/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD$ * */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern dtrace_id_t dtrace_probeid_error; extern int (*dtrace_invop_jump_addr)(struct trapframe *); extern void dtrace_getnanotime(struct timespec *tsp); extern void dtrace_getnanouptime(struct timespec *tsp); int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t); void dtrace_invop_init(void); void dtrace_invop_uninit(void); typedef struct dtrace_invop_hdlr { int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); struct dtrace_invop_hdlr *dtih_next; } dtrace_invop_hdlr_t; dtrace_invop_hdlr_t *dtrace_invop_hdlr; int dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax) { dtrace_invop_hdlr_t *hdlr; int rval; for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0) return (rval); return (0); } void dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr; hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); hdlr->dtih_func = func; hdlr->dtih_next = dtrace_invop_hdlr; dtrace_invop_hdlr = hdlr; } void dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr, *prev; hdlr = dtrace_invop_hdlr; prev = NULL; for (;;) { if (hdlr == NULL) panic("attempt to remove non-existent invop handler"); if (hdlr->dtih_func == func) break; prev = hdlr; hdlr = hdlr->dtih_next; } if (prev == NULL) { ASSERT(dtrace_invop_hdlr == hdlr); dtrace_invop_hdlr = hdlr->dtih_next; } else { ASSERT(dtrace_invop_hdlr != hdlr); prev->dtih_next = hdlr->dtih_next; } kmem_free(hdlr, 0); } /*ARGSUSED*/ void dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) { (*func)(0, (uintptr_t)VM_MIN_KERNEL_ADDRESS); } void dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) { cpuset_t cpus; if (cpu == DTRACE_CPUALL) cpus = all_cpus; else CPU_SETOF(cpu, &cpus); smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, smp_no_rendezvous_barrier, arg); } static void dtrace_sync_func(void) { } void dtrace_sync(void) { dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); } /* * DTrace needs a high resolution time function which can be called from a * probe context and guaranteed not to have instrumented with probes itself. * * Returns nanoseconds since some arbitrary point in time (likely SoC reset?). */ uint64_t dtrace_gethrtime(void) { uint64_t count, freq; count = READ_SPECIALREG(cntvct_el0); freq = READ_SPECIALREG(cntfrq_el0); return ((1000000000UL * count) / freq); } /* * Return a much lower resolution wallclock time based on the system clock * updated by the timer. If needed, we could add a version interpolated from * the system clock as is the case with dtrace_gethrtime(). */ uint64_t dtrace_gethrestime(void) { struct timespec current_time; dtrace_getnanotime(¤t_time); return (current_time.tv_sec * 1000000000UL + current_time.tv_nsec); } /* Function to handle DTrace traps during probes. See arm64/arm64/trap.c */ int dtrace_trap(struct trapframe *frame, u_int type) { /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * Check if DTrace has enabled 'no-fault' mode: * */ if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { /* * There are only a couple of trap types that are expected. * All the rest will be handled in the usual way. */ switch (type) { case EXCP_DATA_ABORT: /* Flag a bad address. */ cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; cpu_core[curcpu].cpuc_dtrace_illval = 0; /* * Offset the instruction pointer to the instruction * following the one causing the fault. */ frame->tf_elr += 4; return (1); default: /* Handle all other traps in the usual way. */ break; } } /* Handle the trap in the usual way. */ return (0); } void dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, int fault, int fltoffs, uintptr_t illval) { dtrace_probe(dtrace_probeid_error, (uint64_t)(uintptr_t)state, (uintptr_t)epid, (uintptr_t)which, (uintptr_t)fault, (uintptr_t)fltoffs); } static void dtrace_load64(uint64_t *addr, struct trapframe *frame, u_int reg) { KASSERT(reg <= 31, ("dtrace_load64: Invalid register %u", reg)); if (reg < nitems(frame->tf_x)) frame->tf_x[reg] = *addr; else if (reg == 30) /* lr */ frame->tf_lr = *addr; /* Nothing to do for load to xzr */ } static void dtrace_store64(uint64_t *addr, struct trapframe *frame, u_int reg) { KASSERT(reg <= 31, ("dtrace_store64: Invalid register %u", reg)); if (reg < nitems(frame->tf_x)) *addr = frame->tf_x[reg]; else if (reg == 30) /* lr */ *addr = frame->tf_lr; else if (reg == 31) /* xzr */ *addr = 0; } static int dtrace_invop_start(struct trapframe *frame) { int data, invop, reg, update_sp; register_t arg1, arg2; register_t *sp; int offs; int tmp; int i; invop = dtrace_invop(frame->tf_elr, frame, frame->tf_x[0]); tmp = (invop & LDP_STP_MASK); if (tmp == STP_64 || tmp == LDP_64) { sp = (register_t *)frame->tf_sp; data = invop; arg1 = (data >> ARG1_SHIFT) & ARG1_MASK; arg2 = (data >> ARG2_SHIFT) & ARG2_MASK; offs = (data >> OFFSET_SHIFT) & OFFSET_MASK; switch (tmp) { case STP_64: if (offs >> (OFFSET_SIZE - 1)) sp -= (~offs & OFFSET_MASK) + 1; else sp += (offs); dtrace_store64(sp + 0, frame, arg1); dtrace_store64(sp + 1, frame, arg2); break; case LDP_64: dtrace_load64(sp + 0, frame, arg1); dtrace_load64(sp + 1, frame, arg2); if (offs >> (OFFSET_SIZE - 1)) sp -= (~offs & OFFSET_MASK) + 1; else sp += (offs); break; default: break; } /* Update the stack pointer and program counter to continue */ frame->tf_sp = (register_t)sp; frame->tf_elr += INSN_SIZE; return (0); } if ((invop & SUB_MASK) == SUB_INSTR) { frame->tf_sp -= (invop >> SUB_IMM_SHIFT) & SUB_IMM_MASK; frame->tf_elr += INSN_SIZE; return (0); } if (invop == NOP_INSTR) { frame->tf_elr += INSN_SIZE; return (0); } if ((invop & B_MASK) == B_INSTR) { data = (invop & B_DATA_MASK); /* The data is the number of 4-byte words to change the pc */ data *= 4; frame->tf_elr += data; return (0); } if (invop == RET_INSTR) { frame->tf_elr = frame->tf_lr; return (0); } return (-1); } void dtrace_invop_init(void) { dtrace_invop_jump_addr = dtrace_invop_start; } void dtrace_invop_uninit(void) { dtrace_invop_jump_addr = 0; }