /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } return (ret); } void dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp, fp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; int n; if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->tf_rip; fp = tf->tf_rbp; sp = tf->tf_rsp; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) return; pc = dtrace_fuword64((void *) sp); } n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); ASSERT(n >= 0); ASSERT(n <= pcstack_limit); pcstack += n; pcstack_limit -= n; zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } int dtrace_getustackdepth(void) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, fp, sp; int n = 0; if (p == NULL || (tf = curthread->td_frame) == NULL) return (0); if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) return (-1); pc = tf->tf_rip; fp = tf->tf_rbp; sp = tf->tf_rsp; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ pc = dtrace_fuword64((void *) sp); n++; } n += dtrace_getustack_common(NULL, 0, pc, fp); return (n); } void dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp, fp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; #ifdef notyet /* XXX signal stack */ uintptr_t oldcontext; size_t s1, s2; #endif if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curthread->td_frame) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->tf_rip; sp = tf->tf_rsp; fp = tf->tf_rbp; #ifdef notyet /* XXX signal stack */ oldcontext = lwp->lwp_oldcontext; s1 = sizeof (struct xframe) + 2 * sizeof (long); s2 = s1 + sizeof (siginfo_t); #endif if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { *pcstack++ = (uint64_t)pc; *fpstack++ = 0; pcstack_limit--; if (pcstack_limit <= 0) return; pc = dtrace_fuword64((void *)sp); } while (pc != 0) { *pcstack++ = (uint64_t)pc; *fpstack++ = fp; pcstack_limit--; if (pcstack_limit <= 0) break; if (fp == 0) break; #ifdef notyet /* XXX signal stack */ if (oldcontext == sp + s1 || oldcontext == sp + s2) { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fulword(&gregs[REG_FP]); pc = dtrace_fulword(&gregs[REG_PC]); oldcontext = dtrace_fulword(&ucp->uc_link); } else #endif /* XXX */ { pc = dtrace_fuword64((void *)(fp + offsetof(struct amd64_frame, f_retaddr))); fp = dtrace_fuword64((void *)fp); } /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } /*ARGSUSED*/ uint64_t dtrace_getarg(int arg, int aframes) { uintptr_t val; struct amd64_frame *fp = (struct amd64_frame *)dtrace_getfp(); uintptr_t *stack; int i; /* * A total of 6 arguments are passed via registers; any argument with * index of 5 or lower is therefore in a register. */ int inreg = 5; for (i = 1; i <= aframes; i++) { fp = fp->f_frame; if (P2ROUNDUP(fp->f_retaddr, 16) == (long)dtrace_invop_callsite) { /* * In the case of amd64, we will use the pointer to the * regs structure that was pushed when we took the * trap. To get this structure, we must increment * beyond the frame structure, and then again beyond * the calling RIP stored in dtrace_invop(). If the * argument that we're seeking is passed on the stack, * we'll pull the true stack pointer out of the saved * registers and decrement our argument by the number * of arguments passed in registers; if the argument * we're seeking is passed in regsiters, we can just * load it directly. */ struct trapframe *tf = (struct trapframe *) ((uintptr_t)&fp[1] + sizeof(uintptr_t)); if (arg <= inreg) { switch (arg) { case 0: stack = (uintptr_t *)&tf->tf_rdi; break; case 1: stack = (uintptr_t *)&tf->tf_rsi; break; case 2: stack = (uintptr_t *)&tf->tf_rdx; break; case 3: stack = (uintptr_t *)&tf->tf_rcx; break; case 4: stack = (uintptr_t *)&tf->tf_r8; break; case 5: stack = (uintptr_t *)&tf->tf_r9; break; } arg = 0; } else { stack = (uintptr_t *)(tf->tf_rsp); arg -= inreg; } goto load; } } /* * We know that we did not come through a trap to get into * dtrace_probe() -- the provider simply called dtrace_probe() * directly. As this is