/*- * Implementation of SCSI Sequential Access Peripheral driver for CAM. * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1999, 2000 Matthew Jacob * Copyright (c) 2013, 2014, 2015, 2021 Spectra Logic Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #ifdef _KERNEL #include #include #endif #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #include #include #ifndef _KERNEL #include #include #endif #include #include #include #include #include #include #include #include #ifdef _KERNEL #include "opt_sa.h" #ifndef SA_IO_TIMEOUT #define SA_IO_TIMEOUT 32 #endif #ifndef SA_SPACE_TIMEOUT #define SA_SPACE_TIMEOUT 1 * 60 #endif #ifndef SA_REWIND_TIMEOUT #define SA_REWIND_TIMEOUT 2 * 60 #endif #ifndef SA_ERASE_TIMEOUT #define SA_ERASE_TIMEOUT 4 * 60 #endif #ifndef SA_REP_DENSITY_TIMEOUT #define SA_REP_DENSITY_TIMEOUT 1 #endif #define SCSIOP_TIMEOUT (60 * 1000) /* not an option */ #define IO_TIMEOUT (SA_IO_TIMEOUT * 60 * 1000) #define REWIND_TIMEOUT (SA_REWIND_TIMEOUT * 60 * 1000) #define ERASE_TIMEOUT (SA_ERASE_TIMEOUT * 60 * 1000) #define SPACE_TIMEOUT (SA_SPACE_TIMEOUT * 60 * 1000) #define REP_DENSITY_TIMEOUT (SA_REP_DENSITY_TIMEOUT * 60 * 1000) /* * Additional options that can be set for config: SA_1FM_AT_EOT */ #ifndef UNUSED_PARAMETER #define UNUSED_PARAMETER(x) x = x #endif #define QFRLS(ccb) \ if (((ccb)->ccb_h.status & CAM_DEV_QFRZN) != 0) \ cam_release_devq((ccb)->ccb_h.path, 0, 0, 0, FALSE) /* * Driver states */ static MALLOC_DEFINE(M_SCSISA, "SCSI sa", "SCSI sequential access buffers"); typedef enum { SA_STATE_NORMAL, SA_STATE_PROBE, SA_STATE_ABNORMAL } sa_state; #define ccb_pflags ppriv_field0 #define ccb_bp ppriv_ptr1 /* bits in ccb_pflags */ #define SA_POSITION_UPDATED 0x1 typedef enum { SA_FLAG_OPEN = 0x00001, SA_FLAG_FIXED = 0x00002, SA_FLAG_TAPE_LOCKED = 0x00004, SA_FLAG_TAPE_MOUNTED = 0x00008, SA_FLAG_TAPE_WP = 0x00010, SA_FLAG_TAPE_WRITTEN = 0x00020, SA_FLAG_EOM_PENDING = 0x00040, SA_FLAG_EIO_PENDING = 0x00080, SA_FLAG_EOF_PENDING = 0x00100, SA_FLAG_ERR_PENDING = (SA_FLAG_EOM_PENDING|SA_FLAG_EIO_PENDING| SA_FLAG_EOF_PENDING), SA_FLAG_INVALID = 0x00200, SA_FLAG_COMP_ENABLED = 0x00400, SA_FLAG_COMP_SUPP = 0x00800, SA_FLAG_COMP_UNSUPP = 0x01000, SA_FLAG_TAPE_FROZEN = 0x02000, SA_FLAG_PROTECT_SUPP = 0x04000, SA_FLAG_COMPRESSION = (SA_FLAG_COMP_SUPP|SA_FLAG_COMP_ENABLED| SA_FLAG_COMP_UNSUPP), SA_FLAG_SCTX_INIT = 0x08000, SA_FLAG_RSOC_TO_TRY = 0x10000, } sa_flags; typedef enum { SA_MODE_REWIND = 0x00, SA_MODE_NOREWIND = 0x01, SA_MODE_OFFLINE = 0x02 } sa_mode; typedef enum { SA_TIMEOUT_ERASE, SA_TIMEOUT_LOAD, SA_TIMEOUT_LOCATE, SA_TIMEOUT_MODE_SELECT, SA_TIMEOUT_MODE_SENSE, SA_TIMEOUT_PREVENT, SA_TIMEOUT_READ, SA_TIMEOUT_READ_BLOCK_LIMITS, SA_TIMEOUT_READ_POSITION, SA_TIMEOUT_REP_DENSITY, SA_TIMEOUT_RESERVE, SA_TIMEOUT_REWIND, SA_TIMEOUT_SPACE, SA_TIMEOUT_TUR, SA_TIMEOUT_WRITE, SA_TIMEOUT_WRITE_FILEMARKS, SA_TIMEOUT_TYPE_MAX } sa_timeout_types; /* * These are the default timeout values that apply to all tape drives. * * We get timeouts from the following places in order of increasing * priority: * 1. Driver default timeouts. (Set in the structure below.) * 2. Timeouts loaded from the drive via REPORT SUPPORTED OPERATION * CODES. (If the drive supports it, SPC-4/LTO-5 and newer should.) * 3. Global loader tunables, used for all sa(4) driver instances on * a machine. * 4. Instance-specific loader tunables, used for say sa5. * 5. On the fly user sysctl changes. * * Each step will overwrite the timeout value set from the one * before, so you go from general to most specific. */ static struct sa_timeout_desc { const char *desc; int value; } sa_default_timeouts[SA_TIMEOUT_TYPE_MAX] = { {"erase", ERASE_TIMEOUT}, {"load", REWIND_TIMEOUT}, {"locate", SPACE_TIMEOUT}, {"mode_select", SCSIOP_TIMEOUT}, {"mode_sense", SCSIOP_TIMEOUT}, {"prevent", SCSIOP_TIMEOUT}, {"read", IO_TIMEOUT}, {"read_block_limits", SCSIOP_TIMEOUT}, {"read_position", SCSIOP_TIMEOUT}, {"report_density", REP_DENSITY_TIMEOUT}, {"reserve", SCSIOP_TIMEOUT}, {"rewind", REWIND_TIMEOUT}, {"space", SPACE_TIMEOUT}, {"tur", SCSIOP_TIMEOUT}, {"write", IO_TIMEOUT}, {"write_filemarks", IO_TIMEOUT}, }; typedef enum { SA_PARAM_NONE = 0x000, SA_PARAM_BLOCKSIZE = 0x001, SA_PARAM_DENSITY = 0x002, SA_PARAM_COMPRESSION = 0x004, SA_PARAM_BUFF_MODE = 0x008, SA_PARAM_NUMBLOCKS = 0x010, SA_PARAM_WP = 0x020, SA_PARAM_SPEED = 0x040, SA_PARAM_DENSITY_EXT = 0x080, SA_PARAM_LBP = 0x100, SA_PARAM_ALL = 0x1ff } sa_params; typedef enum { SA_QUIRK_NONE = 0x000, SA_QUIRK_NOCOMP = 0x001, /* Can't deal with compression at all*/ SA_QUIRK_FIXED = 0x002, /* Force fixed mode */ SA_QUIRK_VARIABLE = 0x004, /* Force variable mode */ SA_QUIRK_2FM = 0x008, /* Needs Two File Marks at EOD */ SA_QUIRK_1FM = 0x010, /* No more than 1 File Mark at EOD */ SA_QUIRK_NODREAD = 0x020, /* Don't try and dummy read density */ SA_QUIRK_NO_MODESEL = 0x040, /* Don't do mode select at all */ SA_QUIRK_NO_CPAGE = 0x080, /* Don't use DEVICE COMPRESSION page */ SA_QUIRK_NO_LONG_POS = 0x100 /* No long position information */ } sa_quirks; #define SA_QUIRK_BIT_STRING \ "\020" \ "\001NOCOMP" \ "\002FIXED" \ "\003VARIABLE" \ "\0042FM" \ "\0051FM" \ "\006NODREAD" \ "\007NO_MODESEL" \ "\010NO_CPAGE" \ "\011NO_LONG_POS" #define SAMODE(z) (dev2unit(z) & 0x3) #define SA_IS_CTRL(z) (dev2unit(z) & (1 << 4)) #define SA_NOT_CTLDEV 0 #define SA_CTLDEV 1 #define SA_ATYPE_R 0 #define SA_ATYPE_NR 1 #define SA_ATYPE_ER 2 #define SA_NUM_ATYPES 3 #define SAMINOR(ctl, access) \ ((ctl << 4) | (access & 0x3)) struct sa_devs { struct cdev *ctl_dev; struct cdev *r_dev; struct cdev *nr_dev; struct cdev *er_dev; }; #define SASBADDBASE(sb, indent, data, xfmt, name, type, xsize, desc) \ sbuf_printf(sb, "%*s<%s type=\"%s\" size=\"%zd\" " \ "fmt=\"%s\" desc=\"%s\">" #xfmt "\n", indent, "", \ #name, #type, xsize, #xfmt, desc ? desc : "", data, #name); #define SASBADDINT(sb, indent, data, fmt, name) \ SASBADDBASE(sb, indent, data, fmt, name, int, sizeof(data), \ NULL) #define SASBADDINTDESC(sb, indent, data, fmt, name, desc) \ SASBADDBASE(sb, indent, data, fmt, name, int, sizeof(data), \ desc) #define SASBADDUINT(sb, indent, data, fmt, name) \ SASBADDBASE(sb, indent, data, fmt, name, uint, sizeof(data), \ NULL) #define SASBADDUINTDESC(sb, indent, data, fmt, name, desc) \ SASBADDBASE(sb, indent, data, fmt, name, uint, sizeof(data), \ desc) #define SASBADDFIXEDSTR(sb, indent, data, fmt, name) \ SASBADDBASE(sb, indent, data, fmt, name, str, sizeof(data), \ NULL) #define SASBADDFIXEDSTRDESC(sb, indent, data, fmt, name, desc) \ SASBADDBASE(sb, indent, data, fmt, name, str, sizeof(data), \ desc) #define SASBADDVARSTR(sb, indent, data, fmt, name, maxlen) \ SASBADDBASE(sb, indent, data, fmt, name, str, maxlen, NULL) #define SASBADDVARSTRDESC(sb, indent, data, fmt, name, maxlen, desc) \ SASBADDBASE(sb, indent, data, fmt, name, str, maxlen, desc) #define SASBADDNODE(sb, indent, name) { \ sbuf_printf(sb, "%*s<%s type=\"%s\">\n", indent, "", #name, \ "node"); \ indent += 2; \ } #define SASBADDNODENUM(sb, indent, name, num) { \ sbuf_printf(sb, "%*s<%s type=\"%s\" num=\"%d\">\n", indent, "", \ #name, "node", num); \ indent += 2; \ } #define SASBENDNODE(sb, indent, name) { \ indent -= 2; \ sbuf_printf(sb, "%*s\n", indent, "", #name); \ } #define SA_DENSITY_TYPES 4 struct sa_prot_state { int initialized; uint32_t prot_method; uint32_t pi_length; uint32_t lbp_w; uint32_t lbp_r; uint32_t rbdp; }; struct sa_prot_info { struct sa_prot_state cur_prot_state; struct sa_prot_state pending_prot_state; }; /* * A table mapping protection parameters to their types and values. */ struct sa_prot_map { char *name; mt_param_set_type param_type; off_t offset; uint32_t min_val; uint32_t max_val; uint32_t *value; } sa_prot_table[] = { { "prot_method", MT_PARAM_SET_UNSIGNED, __offsetof(struct sa_prot_state, prot_method), /*min_val*/ 0, /*max_val*/ 255, NULL }, { "pi_length", MT_PARAM_SET_UNSIGNED, __offsetof(struct sa_prot_state, pi_length), /*min_val*/ 0, /*max_val*/ SA_CTRL_DP_PI_LENGTH_MASK, NULL }, { "lbp_w", MT_PARAM_SET_UNSIGNED, __offsetof(struct sa_prot_state, lbp_w), /*min_val*/ 0, /*max_val*/ 1, NULL }, { "lbp_r", MT_PARAM_SET_UNSIGNED, __offsetof(struct sa_prot_state, lbp_r), /*min_val*/ 0, /*max_val*/ 1, NULL }, { "rbdp", MT_PARAM_SET_UNSIGNED, __offsetof(struct sa_prot_state, rbdp), /*min_val*/ 0, /*max_val*/ 1, NULL } }; #define SA_NUM_PROT_ENTS nitems(sa_prot_table) #define SA_PROT_ENABLED(softc) ((softc->flags & SA_FLAG_PROTECT_SUPP) \ && (softc->prot_info.cur_prot_state.initialized != 0) \ && (softc->prot_info.cur_prot_state.prot_method != 0)) #define SA_PROT_LEN(softc) softc->prot_info.cur_prot_state.pi_length struct sa_softc { sa_state state; sa_flags flags; sa_quirks quirks; u_int si_flags; struct cam_periph *periph; struct bio_queue_head bio_queue; int queue_count; struct devstat *device_stats; struct sa_devs devs; int open_count; int num_devs_to_destroy; int blk_gran; int blk_mask; int blk_shift; u_int32_t max_blk; u_int32_t min_blk; u_int32_t maxio; u_int32_t cpi_maxio; int allow_io_split; int inject_eom; int set_pews_status; u_int32_t comp_algorithm; u_int32_t saved_comp_algorithm; u_int32_t media_blksize; u_int32_t last_media_blksize; u_int32_t media_numblks; u_int8_t media_density; u_int8_t speed; u_int8_t scsi_rev; u_int8_t dsreg; /* mtio mt_dsreg, redux */ int buffer_mode; int filemarks; int last_resid_was_io; uint8_t density_type_bits[SA_DENSITY_TYPES]; int density_info_valid[SA_DENSITY_TYPES]; uint8_t density_info[SA_DENSITY_TYPES][SRDS_MAX_LENGTH]; int timeout_info[SA_TIMEOUT_TYPE_MAX]; struct sa_prot_info prot_info; int sili; int eot_warn; /* * Current position information. -1 means that the given value is * unknown. fileno and blkno are always calculated. blkno is * relative to the previous file mark. rep_fileno and rep_blkno * are as reported by the drive, if it supports the long form * report for the READ POSITION command. rep_blkno is relative to * the beginning of the partition. * * bop means that the drive is at the beginning of the partition. * eop means that the drive is between early warning and end of * partition, inside the current partition. * bpew means that the position