/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * Portions Copyright 2010 The FreeBSD Foundation * * $FreeBSD$ */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #if defined(sun) #pragma ident "%Z%%M% %I% %E% SMI" #endif #include #include #include #include #include #if defined(sun) #include #include #include #include #else #include #include #include #include #include #include #include #include #endif #include #if defined(sun) #include #include #else #include static int proc_ops(int op, proc_t *p, void *kaddr, off_t uaddr, size_t len) { struct iovec iov; struct uio uio; iov.iov_base = kaddr; iov.iov_len = len; uio.uio_offset = uaddr; uio.uio_iov = &iov; uio.uio_resid = len; uio.uio_iovcnt = 1; uio.uio_segflg = UIO_SYSSPACE; uio.uio_td = curthread; uio.uio_rw = op; PHOLD(p); if (proc_rwmem(p, &uio) < 0) { PRELE(p); return (-1); } PRELE(p); return (0); } static int uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr) { return (proc_ops(UIO_READ, p, kaddr, uaddr, len)); } static int uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr) { return (proc_ops(UIO_WRITE, p, kaddr, uaddr, len)); } #endif /* sun */ #ifdef __i386__ #define r_rax r_eax #define r_rbx r_ebx #define r_rip r_eip #define r_rflags r_eflags #define r_rsp r_esp #define r_rbp r_ebp #endif /* * Lossless User-Land Tracing on x86 * --------------------------------- * * The execution of most instructions is not dependent on the address; for * these instructions it is sufficient to copy them into the user process's * address space and execute them. To effectively single-step an instruction * in user-land, we copy out the following sequence of instructions to scratch * space in the user thread's ulwp_t structure. * * We then set the program counter (%eip or %rip) to point to this scratch * space. Once execution resumes, the original instruction is executed and * then control flow is redirected to what was originally the subsequent * instruction. If the kernel attemps to deliver a signal while single- * stepping, the signal is deferred and the program counter is moved into the * second sequence of instructions. The second sequence ends in a trap into * the kernel where the deferred signal is then properly handled and delivered. * * For instructions whose execute is position dependent, we perform simple * emulation. These instructions are limited to control transfer * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle * of %rip-relative addressing that means that almost any instruction can be * position dependent. For all the details on how we emulate generic * instructions included %rip-relative instructions, see the code in * fasttrap_pid_probe() below where we handle instructions of type * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing). */ #define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3) #define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7) #define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7) #define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm)) #define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3) #define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7) #define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7) #define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1) #define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1) #define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1) #define FASTTRAP_REX_B(rex) ((rex) & 1) #define FASTTRAP_REX(w, r, x, b) \ (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b)) /* * Single-byte op-codes. */ #define FASTTRAP_PUSHL_EBP 0x55 #define FASTTRAP_JO 0x70 #define FASTTRAP_JNO 0x71 #define FASTTRAP_JB 0x72 #define FASTTRAP_JAE 0x73 #define FASTTRAP_JE 0x74 #define FASTTRAP_JNE 0x75 #define FASTTRAP_JBE 0x76 #define FASTTRAP_JA 0x77 #define FASTTRAP_JS 0x78 #define FASTTRAP_JNS 0x79 #define FASTTRAP_JP 0x7a #define FASTTRAP_JNP 0x7b #define FASTTRAP_JL 0x7c #define FASTTRAP_JGE 0x7d #define FASTTRAP_JLE 0x7e #define FASTTRAP_JG 0x7f #define FASTTRAP_NOP 0x90 #define FASTTRAP_MOV_EAX 0xb8 #define FASTTRAP_MOV_ECX 0xb9 #define FASTTRAP_RET16 0xc2 #define FASTTRAP_RET 0xc3 #define FASTTRAP_LOOPNZ 0xe0 #define FASTTRAP_LOOPZ 0xe1 #define FASTTRAP_LOOP 0xe2 #define FASTTRAP_JCXZ 0xe3 #define FASTTRAP_CALL 0xe8 #define FASTTRAP_JMP32 0xe9 #define FASTTRAP_JMP8 0xeb #define FASTTRAP_INT3 0xcc #define FASTTRAP_INT 0xcd #define FASTTRAP_2_BYTE_OP 0x0f #define FASTTRAP_GROUP5_OP 0xff /* * Two-byte op-codes (second byte only). */ #define FASTTRAP_0F_JO 0x80 #define FASTTRAP_0F_JNO 0x81 #define FASTTRAP_0F_JB 0x82 #define FASTTRAP_0F_JAE 0x83 #define FASTTRAP_0F_JE 0x84 #define FASTTRAP_0F_JNE 0x85 #define FASTTRAP_0F_JBE 0x86 #define FASTTRAP_0F_JA 0x87 #define FASTTRAP_0F_JS 0x88 #define FASTTRAP_0F_JNS 0x89 #define FASTTRAP_0F_JP 0x8a #define FASTTRAP_0F_JNP 0x8b #define FASTTRAP_0F_JL 0x8c #define FASTTRAP_0F_JGE 0x8d #define FASTTRAP_0F_JLE 0x8e #define FASTTRAP_0F_JG 0x8f #define FASTTRAP_EFLAGS_OF 0x800 #define FASTTRAP_EFLAGS_DF 0x400 #define FASTTRAP_EFLAGS_SF 0x080 #define FASTTRAP_EFLAGS_ZF 0x040 #define FASTTRAP_EFLAGS_AF 0x010 #define FASTTRAP_EFLAGS_PF 0x004 #define FASTTRAP_EFLAGS_CF 0x001 /* * Instruction prefixes. */ #define FASTTRAP_PREFIX_OPERAND 0x66 #define FASTTRAP_PREFIX_ADDRESS 0x67 #define FASTTRAP_PREFIX_CS 0x2E #define FASTTRAP_PREFIX_DS 0x3E #define FASTTRAP_PREFIX_ES 0x26 #define FASTTRAP_PREFIX_FS 0x64 #define FASTTRAP_PREFIX_GS 0x65 #define FASTTRAP_PREFIX_SS 0x36 #define FASTTRAP_PREFIX_LOCK 0xF0 #define FASTTRAP_PREFIX_REP 0xF3 #define FASTTRAP_PREFIX_REPNE 0xF2 #define FASTTRAP_NOREG 0xff /* * Map between instruction register encodings and the kernel constants which * correspond to indicies into struct regs. */ #ifdef __amd64 static const uint8_t regmap[16] = { REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, }; #else static const uint8_t regmap[8] = { EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI }; #endif static ulong_t fasttrap_getreg(struct reg *, uint_t); static uint64_t fasttrap_anarg(struct reg *rp, int function_entry, int argno) { uint64_t value = 0; int shift = function_entry ? 