the case, we need to shift the argument * that we're looking for: the probe ID is the first argument to * dtrace_probe(), so the argument n will actually be found where * one would expect to find argument (n + 1). */ arg++; if (arg <= inreg) { /* * This shouldn't happen. If the argument is passed in a * register then it should have been, well, passed in a * register... */ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } arg -= (inreg + 1); stack = (uintptr_t *)&fp[1]; load: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); val = stack[arg]; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); return (val); } int dtrace_getstackdepth(int aframes) { int depth = 0; struct amd64_frame *frame; vm_offset_t rbp; aframes++; rbp = dtrace_getfp(); frame = (struct amd64_frame *)rbp; depth++; for(;;) { if (!INKERNEL((long) frame)) break; if (!INKERNEL((long) frame->f_frame)) break; depth++; if (frame->f_frame <= frame || (vm_offset_t)frame->f_frame >= curthread->td_kstack + curthread->td_kstack_pages * PAGE_SIZE) break; frame = frame->f_frame; } if (depth < aframes) return 0; else return depth - aframes; } ulong_t dtrace_getreg(struct trapframe *rp, uint_t reg) { /* This table is dependent on reg.d. */ int regmap[] = { REG_GS, /* 0 GS */ REG_FS, /* 1 FS */ REG_ES, /* 2 ES */ REG_DS, /* 3 DS */ REG_RDI, /* 4 EDI */ REG_RSI, /* 5 ESI */ REG_RBP, /* 6 EBP, REG_FP */ REG_RSP, /* 7 ESP */ REG_RBX, /* 8 EBX, REG_R1 */ REG_RDX, /* 9 EDX */ REG_RCX, /* 10 ECX */ REG_RAX, /* 11 EAX, REG_R0 */ REG_TRAPNO, /* 12 TRAPNO */ REG_ERR, /* 13 ERR */ REG_RIP, /* 14 EIP, REG_PC */ REG_CS, /* 15 CS */ REG_RFL, /* 16 EFL, REG_PS */ REG_RSP, /* 17 UESP, REG_SP */ REG_SS /* 18 SS */ }; if (reg <= SS) { if (reg >= sizeof (regmap) / sizeof (int)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } reg = regmap[reg]; } else { /* This is dependent on reg.d. */ reg -= SS + 1; } switch (reg) { case REG_RDI: return (rp->tf_rdi); case REG_RSI: return (rp->tf_rsi); case REG_RDX: return (rp->tf_rdx); case REG_RCX: return (rp->tf_rcx); case REG_R8: return (rp->tf_r8); case REG_R9: return (rp->tf_r9); case REG_RAX: return (rp->tf_rax); case REG_RBX: return (rp->tf_rbx); case REG_RBP: return (rp->tf_rbp); case REG_R10: return (rp->tf_r10); case REG_R11: return (rp->tf_r11); case REG_R12: return (rp->tf_r12); case REG_R13: return (rp->tf_r13); case REG_R14: return (rp->tf_r14); case REG_R15: return (rp->tf_r15); case REG_DS: return (rp->tf_ds); case REG_ES: return (rp->tf_es); case REG_FS: return (rp->tf_fs); case REG_GS: return (rp->tf_gs); case REG_TRAPNO: return (rp->tf_trapno); case REG_ERR: return (rp->tf_err); case REG_RIP: return (rp->tf_rip); case REG_CS: return (rp->tf_cs); case REG_SS: return (rp->tf_ss); case REG_RFL: return (rp->tf_rflags); case REG_RSP: return (rp->tf_rsp); default: DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } } static int dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) { ASSERT(INKERNEL(kaddr) && kaddr + size >= kaddr); if (uaddr + size > VM_MAXUSER_ADDRESS || uaddr + size < uaddr) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = uaddr; return (0); } return (1); } void dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copy(uaddr, kaddr, size); } void dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copy(kaddr, uaddr, size); } void dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copystr(uaddr, kaddr, size, flags); } void dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copystr(kaddr, uaddr, size, flags); } uint8_t dtrace_fuword8(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword8_nocheck(uaddr)); } uint16_t dtrace_fuword16(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword16_nocheck(uaddr)); } uint32_t dtrace_fuword32(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword32_nocheck(uaddr)); } uint64_t dtrace_fuword64(void *uaddr) { if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword64_nocheck(uaddr)); }