is in a PEWZ (Programmable Early * Warning Zone) */ daddr_t partition; /* Absolute from BOT */ daddr_t fileno; /* Relative to beginning of partition */ daddr_t blkno; /* Relative to last file mark */ daddr_t rep_blkno; /* Relative to beginning of partition */ daddr_t rep_fileno; /* Relative to beginning of partition */ int bop; /* Beginning of Partition */ int eop; /* End of Partition */ int bpew; /* Beyond Programmable Early Warning */ /* * Latched Error Info */ struct { struct scsi_sense_data _last_io_sense; u_int64_t _last_io_resid; u_int8_t _last_io_cdb[CAM_MAX_CDBLEN]; struct scsi_sense_data _last_ctl_sense; u_int64_t _last_ctl_resid; u_int8_t _last_ctl_cdb[CAM_MAX_CDBLEN]; #define last_io_sense errinfo._last_io_sense #define last_io_resid errinfo._last_io_resid #define last_io_cdb errinfo._last_io_cdb #define last_ctl_sense errinfo._last_ctl_sense #define last_ctl_resid errinfo._last_ctl_resid #define last_ctl_cdb errinfo._last_ctl_cdb } errinfo; /* * Misc other flags/state */ u_int32_t : 29, open_rdonly : 1, /* open read-only */ open_pending_mount : 1, /* open pending mount */ ctrl_mode : 1; /* control device open */ struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; struct sysctl_ctx_list sysctl_timeout_ctx; struct sysctl_oid *sysctl_timeout_tree; }; struct sa_quirk_entry { struct scsi_inquiry_pattern inq_pat; /* matching pattern */ sa_quirks quirks; /* specific quirk type */ u_int32_t prefblk; /* preferred blocksize when in fixed mode */ }; static struct sa_quirk_entry sa_quirk_table[] = { { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "OnStream", "ADR*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_NODREAD | SA_QUIRK_1FM|SA_QUIRK_NO_MODESEL, 32768 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "Python 06408*", "*"}, SA_QUIRK_NODREAD, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "Python 25601*", "*"}, SA_QUIRK_NOCOMP|SA_QUIRK_NODREAD, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "Python*", "*"}, SA_QUIRK_NODREAD, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "VIPER 150*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "VIPER 2525 25462", "-011"}, SA_QUIRK_NOCOMP|SA_QUIRK_1FM|SA_QUIRK_NODREAD, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "ARCHIVE", "VIPER 2525*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 1024 }, #if 0 { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "HP", "C15*", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_NO_CPAGE, 0, }, #endif { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "HP", "C56*", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_2FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "HP", "T20*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "HP", "T4000*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "HP", "HP-88780*", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_2FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", "*", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_2FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "M4 DATA", "123107 SCSI*", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_2FM, 0 }, { /* jreynold@primenet.com */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "Seagate", "STT8000N*", "*"}, SA_QUIRK_1FM, 0 }, { /* mike@sentex.net */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "Seagate", "STT20000*", "*"}, SA_QUIRK_1FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "SEAGATE", "DAT 06241-XXX", "*"}, SA_QUIRK_VARIABLE|SA_QUIRK_2FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " TDC 3600", "U07:"}, SA_QUIRK_NOCOMP|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " TDC 3800", "*"}, SA_QUIRK_NOCOMP|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " TDC 4100", "*"}, SA_QUIRK_NOCOMP|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " TDC 4200", "*"}, SA_QUIRK_NOCOMP|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " SLR*", "*"}, SA_QUIRK_1FM, 0 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "WANGTEK", "5525ES*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 512 }, { { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "WANGTEK", "51000*", "*"}, SA_QUIRK_FIXED|SA_QUIRK_1FM, 1024 } }; static d_open_t saopen; static d_close_t saclose; static d_strategy_t sastrategy; static d_ioctl_t saioctl; static periph_init_t sainit; static periph_ctor_t saregister; static periph_oninv_t saoninvalidate; static periph_dtor_t sacleanup; static periph_start_t sastart; static void saasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void sadone(struct cam_periph *periph, union ccb *start_ccb); static int saerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static int samarkswanted(struct cam_periph *); static int sacheckeod(struct cam_periph *periph); static int sagetparams(struct cam_periph *periph, sa_params params_to_get, u_int32_t *blocksize, u_int8_t *density, u_int32_t *numblocks, int *buff_mode, u_int8_t *write_protect, u_int8_t *speed, int *comp_supported, int *comp_enabled, u_int32_t *comp_algorithm, sa_comp_t *comp_page, struct scsi_control_data_prot_subpage *prot_page, int