1 : 0; #ifdef __amd64 if (curproc->p_model == DATAMODEL_LP64) { uintptr_t *stack; /* * In 64-bit mode, the first six arguments are stored in * registers. */ if (argno < 6) switch (argno) { case 0: return (rp->r_rdi); case 1: return (rp->r_rsi); case 2: return (rp->r_rdx); case 3: return (rp->r_rcx); case 4: return (rp->r_r8); case 5: return (rp->r_r9); } stack = (uintptr_t *)rp->r_rsp; DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); value = dtrace_fulword(&stack[argno - 6 + shift]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); } else { #endif #ifdef __i386 uint32_t *stack = (uint32_t *)rp->r_esp; DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); value = dtrace_fuword32(&stack[argno + shift]); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); #endif #ifdef __amd64 } #endif return (value); } /*ARGSUSED*/ int fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc, fasttrap_probe_type_t type) { uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10]; size_t len = FASTTRAP_MAX_INSTR_SIZE; size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET)); uint_t start = 0; int rmindex, size; uint8_t seg, rex = 0; /* * Read the instruction at the given address out of the process's * address space. We don't have to worry about a debugger * changing this instruction before we overwrite it with our trap * instruction since P_PR_LOCK is set. Since instructions can span * pages, we potentially read the instruction in two parts. If the * second part fails, we just zero out that part of the instruction. */ if (uread(p, &instr[0], first, pc) != 0) return (-1); if (len > first && uread(p, &instr[first], len - first, pc + first) != 0) { bzero(&instr[first], len - first); len = first; } /* * If the disassembly fails, then we have a malformed instruction. */ if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0) return (-1); /* * Make sure the disassembler isn't completely broken. */ ASSERT(-1 <= rmindex && rmindex < size); /* * If the computed size is greater than the number of bytes read, * then it was a malformed instruction possibly because it fell on a * page boundary and the subsequent page was missing or because of * some malicious user. */ if (size > len) return (-1); tp->ftt_size = (uint8_t)size; tp->ftt_segment = FASTTRAP_SEG_NONE; /* * Find the start of the instruction's opcode by processing any * legacy prefixes. */ for (;;) { seg = 0; switch (instr[start]) { case FASTTRAP_PREFIX_SS: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_GS: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_FS: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_ES: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_DS: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_CS: seg++; /*FALLTHRU*/ case FASTTRAP_PREFIX_OPERAND: case FASTTRAP_PREFIX_ADDRESS: case FASTTRAP_PREFIX_LOCK: case FASTTRAP_PREFIX_REP: case FASTTRAP_PREFIX_REPNE: if (seg != 0) { /* * It's illegal for an instruction to specify * two segment prefixes -- give up on this * illegal instruction. */ if (tp->ftt_segment != FASTTRAP_SEG_NONE) return (-1); tp->ftt_segment = seg; } start++; continue; } break; } #ifdef __amd64 /* * Identify the REX prefix on 64-bit processes. */ if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40) rex = instr[start++]; #endif /* * Now that we're pretty sure that the instruction is okay, copy the * valid part to the tracepoint. */ bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE); tp->ftt_type = FASTTRAP_T_COMMON; if (instr[start] == FASTTRAP_2_BYTE_OP) { switch (instr[start + 1]) { case FASTTRAP_0F_JO: case FASTTRAP_0F_JNO: case FASTTRAP_0F_JB: case FASTTRAP_0F_JAE: case FASTTRAP_0F_JE: case FASTTRAP_0F_JNE: case FASTTRAP_0F_JBE: case FASTTRAP_0F_JA: case FASTTRAP_0F_JS: case FASTTRAP_0F_JNS: case FASTTRAP_0F_JP: case FASTTRAP_0F_JNP: case FASTTRAP_0F_JL: case FASTTRAP_0F_JGE: case FASTTRAP_0F_JLE: case FASTTRAP_0F_JG: tp->ftt_type = FASTTRAP_T_JCC; tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO; tp->ftt_dest = pc + tp->ftt_size + /* LINTED - alignment */ *(int32_t *)&instr[start + 2]; break; } } else if (instr[start] == FASTTRAP_GROUP5_OP) { uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]); uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]); uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]); if (reg == 2 || reg == 4) { uint_t i, sz; if (reg == 2) tp->ftt_type = FASTTRAP_T_CALL; else tp->ftt_type = FASTTRAP_T_JMP; if (mod == 3) tp->ftt_code = 2; else tp->ftt_code = 1; ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0); /* * See AMD x86-64 Architecture Programmer's Manual * Volume 3, Section 1.2.7, Table 1-12, and * Appendix A.3.1, Table A-15. */ if (mod != 3 && rm == 4) { uint8_t sib = instr[start + 2]; uint_t index = FASTTRAP_SIB_INDEX(sib); uint_t base = FASTTRAP_SIB_BASE(sib); tp->ftt_scale = FASTTRAP_SIB_SCALE(sib); tp->ftt_index = (index == 4) ? FASTTRAP_NOREG : regmap[index | (FASTTRAP_REX_X(rex) << 3)]; tp->ftt_base = (mod == 0 && base == 5) ? FASTTRAP_NOREG : regmap[base | (FASTTRAP_REX_B(rex) << 3)]; i = 3; sz = mod == 1 ? 1 : 4; } else { /* * In 64-bit mode, mod == 0 and r/m == 5 * denotes %rip-relative addressing; in 32-bit * mode, the base register isn't used. In both * modes, there is a 32-bit operand. */ if (mod == 0 && rm == 5) { #ifdef __amd64 if (p->p_model == DATAMODEL_LP64) tp->ftt_base = REG_RIP; else #endif tp->ftt_base = FASTTRAP_NOREG; sz = 4; } else { uint8_t base = rm | (FASTTRAP_REX_B(rex) << 3); tp->ftt_base = regmap[base]; sz = mod == 1 ? 1 : mod == 2 ? 4 : 0; } tp->ftt_index = FASTTRAP_NOREG; i = 2; } if (sz == 1) { tp->ftt_dest = *(int8_t *)&instr[start + i]; } else if (sz == 4) { /* LINTED - alignment */ tp->ftt_dest = *(int32_t *)&instr[start + i]; } else { tp->ftt_dest = 0; } } } else { switch (instr[start]) { case FASTTRAP_RET: tp->ftt_type = FASTTRAP_T_RET; break; case FASTTRAP_RET16: tp->ftt_type = FASTTRAP_T_RET16; /* LINTED - alignment */ tp->ftt_dest = *(uint16_t *)&instr[start + 1]; break; case FASTTRAP_JO: case FASTTRAP_JNO: case FASTTRAP_JB: case FASTTRAP_JAE: case FASTTRAP_JE: case FASTTRAP_JNE: case FASTTRAP_JBE: case FASTTRAP_JA: case FASTTRAP_JS: case FASTTRAP_JNS: case FASTTRAP_JP: case FASTTRAP_JNP: case FASTTRAP_JL: case FASTTRAP_JGE: case FASTTRAP_JLE: case FASTTRAP_JG: tp->ftt_type = FASTTRAP_T_JCC; tp->ftt_code = instr[start]; tp->ftt_dest = pc + tp->ftt_size + (int8_t)instr[start + 1]; break; case FASTTRAP_LOOPNZ: case FASTTRAP_LOOPZ: case FASTTRAP_LOOP: tp->ftt_type = FASTTRAP_T_LOOP; tp->ftt_code = instr[start]; tp->ftt_dest = pc + tp->ftt_size + (int8_t)instr[start + 1]; break; case FASTTRAP_JCXZ: tp->ftt_type = FASTTRAP_T_JCXZ; tp->ftt_dest = pc + tp->ftt_size + (int8_t)instr[start + 1]; break; case FASTTRAP_CALL: tp->ftt_type = FASTTRAP_T_CALL; tp->ftt_dest = pc + tp->ftt_size + /* LINTED - alignment */ *(int32_t *)&instr[start + 1]; tp->ftt_code = 0; break; case FASTTRAP_JMP32: tp->ftt_type = FASTTRAP_T_JMP; tp->ftt_dest = pc + tp->ftt_size + /* LINTED - alignment */ *(int32_t *)&instr[start + 1]; break; case FASTTRAP_JMP8: tp->ftt_type = FASTTRAP_T_JMP; tp->ftt_dest = pc + tp->ftt_size + (int8_t)instr[start + 1]; break; case FASTTRAP_PUSHL_EBP: if (start == 0) tp->ftt_type = FASTTRAP_T_PUSHL_EBP; break; case FASTTRAP_NOP: #ifdef __amd64 ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0); /* * On amd64 we have to be careful not to confuse a nop * (actually xchgl %eax, %eax) with an instruction using * the same opcode, but that does something different * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax). */ if (FASTTRAP_REX_B(rex) == 0) #endif tp->ftt_type = FASTTRAP_T_NOP; break; case FASTTRAP_INT3: /* * The pid provider shares the int3 trap with debugger * breakpoints so we can't instrument them. */ ASSERT(instr[start] == FASTTRAP_INSTR); return (-1); case FASTTRAP_INT: /* * Interrupts seem like they could be traced with * no negative implications, but it's possible that * a thread could be redirected by the trap handling * code which would eventually return to the * instruction after the interrupt. If the interrupt * were in our scratch space, the subsequent * instruction might be overwritten before we return. * Accordingly we refuse to instrument any interrupt. */ return (-1); } } #ifdef __amd64 if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) { /* * If the process is 64-bit and the instruction type is still * FASTTRAP_T_COMMON -- meaning we're going to copy it out an * execute it -- we need to watch for %rip-relative * addressing mode. See the portion of fasttrap_pid_probe() * below where we handle tracepoints with type * FASTTRAP_T_COMMON for how we emulate instructions that * employ %rip-relative addressing. */ if (rmindex != -1) { uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]); uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]); uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]); ASSERT(rmindex > start); if (mod == 0 && rm == 5) { /* * We need to be sure to avoid other * registers used by this instruction. While * the reg field may determine the op code * rather than denoting a register, assuming * that it denotes a register is always safe. * We leave the REX field intact and use * whatever value's there for simplicity. */ if (reg != 0) { tp->ftt_ripmode = FASTTRAP_RIP_1 | (FASTTRAP_RIP_X * FASTTRAP_REX_B(rex)); rm = 0; } else { tp->ftt_ripmode = FASTTRAP_RIP_2 | (FASTTRAP_RIP_X * FASTTRAP_REX_B(rex)); rm = 1; } tp->ftt_modrm = tp->ftt_instr[rmindex]; tp->ftt_instr[rmindex] = FASTTRAP_MODRM(2, reg, rm); } } } #endif return (0); } int fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) { fasttrap_instr_t instr = FASTTRAP_INSTR; if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) return (-1); return (0); } int fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) { uint8_t instr; /* * Distinguish between read or write failures and a changed * instruction. */ if (uread(p, &instr, 1, tp->ftt_pc) != 0) return (0); if (instr != FASTTRAP_INSTR) return (0); if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) return (-1); return (0); } #ifdef __amd64 static uintptr_t fasttrap_fulword_noerr(const void *uaddr) { uintptr_t ret; if ((ret = fasttrap_fulword(uaddr)) != -1) return (ret); return (0); } #endif #ifdef __i386__ static uint32_t fasttrap_fuword32_noerr(const void *uaddr) { uint32_t ret; if ((ret = fasttrap_fuword32(uaddr)) != -1) return (ret); return (0); } #endif static void fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid, uintptr_t new_pc) { fasttrap_tracepoint_t *tp; fasttrap_bucket_t *bucket; fasttrap_id_t *id; #if defined(sun) kmutex_t *pid_mtx; #endif #if defined(sun) pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; mutex_enter(pid_mtx); #endif bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { if (pid == tp->ftt_pid && pc == tp->ftt_pc && tp->ftt_proc->ftpc_acount != 0) break; } /* * Don't sweat it if we can't find the tracepoint again; unlike * when we're in fasttrap_pid_probe(), finding the tracepoint here * is not essential to the correct execution of the process. */ if (tp == NULL) { #if defined(sun) mutex_exit(pid_mtx); #endif return; } for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { /* * If there's a branch that could act as a return site, we * need to trace it, and check here if the program counter is * external to the function. */ if (tp->ftt_type != FASTTRAP_T_RET && tp->ftt_type != FASTTRAP_T_RET16 && new_pc - id->fti_probe->ftp_faddr < id->fti_probe->ftp_fsize) continue; dtrace_probe(id->fti_probe->ftp_id, pc - id->fti_probe->ftp_faddr, rp->r_rax, rp->r_rbx, 0, 0); } #if defined(sun) mutex_exit(pid_mtx); #endif } static void fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr) { #if defined(sun) sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); sqp->sq_info.si_signo = SIGSEGV; sqp->sq_info.si_code = SEGV_MAPERR; sqp->sq_info.si_addr = (caddr_t)addr; mutex_enter(&p->p_lock); sigaddqa(p, t, sqp); mutex_exit(&p->p_lock); if (t != NULL) aston(t); #else ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP); ksiginfo_init(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_code = SEGV_MAPERR; ksi->ksi_addr = (caddr_t)addr; (void) tdksignal(t, SIGSEGV, ksi); #endif } #ifdef __amd64 static void fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc, uintptr_t *argv) { int i, x, cap = MIN(argc, probe->ftp_nargs); uintptr_t *stack = (uintptr_t *)rp->r_rsp; for (i = 0; i < cap; i++) { x = probe->ftp_argmap[i]; if (x < 6) argv[i] = (&rp->r_rdi)[x]; else argv[i] = fasttrap_fulword_noerr(&stack[x]); } for (; i < argc; i++) { argv[i] = 0; } } #endif #ifdef __i386__ static void fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc, uint32_t *argv) { int i, x, cap = MIN(argc, probe->ftp_nargs); uint32_t *stack = (uint32_t *)rp->r_rsp; for (i = 0; i < cap; i++) { x = probe->ftp_argmap[i]; argv[i] = fasttrap_fuword32_noerr(&stack[x]); } for (; i < argc; i++) { argv[i] = 0; } } #endif static int fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr) { proc_t *p = curproc; #ifdef __i386__ struct segment_descriptor *desc; #else struct user_segment_descriptor *desc; #endif uint16_t sel = 0, ndx, type; uintptr_t limit; switch (tp->ftt_segment) { case FASTTRAP_SEG_CS: sel = rp->r_cs; break; case FASTTRAP_SEG_DS: sel = rp->r_ds; break; case FASTTRAP_SEG_ES: sel = rp->r_es; break; case FASTTRAP_SEG_FS: sel = rp->r_fs; break; case FASTTRAP_SEG_GS: sel = rp->r_gs; break; case FASTTRAP_SEG_SS: sel = rp->r_ss; break; } /* * Make sure the given segment register specifies a user priority * selector rather than a kernel selector. */ if (ISPL(sel) != SEL_UPL) return (-1); ndx = IDXSEL(sel); /* * Check the bounds and grab the descriptor out of the specified * descriptor table. */ if (ISLDT(sel)) { #ifdef __i386__ if (ndx > p->p_md.md_ldt->ldt_len) return (-1); desc = (struct segment_descriptor *) p->p_md.md_ldt[ndx].ldt_base; #else if (ndx > max_ldt_segment) return (-1); desc = (struct user_segment_descriptor *) p->p_md.md_ldt[ndx].ldt_base; #endif } else { if (ndx >= NGDT) return (-1); #ifdef __i386__ desc = &gdt[ndx].sd; #else desc = &gdt[ndx]; #endif } /* * The descriptor must have user privilege level and it must be * present in memory. */ if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1) return (-1); type = desc->sd_type; /* * If the S bit in the type field is not set, this descriptor can * only be used in system context. */ if ((type & 0x10) != 0x10) return (-1); limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1); if (tp->ftt_segment == FASTTRAP_SEG_CS) { /* * The code/data bit and readable bit must both be set. */ if ((type & 0xa) != 0xa) return (-1); if (*addr > limit) return (-1); } else { /* * The code/data bit must be clear. */ if ((type & 0x8) != 0) return (-1); /* * If the expand-down bit is clear, we just check the limit as * it would naturally be applied. Otherwise, we need to check * that the address is the range [limit + 1 .. 0xffff] or * [limit + 1 ... 