dp_size, int prot_changeable); static int sasetprot(struct cam_periph *periph, struct sa_prot_state *new_prot); static int sasetparams(struct cam_periph *periph, sa_params params_to_set, u_int32_t blocksize, u_int8_t density, u_int32_t comp_algorithm, u_int32_t sense_flags); static int sasetsili(struct cam_periph *periph, struct mtparamset *ps, int num_params); static int saseteotwarn(struct cam_periph *periph, struct mtparamset *ps, int num_params); static void safillprot(struct sa_softc *softc, int *indent, struct sbuf *sb); static void sapopulateprots(struct sa_prot_state *cur_state, struct sa_prot_map *new_table, int table_ents); static struct sa_prot_map *safindprotent(char *name, struct sa_prot_map *table, int table_ents); static int sasetprotents(struct cam_periph *periph, struct mtparamset *ps, int num_params); static struct sa_param_ent *safindparament(struct mtparamset *ps); static int saparamsetlist(struct cam_periph *periph, struct mtsetlist *list, int need_copy); static int saextget(struct cdev *dev, struct cam_periph *periph, struct sbuf *sb, struct mtextget *g); static int saparamget(struct sa_softc *softc, struct sbuf *sb); static void saprevent(struct cam_periph *periph, int action); static int sarewind(struct cam_periph *periph); static int saspace(struct cam_periph *periph, int count, scsi_space_code code); static void sadevgonecb(void *arg); static void sasetupdev(struct sa_softc *softc, struct cdev *dev); static void saloadtotunables(struct sa_softc *softc); static void sasysctlinit(void *context, int pending); static int samount(struct cam_periph *, int, struct cdev *); static int saretension(struct cam_periph *periph); static int sareservereleaseunit(struct cam_periph *periph, int reserve); static int saloadunload(struct cam_periph *periph, int load); static int saerase(struct cam_periph *periph, int longerase); static int sawritefilemarks(struct cam_periph *periph, int nmarks, int setmarks, int immed); static int sagetpos(struct cam_periph *periph); static int sardpos(struct cam_periph *periph, int, u_int32_t *); static int sasetpos(struct cam_periph *periph, int, struct mtlocate *); static void safilldenstypesb(struct sbuf *sb, int *indent, uint8_t *buf, int buf_len, int is_density); static void safilldensitysb(struct sa_softc *softc, int *indent, struct sbuf *sb); static void saloadtimeouts(struct sa_softc *softc, union ccb *ccb); #ifndef SA_DEFAULT_IO_SPLIT #define SA_DEFAULT_IO_SPLIT 0 #endif static int sa_allow_io_split = SA_DEFAULT_IO_SPLIT; /* * Tunable to allow the user to set a global allow_io_split value. Note * that this WILL GO AWAY in FreeBSD 11.0. Silently splitting the I/O up * is bad behavior, because it hides the true tape block size from the * application. */ static SYSCTL_NODE(_kern_cam, OID_AUTO, sa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "CAM Sequential Access Tape Driver"); SYSCTL_INT(_kern_cam_sa, OID_AUTO, allow_io_split, CTLFLAG_RDTUN, &sa_allow_io_split, 0, "Default I/O split value"); static struct periph_driver sadriver = { sainit, "sa", TAILQ_HEAD_INITIALIZER(sadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(sa, sadriver); /* For 2.2-stable support */ #ifndef D_TAPE #define D_TAPE 0 #endif static struct cdevsw sa_cdevsw = { .d_version = D_VERSION, .d_open = saopen, .d_close = saclose, .d_read = physread, .d_write = physwrite, .d_ioctl = saioctl, .d_strategy = sastrategy, .d_name = "sa", .d_flags = D_TAPE | D_TRACKCLOSE, }; static int saopen(struct cdev *dev, int flags, int fmt, struct thread *td) { struct cam_periph *periph; struct sa_softc *softc; int error; periph = (struct cam_periph *)dev->si_drv1; if (cam_periph_acquire(periph) != 0) { return (ENXIO); } cam_periph_lock(periph); softc = (struct sa_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE|CAM_DEBUG_INFO, ("saopen(%s): softc=0x%x\n", devtoname(dev), softc->flags)); if (SA_IS_CTRL(dev)) { softc->ctrl_mode = 1; softc->open_count++; cam_periph_unlock(periph); return (0); } if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } if (softc->flags & SA_FLAG_OPEN) { error = EBUSY; } else if (softc->flags & SA_FLAG_INVALID) { error = ENXIO; } else { /* * Preserve whether this is a read_only open. */ softc->open_rdonly = (flags & O_RDWR) == O_RDONLY; /* * The function samount ensures media is loaded and ready. * It also does a device RESERVE if the tape isn't yet mounted. * * If the mount fails and this was a non-blocking open, * make this a 'open_pending_mount' action. */ error = samount(periph, flags, dev); if (error && (flags & O_NONBLOCK)) { softc->flags |= SA_FLAG_OPEN; softc->open_pending_mount = 1; softc->open_count++; cam_periph_unhold(periph); cam_periph_unlock(periph); return (0); } } if (error) { cam_periph_unhold(periph); cam_periph_unlock(periph); cam_periph_release(periph); return (error); } saprevent(periph, PR_PREVENT); softc->flags |= SA_FLAG_OPEN; softc->open_count++; cam_periph_unhold(periph); cam_periph_unlock(periph); return (error); } static int saclose(struct cdev *dev, int flag, int fmt, struct thread *td) { struct