0xffffffff] depending on if the default * operand size bit is set. */ if ((type & 0x4) == 0) { if (*addr > limit) return (-1); } else if (desc->sd_def32) { if (*addr < limit + 1 || 0xffff < *addr) return (-1); } else { if (*addr < limit + 1 || 0xffffffff < *addr) return (-1); } } *addr += USD_GETBASE(desc); return (0); } int fasttrap_pid_probe(struct reg *rp) { proc_t *p = curproc; uintptr_t pc = rp->r_rip - 1; uintptr_t new_pc = 0; fasttrap_bucket_t *bucket; #if defined(sun) kmutex_t *pid_mtx; #endif fasttrap_tracepoint_t *tp, tp_local; pid_t pid; dtrace_icookie_t cookie; uint_t is_enabled = 0; /* * It's possible that a user (in a veritable orgy of bad planning) * could redirect this thread's flow of control before it reached the * return probe fasttrap. In this case we need to kill the process * since it's in a unrecoverable state. */ if (curthread->t_dtrace_step) { ASSERT(curthread->t_dtrace_on); fasttrap_sigtrap(p, curthread, pc); return (0); } /* * Clear all user tracing flags. */ curthread->t_dtrace_ft = 0; curthread->t_dtrace_pc = 0; curthread->t_dtrace_npc = 0; curthread->t_dtrace_scrpc = 0; curthread->t_dtrace_astpc = 0; #ifdef __amd64 curthread->t_dtrace_regv = 0; #endif #if defined(sun) /* * Treat a child created by a call to vfork(2) as if it were its * parent. We know that there's only one thread of control in such a * process: this one. */ while (p->p_flag & SVFORK) { p = p->p_parent; } #endif PROC_LOCK(p); _PHOLD(p); pid = p->p_pid; #if defined(sun) pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; mutex_enter(pid_mtx); #endif bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; /* * Lookup the tracepoint that the process just hit. */ for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { if (pid == tp->ftt_pid && pc == tp->ftt_pc && tp->ftt_proc->ftpc_acount != 0) break; } /* * If we couldn't find a matching tracepoint, either a tracepoint has * been inserted without using the pid ioctl interface (see * fasttrap_ioctl), or somehow we have mislaid this tracepoint. */ if (tp == NULL) { #if defined(sun) mutex_exit(pid_mtx); #endif _PRELE(p); PROC_UNLOCK(p); return (-1); } /* * Set the program counter to the address of the traced instruction * so that it looks right in ustack() output. */ rp->r_rip = pc; if (tp->ftt_ids != NULL) { fasttrap_id_t *id; #ifdef __amd64 if (p->p_model == DATAMODEL_LP64) { for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { fasttrap_probe_t *probe = id->fti_probe; if (id->fti_ptype == DTFTP_ENTRY) { /* * We note that this was an entry * probe to help ustack() find the * first caller. */ cookie = dtrace_interrupt_disable(); DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); dtrace_probe(probe->ftp_id, rp->r_rdi, rp->r_rsi, rp->r_rdx, rp->r_rcx, rp->r_r8); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); dtrace_interrupt_enable(cookie); } else if (id->fti_ptype == DTFTP_IS_ENABLED) { /* * Note that in this case, we don't * call dtrace_probe() since it's only * an artificial probe meant to change * the flow of control so that it * encounters the true probe. */ is_enabled = 1; } else if (probe->ftp_argmap == NULL) { dtrace_probe(probe->ftp_id, rp->r_rdi, rp->r_rsi, rp->r_rdx, rp->r_rcx, rp->r_r8); } else { uintptr_t t[5]; fasttrap_usdt_args64(probe, rp, sizeof (t) / sizeof (t[0]), t); dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); } } } else { #else /* __amd64 */ uintptr_t s0, s1, s2, s3, s4, s5; uint32_t *stack = (uint32_t *)rp->r_esp; /* * In 32-bit mode, all arguments are passed on the * stack. If this is a function entry probe, we need * to skip the first entry on the stack as it * represents the return address rather than a * parameter to the function. */ s0 = fasttrap_fuword32_noerr(&stack[0]); s1 = fasttrap_fuword32_noerr(&stack[1]); s2 = fasttrap_fuword32_noerr(&stack[2]); s3 = fasttrap_fuword32_noerr(&stack[3]); s4 = fasttrap_fuword32_noerr(&stack[4]); s5 = fasttrap_fuword32_noerr(&stack[5]); for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { fasttrap_probe_t *probe = id->fti_probe; if (id->fti_ptype == DTFTP_ENTRY) { /* * We note that this was an entry * probe to help ustack() find the * first caller. */ cookie = dtrace_interrupt_disable(); DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); dtrace_probe(probe->ftp_id, s1, s2, s3, s4, s5); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); dtrace_interrupt_enable(cookie); } else if (id->fti_ptype == DTFTP_IS_ENABLED) { /* * Note that in this case, we don't * call dtrace_probe() since it's only * an artificial probe meant to change * the flow of control so that it * encounters the true probe. */ is_enabled = 1; } else if (probe->ftp_argmap == NULL) { dtrace_probe(probe->ftp_id, s0, s1, s2, s3, s4); } else { uint32_t t[5]; fasttrap_usdt_args32(probe, rp, sizeof (t) / sizeof (t[0]), t); dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); } } #endif /* __amd64 */ #ifdef __amd64 } #endif } /* * We're about to do a bunch of work so we cache a local copy of * the tracepoint to emulate the instruction, and then find the * tracepoint again later if we need to light up any return probes. */ tp_local = *tp; PROC_UNLOCK(p); #if defined(sun) mutex_exit(pid_mtx); #endif tp = &tp_local; /* * Set the program counter to appear as though the traced instruction * had completely executed. This ensures that fasttrap_getreg() will * report the expected value for REG_RIP. */ rp->r_rip = pc + tp->ftt_size; /* * If there's an is-enabled probe connected to this tracepoint it * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' * instruction that was placed there by DTrace when the binary was * linked. As this probe