cam_periph *periph; struct sa_softc *softc; int mode, error, writing, tmp, i; int closedbits = SA_FLAG_OPEN; mode = SAMODE(dev); periph = (struct cam_periph *)dev->si_drv1; cam_periph_lock(periph); softc = (struct sa_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE|CAM_DEBUG_INFO, ("saclose(%s): softc=0x%x\n", devtoname(dev), softc->flags)); softc->open_rdonly = 0; if (SA_IS_CTRL(dev)) { softc->ctrl_mode = 0; softc->open_count--; cam_periph_unlock(periph); cam_periph_release(periph); return (0); } if (softc->open_pending_mount) { softc->flags &= ~SA_FLAG_OPEN; softc->open_pending_mount = 0; softc->open_count--; cam_periph_unlock(periph); cam_periph_release(periph); return (0); } if ((error = cam_periph_hold(periph, PRIBIO)) != 0) { cam_periph_unlock(periph); return (error); } /* * Were we writing the tape? */ writing = (softc->flags & SA_FLAG_TAPE_WRITTEN) != 0; /* * See whether or not we need to write filemarks. If this * fails, we probably have to assume we've lost tape * position. */ error = sacheckeod(periph); if (error) { xpt_print(periph->path, "failed to write terminating filemark(s)\n"); softc->flags |= SA_FLAG_TAPE_FROZEN; } /* * Whatever we end up doing, allow users to eject tapes from here on. */ saprevent(periph, PR_ALLOW); /* * Decide how to end... */ if ((softc->flags & SA_FLAG_TAPE_MOUNTED) == 0) { closedbits |= SA_FLAG_TAPE_FROZEN; } else switch (mode) { case SA_MODE_OFFLINE: /* * An 'offline' close is an unconditional release of * frozen && mount conditions, irrespective of whether * these operations succeeded. The reason for this is * to allow at least some kind of programmatic way * around our state getting all fouled up. If somebody * issues an 'offline' command, that will be allowed * to clear state. */ (void) sarewind(periph); (void) saloadunload(periph, FALSE); closedbits |= SA_FLAG_TAPE_MOUNTED|SA_FLAG_TAPE_FROZEN; break; case SA_MODE_REWIND: /* * If the rewind fails, return an error- if anyone cares, * but not overwriting any previous error. * * We don't clear the notion of mounted here, but we do * clear the notion of frozen if we successfully rewound. */ tmp = sarewind(periph); if (tmp) { if (error != 0) error = tmp; } else { closedbits |= SA_FLAG_TAPE_FROZEN; } break; case SA_MODE_NOREWIND: /* * If we're not rewinding/unloading the tape, find out * whether we need to back up over one of two filemarks * we wrote (if we wrote two filemarks) so that appends * from this point on will be sane. */ if (error == 0 && writing && (softc->quirks & SA_QUIRK_2FM)) { tmp = saspace(periph, -1, SS_FILEMARKS); if (tmp) { xpt_print(periph->path, "unable to backspace " "over one of double filemarks at end of " "tape\n"); xpt_print(periph->path, "it is possible that " "this device needs a SA_QUIRK_1FM quirk set" "for it\n"); softc->flags |= SA_FLAG_TAPE_FROZEN; } } break; default: xpt_print(periph->path, "unknown mode 0x%x in saclose\n", mode); /* NOTREACHED */ break; } /* * We wish to note here that there are no more filemarks to be written. */ softc->filemarks = 0; softc->flags &= ~SA_FLAG_TAPE_WRITTEN; /* * And we are no longer open for business. */ softc->flags &= ~closedbits; softc->open_count--; /* * Invalidate any density information that depends on having tape * media in the drive. */ for (i = 0; i < SA_DENSITY_TYPES; i++) { if (softc->density_type_bits[i] & SRDS_MEDIA) softc->density_info_valid[i] = 0; } /* * Inform users if tape state if frozen.... */ if (softc->flags & SA_FLAG_TAPE_FROZEN) { xpt_print(periph->path, "tape is now frozen- use an OFFLINE, " "REWIND or MTEOM command to clear this state.\n"); } /* release the device if it is no longer mounted */ if ((softc->flags & SA_FLAG_TAPE_MOUNTED) == 0) sareservereleaseunit(periph, FALSE); cam_periph_unhold(periph); cam_periph_unlock(periph); cam_periph_release(periph); return (error); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void sastrategy(struct bio *bp) { struct cam_periph *periph; struct sa_softc *softc; bp->bio_resid = bp->bio_bcount; if (SA_IS_CTRL(bp->bio_dev)) { biofinish(bp, NULL, EINVAL); return; } periph = (struct cam_periph *)bp->bio_dev->si_drv1; cam_periph_lock(periph); softc = (struct sa_softc *)periph->softc; if (softc->flags & SA_FLAG_INVALID) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } if (softc->flags & SA_FLAG_TAPE_FROZEN) { cam_periph_unlock(periph); biofinish(bp, NULL, EPERM); return; } /* * This should actually never occur as the write(2) * system call traps attempts to write to a read-only * file descriptor. */ if (bp->bio_cmd == BIO_WRITE && softc->open_rdonly) { cam_periph_unlock(periph); biofinish(bp, NULL, EBADF); return; } if (softc->open_pending_mount) { int error = samount(periph, 0, bp->bio_dev); if (error) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } saprevent(periph, PR_PREVENT); softc->open_pending_mount = 0; } /* * If it's a null transfer, return immediately */ if (bp->bio_bcount == 0) { cam_periph_unlock(periph); biodone(bp); return; } /* valid request? */ if (softc->flags & SA_FLAG_FIXED) { /* * Fixed block device. The byte count must * be a multiple of our block size. */ if (((softc->blk_mask != ~0) && ((bp->bio_bcount & softc->blk_mask) != 0)) || ((softc->blk_mask == ~0) && ((bp->bio_bcount % softc->min_blk) != 0))) { xpt_print(periph->path, "Invalid request. Fixed block " "device requests must be a multiple of %d bytes\n", softc->min_blk); cam_periph_unlock(periph); biofinish(bp, NULL, EINVAL); return; } } else if ((bp->bio_bcount > softc->max_blk) || (bp->bio_bcount < softc->min_blk) || (bp->bio_bcount & softc->blk_mask) != 0) { xpt_print_path(periph->path); printf("Invalid request. Variable block " "device requests must be "); if (softc->blk_mask != 0) { printf("a multiple of %d ", (0x1 << softc->blk_gran)); } printf("between %d and %d bytes\n", softc->min_blk, softc->max_blk); cam_periph_unlock(periph); biofinish(bp, NULL, EINVAL); return; } /* * Place it at the end of the queue. */ bioq_insert_tail(&softc->bio_queue, bp); softc->queue_count++; #if 0 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("sastrategy: queuing a %ld %s byte %s\n", bp->bio_bcount, (softc->flags & SA_FLAG_FIXED)? "fixed" : "variable", (bp->bio_cmd == BIO_READ)? "read" : "write")); #endif if (softc->queue_count > 1) { CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("sastrategy: queue count now %d\n", softc->queue_count)); } /* * Schedule ourselves for performing the work. */ xpt_schedule(periph, CAM_PRIORITY_NORMAL); cam_periph_unlock(periph); return; } static int sasetsili(struct cam_periph *periph, struct mtparamset *ps, int num_params) { uint32_t sili_blocksize; struct sa_softc *softc; int error; error = 0; softc = (struct sa_softc *)periph->softc; if (ps->value_type != MT_PARAM_SET_SIGNED) { snprintf(ps->error_str, sizeof(ps->error_str), "sili is a signed parameter"); goto bailout; } if ((ps->value.value_signed < 0) || (ps->value.value_signed > 1)) { snprintf(ps->error_str, sizeof(ps->error_str), "invalid sili value %jd", (intmax_t)ps->value.value_signed); goto bailout_error; } /* * We only set the SILI flag in variable block * mode. You'll get a check condition in fixed * block mode if things don't line up in any case. */ if (softc->flags & SA_FLAG_FIXED) { snprintf(ps->error_str, sizeof(ps->error_str), "can't set sili bit in fixed block mode"); goto bailout_error; } if (softc->sili == ps->value.value_signed) goto bailout; if (ps->value.value_signed == 1) sili_blocksize = 4; else sili_blocksize = 0; error = sasetparams(periph, SA_PARAM_BLOCKSIZE, sili_blocksize, 0, 0, SF_QUIET_IR); if (error != 0) { snprintf(ps->error_str, sizeof(ps->error_str), "sasetparams() returned error %d", error); goto bailout_error; } softc->sili = ps->value.value_signed; bailout: ps->status = MT_PARAM_STATUS_OK; return (error); bailout_error: ps->status = MT_PARAM_STATUS_ERROR; if (error == 0) error = EINVAL; return (error); } static int saseteotwarn(struct cam_periph *periph, struct mtparamset *ps, int num_params) { struct sa_softc *softc; int error; error = 0; softc = (struct sa_softc *)periph->softc; if (ps->value_type != MT_PARAM_SET_SIGNED) { snprintf(ps->error_str, sizeof(ps->error_str), "eot_warn is a signed parameter"); ps->status = MT_PARAM_STATUS_ERROR; goto bailout; } if ((ps->value.value_signed < 0) || (ps->value.value_signed > 1)) { snprintf(ps->error_str, sizeof(ps->error_str), "invalid eot_warn value %jd\n", (intmax_t)ps->value.value_signed); ps->status = MT_PARAM_STATUS_ERROR; goto bailout; } softc->eot_warn = ps->value.value_signed; ps->status = MT_PARAM_STATUS_OK; bailout: if (ps->status != MT_PARAM_STATUS_OK) error = EINVAL; return (error); } static void safillprot(struct sa_softc *softc, int *indent, struct sbuf *sb) { int tmpint; SASBADDNODE(sb, *indent, protection); if (softc->flags & SA_FLAG_PROTECT_SUPP) tmpint = 1; else tmpint = 0; SASBADDINTDESC(sb, *indent, tmpint, %d, protection_supported, "Set to 1 if protection information is supported"); if ((tmpint != 0) && (softc->prot_info.cur_prot_state.initialized != 0)) { struct sa_prot_state *prot; prot = &softc->prot_info.cur_prot_state; SASBADDUINTDESC(sb, *indent, prot->prot_method, %u, prot_method, "Current Protection Method"); SASBADDUINTDESC(sb, *indent, prot->pi_length, %u, pi_length, "Length of Protection Information"); SASBADDUINTDESC(sb, *indent, prot->lbp_w, %u, lbp_w, "Check Protection on Writes"); SASBADDUINTDESC(sb, *indent, prot->lbp_r, %u, lbp_r, "Check and Include Protection on Reads"); SASBADDUINTDESC(sb, *indent, prot->rbdp, %u, rbdp, "Transfer Protection Information for RECOVER " "BUFFERED DATA command"); } SASBENDNODE(sb, *indent, protection); } static void sapopulateprots(struct sa_prot_state *cur_state, struct sa_prot_map *new_table, int table_ents) { int i; bcopy(sa_prot_table, new_table, min(table_ents * sizeof(*new_table), sizeof(sa_prot_table))); table_ents = min(table_ents, SA_NUM_PROT_ENTS); for (i = 0; i < table_ents; i++) new_table[i].value = (uint32_t *)((uint8_t *)cur_state + new_table[i].offset); return; } static struct sa_prot_map * safindprotent(char *name, struct sa_prot_map *table, int table_ents) { char *prot_name = "protection."; int