is, in fact, enabled, we need to stuff 1 * into %eax or %rax. Accordingly, we can bypass all the instruction * emulation logic since we know the inevitable result. It's possible * that a user could construct a scenario where the 'is-enabled' * probe was on some other instruction, but that would be a rather * exotic way to shoot oneself in the foot. */ if (is_enabled) { rp->r_rax = 1; new_pc = rp->r_rip; goto done; } /* * We emulate certain types of instructions to ensure correctness * (in the case of position dependent instructions) or optimize * common cases. The rest we have the thread execute back in user- * land. */ switch (tp->ftt_type) { case FASTTRAP_T_RET: case FASTTRAP_T_RET16: { uintptr_t dst = 0; uintptr_t addr = 0; int ret = 0; /* * We have to emulate _every_ facet of the behavior of a ret * instruction including what happens if the load from %esp * fails; in that case, we send a SIGSEGV. */ #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { ret = dst = fasttrap_fulword((void *)rp->r_rsp); addr = rp->r_rsp + sizeof (uintptr_t); } else { #endif #ifdef __i386__ uint32_t dst32; ret = dst32 = fasttrap_fuword32((void *)rp->r_esp); dst = dst32; addr = rp->r_esp + sizeof (uint32_t); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, rp->r_rsp); new_pc = pc; break; } if (tp->ftt_type == FASTTRAP_T_RET16) addr += tp->ftt_dest; rp->r_rsp = addr; new_pc = dst; break; } case FASTTRAP_T_JCC: { uint_t taken = 0; switch (tp->ftt_code) { case FASTTRAP_JO: taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0; break; case FASTTRAP_JNO: taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0; break; case FASTTRAP_JB: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0; break; case FASTTRAP_JAE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0; break; case FASTTRAP_JE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; break; case FASTTRAP_JNE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; break; case FASTTRAP_JBE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 || (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; break; case FASTTRAP_JA: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 && (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; break; case FASTTRAP_JS: taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0; break; case FASTTRAP_JNS: taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0; break; case FASTTRAP_JP: taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0; break; case FASTTRAP_JNP: taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0; break; case FASTTRAP_JL: taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JGE: taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JLE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 || ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JG: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; } if (taken) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_LOOP: { uint_t taken = 0; #ifdef __amd64 greg_t cx = rp->r_rcx--; #else greg_t cx = rp->r_ecx--; #endif switch (tp->ftt_code) { case FASTTRAP_LOOPNZ: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && cx != 0; break; case FASTTRAP_LOOPZ: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 && cx != 0; break; case FASTTRAP_LOOP: taken = (cx != 0); break; } if (taken) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_JCXZ: { #ifdef __amd64 greg_t cx = rp->r_rcx; #else greg_t cx = rp->r_ecx; #endif if (cx == 0) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_PUSHL_EBP: { int ret = 0; #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { rp->r_rsp -= sizeof (uintptr_t); ret = fasttrap_sulword(&rp->r_rbp, (void *)rp->r_rsp); } else { #endif #ifdef __i386__ rp->r_rsp -= sizeof (uint32_t); ret = fasttrap_suword32(&rp->r_rbp, (void *)rp->r_rsp); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, rp->r_rsp); new_pc = pc; break; } new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_NOP: new_pc = pc + tp->ftt_size; break; case FASTTRAP_T_JMP: case FASTTRAP_T_CALL: if (tp->ftt_code == 0) { new_pc = tp->ftt_dest; } else { #ifdef __amd64 uintptr_t value; #endif uintptr_t addr = tp->ftt_dest; if (tp->ftt_base != FASTTRAP_NOREG) addr += fasttrap_getreg(rp, tp->ftt_base); if (tp->ftt_index != FASTTRAP_NOREG) addr += fasttrap_getreg(rp, tp->ftt_index) << tp->ftt_scale; if (tp->ftt_code == 1) { /* * If there's a segment prefix for this * instruction, we'll need to check permissions * and bounds on the given selector, and adjust * the address accordingly. */ if (tp->ftt_segment != FASTTRAP_SEG_NONE && fasttrap_do_seg(tp, rp, &addr) != 0) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { if ((value = fasttrap_fulword((void *)addr)) == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } new_pc = value; } else { #endif #ifdef __i386__ uint32_t value32; addr = (uintptr_t)(uint32_t)addr; if ((value32 = fasttrap_fuword32((void *)addr)) == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } new_pc = value32; #endif } #ifdef __amd64 } else { new_pc = addr; } #endif } /* * If this is a call instruction, we need to push the return * address onto the stack. If this fails, we send the process * a SIGSEGV and reset the pc to emulate what would happen if * this instruction weren't traced. */ if (tp->ftt_type == FASTTRAP_T_CALL) { int ret = 0; uintptr_t addr = 