i, prot_len; prot_len = strlen(prot_name); /* * This shouldn't happen, but we check just in case. */ if (strncmp(name, prot_name, prot_len) != 0) goto bailout; for (i = 0; i < table_ents; i++) { if (strcmp(&name[prot_len], table[i].name) != 0) continue; return (&table[i]); } bailout: return (NULL); } static int sasetprotents(struct cam_periph *periph, struct mtparamset *ps, int num_params) { struct sa_softc *softc; struct sa_prot_map prot_ents[SA_NUM_PROT_ENTS]; struct sa_prot_state new_state; int error; int i; softc = (struct sa_softc *)periph->softc; error = 0; /* * Make sure that this tape drive supports protection information. * Otherwise we can't set anything. */ if ((softc->flags & SA_FLAG_PROTECT_SUPP) == 0) { snprintf(ps[0].error_str, sizeof(ps[0].error_str), "Protection information is not supported for this device"); ps[0].status = MT_PARAM_STATUS_ERROR; goto bailout; } /* * We can't operate with physio(9) splitting enabled, because there * is no way to insure (especially in variable block mode) that * what the user writes (with a checksum block at the end) will * make it into the sa(4) driver intact. */ if ((softc->si_flags & SI_NOSPLIT) == 0) { snprintf(ps[0].error_str, sizeof(ps[0].error_str), "Protection information cannot be enabled with I/O " "splitting"); ps[0].status = MT_PARAM_STATUS_ERROR; goto bailout; } /* * Take the current cached protection state and use that as the * basis for our new entries. */ bcopy(&softc->prot_info.cur_prot_state, &new_state, sizeof(new_state)); /* * Populate the table mapping property names to pointers into the * state structure. */ sapopulateprots(&new_state, prot_ents, SA_NUM_PROT_ENTS); /* * For each parameter the user passed in, make sure the name, type * and value are valid. */ for (i = 0; i < num_params; i++) { struct sa_prot_map *ent; ent = safindprotent(ps[i].value_name, prot_ents, SA_NUM_PROT_ENTS); if (ent == NULL) { ps[i].status = MT_PARAM_STATUS_ERROR; snprintf(ps[i].error_str, sizeof(ps[i].error_str), "Invalid protection entry name %s", ps[i].value_name); error = EINVAL; goto bailout; } if (ent->param_type != ps[i].value_type) { ps[i].status = MT_PARAM_STATUS_ERROR; snprintf(ps[i].error_str, sizeof(ps[i].error_str), "Supplied type %d does not match actual type %d", ps[i].value_type, ent->param_type); error = EINVAL; goto bailout; } if ((ps[i].value.value_unsigned < ent->min_val) || (ps[i].value.value_unsigned > ent->max_val)) { ps[i].status = MT_PARAM_STATUS_ERROR; snprintf(ps[i].error_str, sizeof(ps[i].error_str), "Value %ju is outside valid range %u - %u", (uintmax_t)ps[i].value.value_unsigned, ent->min_val, ent->max_val); error = EINVAL; goto bailout; } *(ent->value) = ps[i].value.value_unsigned; } /* * Actually send the protection settings to the drive. */ error = sasetprot(periph, &new_state); if (error != 0) { for (i = 0; i < num_params; i++) { ps[i].status = MT_PARAM_STATUS_ERROR; snprintf(ps[i].error_str, sizeof(ps[i].error_str), "Unable to set parameter, see dmesg(8)"); } goto bailout; } /* * Let the user know that his settings were stored successfully. */ for (i = 0; i < num_params; i++) ps[i].status = MT_PARAM_STATUS_OK; bailout: return (error); } /* * Entry handlers generally only handle a single entry. Node handlers will * handle a contiguous range of parameters to set in a single call. */ typedef enum { SA_PARAM_TYPE_ENTRY, SA_PARAM_TYPE_NODE } sa_param_type; struct sa_param_ent { char *name; sa_param_type param_type; int (*set_func)(struct cam_periph *periph, struct mtparamset *ps, int num_params); } sa_param_table[] = { {"sili", SA_PARAM_TYPE_ENTRY, sasetsili }, {"eot_warn", SA_PARAM_TYPE_ENTRY, saseteotwarn }, {"protection.", SA_PARAM_TYPE_NODE, sasetprotents } }; static struct sa_param_ent * safindparament(struct mtparamset *ps) { unsigned int i; for (i = 0; i < nitems(sa_param_table); i++){ /* * For entries, we compare all of the characters. For * nodes, we only compare the first N characters. The node * handler will decode the rest. */ if (sa_param_table[i].param_type == SA_PARAM_TYPE_ENTRY) { if (strcmp(ps->value_name, sa_param_table[i].name) != 0) continue; } else { if (strncmp(ps->value_name, sa_param_table[i].name, strlen(sa_param_table[i].name)) != 0) continue; } return (&sa_param_table[i]); } return (NULL); } /* * Go through a list of parameters, coalescing contiguous parameters with * the same parent node into a single call to a set_func. */ static int saparamsetlist(struct cam_periph *periph, struct mtsetlist *list, int need_copy) { int i, contig_ents; int error; struct mtparamset *params, *first; struct sa_param_ent *first_ent; error = 0; params = NULL; if (list->num_params == 0) /* Nothing to do */ goto bailout; /* * Verify that the user has the correct structure size. */ if ((list->num_params * sizeof(struct mtparamset)) != list->param_len) { xpt_print(periph->path, "%s: length of params %d != " "sizeof(struct mtparamset) %zd * num_params %d\n", __func__, list->param_len, sizeof(struct mtparamset), list->num_params); error = EINVAL; goto bailout; } if (need_copy != 0) { /* * XXX KDM will