0, pcps; #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { addr = rp->r_rsp - sizeof (uintptr_t); pcps = pc + tp->ftt_size; ret = fasttrap_sulword((void *)addr, &pcps); } else { #endif #ifdef __i386__ addr = rp->r_rsp - sizeof (uint32_t); pcps = (uint32_t)(pc + tp->ftt_size); ret = fasttrap_suword32((void *)addr, &pcps); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } rp->r_rsp = addr; } break; case FASTTRAP_T_COMMON: { uintptr_t addr; #if defined(__amd64) uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; #else uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; #endif uint_t i = 0; #if defined(sun) klwp_t *lwp = ttolwp(curthread); #endif /* * Compute the address of the ulwp_t and step over the * ul_self pointer. The method used to store the user-land * thread pointer is very different on 32- and 64-bit * kernels. */ #if defined(sun) #if defined(__amd64) if (p->p_model == DATAMODEL_LP64) { addr = lwp->lwp_pcb.pcb_fsbase; addr += sizeof (void *); } else { addr = lwp->lwp_pcb.pcb_gsbase; addr += sizeof (caddr32_t); } #else addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc); addr += sizeof (void *); #endif #endif /* sun */ #ifdef __i386__ addr = USD_GETBASE(&curthread->td_pcb->pcb_gsd); #else addr = curthread->td_pcb->pcb_gsbase; #endif addr += sizeof (void *); /* * Generic Instruction Tracing * --------------------------- * * This is the layout of the scratch space in the user-land * thread structure for our generated instructions. * * 32-bit mode bytes * ------------------------ ----- * a: <= 15 * jmp ftt_size> 5 * b: <= 15 * int T_DTRACE_RET 2 * ----- * <= 37 * * 64-bit mode bytes * ------------------------ ----- * a: <= 15 * jmp 0(%rip) 6 * ftt_size> 8 * b: <= 15 * int T_DTRACE_RET 2 * ----- * <= 46 * * The %pc is set to a, and curthread->t_dtrace_astpc is set * to b. If we encounter a signal on the way out of the * kernel, trap() will set %pc to curthread->t_dtrace_astpc * so that we execute the original instruction and re-enter * the kernel rather than redirecting to the next instruction. * * If there are return probes (so we know that we're going to * need to reenter the kernel after executing the original * instruction), the scratch space will just contain the * original instruction followed by an interrupt -- the same * data as at b. * * %rip-relative Addressing * ------------------------ * * There's a further complication in 64-bit mode due to %rip- * relative addressing. While this is clearly a beneficial * architectural decision for position independent code, it's * hard not to see it as a personal attack against the pid * provider since before there was a relatively small set of * instructions to emulate; with %rip-relative addressing, * almost every instruction can potentially depend on the * address at which it's executed. Rather than emulating * the broad spectrum of instructions that can now be * position dependent, we emulate jumps and others as in * 32-bit mode, and take a different tack for instructions * using %rip-relative addressing. * * For every instruction that uses the ModRM byte, the * in-kernel disassembler reports its location. We use the * ModRM byte to identify that an instruction uses * %rip-relative addressing and to see what other registers * the instruction uses. To emulate those instructions, * we modify the instruction to be %rax-relative rather than * %rip-relative (or %rcx-relative if the instruction uses * %rax; or %r8- or %r9-relative if the REX.B is present so * we don't have to rewrite the REX prefix). We then load * the value that %rip would have been into the scratch * register and generate an instruction to reset the scratch * register back to its original value. The instruction * sequence looks like this: * * 64-mode %rip-relative bytes * ------------------------ ----- * a: <= 15 * movq $, % 6 * jmp 0(%rip) 6 * ftt_size> 8 * b: <= 15 * int T_DTRACE_RET 2 * ----- * 52 * * We set curthread->t_dtrace_regv so that upon receiving * a signal we can reset the value of the scratch register. */ ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); curthread->t_dtrace_scrpc = addr; bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); i += tp->ftt_size; #ifdef __amd64 if (tp->ftt_ripmode != 0) { greg_t *reg = NULL; ASSERT(p->p_model == DATAMODEL_LP64); ASSERT(tp->ftt_ripmode & (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); /* * If this was a %rip-relative instruction, we change * it to be either a %rax- or %rcx-relative * instruction (depending on whether those registers * are used as another operand; or %r8- or %r9- * relative depending on the value of REX.B). We then * set that register and generate a movq instruction * to reset the value. */ if (tp->ftt_ripmode & FASTTRAP_RIP_X) scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); else scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); if (tp->ftt_ripmode & FASTTRAP_RIP_1) scratch[i++] = FASTTRAP_MOV_EAX; else scratch[i++] = FASTTRAP_MOV_ECX; switch (tp->ftt_ripmode) { case FASTTRAP_RIP_1: reg = &rp->r_rax; curthread->t_dtrace_reg = REG_RAX; break; case FASTTRAP_RIP_2: reg = &rp->r_rcx; curthread->t_dtrace_reg = REG_RCX; break; case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: reg = &rp->r_r8; curthread->t_dtrace_reg = REG_R8; break; case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: reg = &rp->r_r9; curthread->t_dtrace_reg = REG_R9; break; } /* LINTED - alignment */ *(uint64_t *)&scratch[i] = *reg; curthread->t_dtrace_regv = *reg; *reg = pc + tp->ftt_size; i += sizeof (uint64_t); } #endif /* * Generate the branch instruction to what would have * normally been the subsequent instruction. In 32-bit mode, * this is just a relative branch; in 64-bit mode this is a * %rip-relative branch that loads the 64-bit pc value * immediately after the jmp instruction. */ #ifdef __amd64 if (p->p_model == DATAMODEL_LP64) { scratch[i++] = FASTTRAP_GROUP5_OP; scratch[i++] = FASTTRAP_MODRM(0, 4, 5); /* LINTED - alignment */ *(uint32_t *)&scratch[i] = 0; i += sizeof (uint32_t); /* LINTED - alignment */ *(uint64_t *)&scratch[i] = pc + tp->ftt_size; i += sizeof (uint64_t); } else { #endif #ifdef __i386__ /* * Set up the jmp to the next instruction; note that * the size of the traced instruction cancels out. */ scratch[i++] = FASTTRAP_JMP32; /* LINTED - alignment */ *(uint32_t *)&scratch[i] = pc - addr - 5; i += sizeof (uint32_t); #endif #ifdef __amd64 } #endif curthread->t_dtrace_astpc = addr + i; bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); i += tp->ftt_size; scratch[i++] = FASTTRAP_INT; scratch[i++] = T_DTRACE_RET; ASSERT(i <= sizeof (scratch)); #if defined(sun) if (fasttrap_copyout(scratch, (char *)addr, i)) { #else if (uwrite(curproc, scratch, i, addr)) { #endif fasttrap_sigtrap(p, curthread, pc); new_pc = pc; break; } if (tp->ftt_retids != NULL) { curthread->t_dtrace_step = 1; curthread->t_dtrace_ret = 1; new_pc = curthread->t_dtrace_astpc; } else { new_pc = curthread->t_dtrace_scrpc; } curthread->t_dtrace_pc = pc; curthread->t_dtrace_npc = pc + tp->ftt_size; curthread->t_dtrace_on = 1; break; } default: panic("fasttrap: mishandled an instruction"); } done: /* * If there were no return probes when we first found the tracepoint, * we should feel no obligation to honor any return probes that were * subsequently enabled -- they'll just have to wait until the next * time around. */ if (tp->ftt_retids != NULL) { /* * We need to wait until the results of the instruction are * apparent before invoking any return probes. If this * instruction was emulated we can just call * fasttrap_return_common(); if it needs to be executed, we * need to wait until the user thread returns to the kernel. */ if (tp->ftt_type != FASTTRAP_T_COMMON) { /* * Set the program counter to the address of the traced * instruction so that it looks right in ustack() * output. We had previously set it to the end of the * instruction to simplify %rip-relative addressing. */ rp->r_rip = pc; fasttrap_return_common(rp, pc, pid, new_pc); } else { ASSERT(curthread->t_dtrace_ret != 0); ASSERT(curthread->t_dtrace_pc == pc); ASSERT(curthread->t_dtrace_scrpc != 0); ASSERT(new_pc == curthread->t_dtrace_astpc); } } rp->r_rip = new_pc; PROC_LOCK(p); proc_write_regs(curthread, rp); _PRELE(p); PROC_UNLOCK(p); return (0); } int fasttrap_return_probe(struct reg *rp) { proc_t *p = curproc; uintptr_t pc = curthread->t_dtrace_pc; uintptr_t npc = curthread->t_dtrace_npc; curthread->t_dtrace_pc = 0; curthread->t_dtrace_npc = 0; curthread->t_dtrace_scrpc = 0; curthread->t_dtrace_astpc = 0; #if defined(sun) /* * Treat a child created by a call to vfork(2) as if it were its * parent. We know that there's only one thread of control in such a * process: this one. */ while (p->p_flag & SVFORK) { p = p->p_parent; } #endif /* * We set rp->r_rip to the address of the traced instruction so * that it appears to dtrace_probe() that we're on the original * instruction, and so that the user can't easily detect our * complex web of lies. dtrace_return_probe() (our caller) * will correctly set %pc after we return. */ rp->r_rip = pc; fasttrap_return_common(rp, pc, p->p_pid, npc); return (0); } /*ARGSUSED*/ uint64_t fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) { struct reg r; fill_regs(curthread, &r); return (fasttrap_anarg(&r, 1, argno)); } /*ARGSUSED*/ uint64_t fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) { struct reg r; fill_regs(curthread, &r); return (fasttrap_anarg(&r, 0, argno)); } static ulong_t fasttrap_getreg(struct reg *rp, uint_t reg) { #ifdef __amd64 switch (reg) { case REG_R15: return (rp->r_r15); case REG_R14: return (rp->r_r14); case REG_R13: return (rp->r_r13); case REG_R12: return (rp->r_r12); case REG_R11: return (rp->r_r11); case REG_R10: return (rp->r_r10); case REG_R9: return (rp->r_r9); case REG_R8: return (rp->r_r8); case REG_RDI: return (rp->r_rdi); case REG_RSI: return (rp->r_rsi); case REG_RBP: return (rp->r_rbp); case REG_RBX: return (rp->r_rbx); case REG_RDX: return (rp->r_rdx); case REG_RCX: return (rp->r_rcx); case REG_RAX: return (rp->r_rax); case REG_TRAPNO: return (rp->r_trapno); case REG_ERR: return (rp->r_err); case REG_RIP: return (rp->r_rip); case REG_CS: return (rp->r_cs); #if defined(sun) case REG_RFL: return (rp->r_rfl); #endif case REG_RSP: return (rp->r_rsp); case REG_SS: return (rp->r_ss); case REG_FS: return (rp->r_fs); case REG_GS: return (rp->r_gs); case REG_DS: return (rp->r_ds); case REG_ES: return (rp->r_es); case REG_FSBASE: return (rdmsr(MSR_FSBASE)); case REG_GSBASE: return (rdmsr(MSR_GSBASE)); } panic("dtrace: illegal register constant"); /*NOTREACHED*/ #else #define _NGREG 19 if (reg >= _NGREG) panic("dtrace: illegal register constant"); return (((greg_t *)&rp->r_gs)[reg]); #endif }