dropping the lock cause an issue here? */ cam_periph_unlock(periph); params = malloc(list->param_len, M_SCSISA, M_WAITOK | M_ZERO); error = copyin(list->params, params, list->param_len); cam_periph_lock(periph); if (error != 0) goto bailout; } else { params = list->params; } contig_ents = 0; first = NULL; first_ent = NULL; for (i = 0; i < list->num_params; i++) { struct sa_param_ent *ent; ent = safindparament(¶ms[i]); if (ent == NULL) { snprintf(params[i].error_str, sizeof(params[i].error_str), "%s: cannot find parameter %s", __func__, params[i].value_name); params[i].status = MT_PARAM_STATUS_ERROR; break; } if (first != NULL) { if (first_ent == ent) { /* * We're still in a contiguous list of * parameters that can be handled by one * node handler. */ contig_ents++; continue; } else { error = first_ent->set_func(periph, first, contig_ents); first = NULL; first_ent = NULL; contig_ents = 0; if (error != 0) { error = 0; break; } } } if (ent->param_type == SA_PARAM_TYPE_NODE) { first = ¶ms[i]; first_ent = ent; contig_ents = 1; } else { error = ent->set_func(periph, ¶ms[i], 1); if (error != 0) { error = 0; break; } } } if (first != NULL) first_ent->set_func(periph, first, contig_ents); bailout: if (need_copy != 0) { if (error != EFAULT) { cam_periph_unlock(periph); copyout(params, list->params, list->param_len); cam_periph_lock(periph); } free(params, M_SCSISA); } return (error); } static int sagetparams_common(struct cdev *dev, struct cam_periph *periph) { struct sa_softc *softc; u_int8_t write_protect; int comp_enabled, comp_supported, error; softc = (struct sa_softc *)periph->softc; if (softc->open_pending_mount) return (0); /* The control device may issue getparams() if there are no opens. */ if (SA_IS_CTRL(dev) && (softc->flags & SA_FLAG_OPEN) != 0) return (0); error = sagetparams(periph, SA_PARAM_ALL, &softc->media_blksize, &softc->media_density, &softc->media_numblks, &softc->buffer_mode, &write_protect, &softc->speed, &comp_supported, &comp_enabled, &softc->comp_algorithm, NULL, NULL, 0, 0); if (error) return (error); if (write_protect) softc->flags |= SA_FLAG_TAPE_WP; else softc->flags &= ~SA_FLAG_TAPE_WP; softc->flags &= ~SA_FLAG_COMPRESSION; if (comp_supported) { if (softc->saved_comp_algorithm == 0) softc->saved_comp_algorithm = softc->comp_algorithm; softc->flags |= SA_FLAG_COMP_SUPP; if (comp_enabled) softc->flags |= SA_FLAG_COMP_ENABLED; } else softc->flags |= SA_FLAG_COMP_UNSUPP; return (0); } #define PENDING_MOUNT_CHECK(softc, periph, dev) \ if (softc->open_pending_mount) { \ error = samount(periph, 0, dev); \ if (error) { \ break; \ } \ saprevent(periph, PR_PREVENT); \ softc->open_pending_mount = 0; \ } static int saioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct cam_periph *periph; struct sa_softc *softc; scsi_space_code spaceop; int didlockperiph = 0; int mode; int error = 0; mode = SAMODE(dev); error = 0; /* shut up gcc */ spaceop = 0; /* shut up gcc */ periph = (struct cam_periph *)dev->si_drv1; cam_periph_lock(periph); softc = (struct sa_softc *)periph->softc; /* * Check for control mode accesses. We allow MTIOCGET and * MTIOCERRSTAT (but need to be the only one open in order * to clear latched status), and MTSETBSIZE, MTSETDNSTY * and MTCOMP (but need to be the only one accessing this * device to run those). */ if (SA_IS_CTRL(dev)) { switch (cmd) { case MTIOCGETEOTMODEL: case MTIOCGET: case MTIOCEXTGET: case MTIOCPARAMGET: case MTIOCRBLIM: break; case MTIOCERRSTAT: /* * If the periph isn't already locked, lock it * so our MTIOCERRSTAT can reset latched error stats. * * If the periph is already locked, skip it because * we're just getting status and it'll be up to the * other thread that has this device open to do * an MTIOCERRSTAT that would clear latched status. */ if ((periph->flags & CAM_PERIPH_LOCKED) == 0) { error = cam_periph_hold(periph, PRIBIO|PCATCH); if (error != 0) { cam_periph_unlock(periph); return (error); } didlockperiph = 1; } break; case MTIOCTOP: { struct mtop *mt = (struct mtop *) arg; /* * Check to make sure it's an OP we can perform * with no media inserted. */ switch (mt->mt_op) { case MTSETBSIZ: case MTSETDNSTY: case MTCOMP: mt = NULL; /* FALLTHROUGH */ default: break; } if (mt != NULL) { break; } /* FALLTHROUGH */ } case MTIOCSETEOTMODEL: /* * We need to acquire the peripheral here rather * than at open time because we are sharing writable * access to data structures. */ error = cam_periph_hold(periph, PRIBIO|PCATCH); if (error != 0) { cam_periph_unlock(periph); return (error); } didlockperiph = 1; break; default: cam_periph_unlock(periph); return (EINVAL); } } /* * Find the device that the user is talking about */ switch (cmd) { case MTIOCGET: { struct mtget *g = (struct mtget *)arg; error = sagetparams_common(dev, periph); if (error) break; bzero(g, sizeof(struct mtget)); g->mt_type = MT_ISAR; if (softc->flags & SA_FLAG_COMP_UNSUPP) { g->mt_comp = MT_COMP_UNSUPP; g->mt_comp0 = MT_COMP_UNSUPP; g->mt_comp1 = MT_COMP_UNSUPP; g->mt_comp2 = MT_COMP_UNSUPP; g->mt_comp3 = MT_COMP_UNSUPP; } else { if ((softc->flags & SA_FLAG_COMP_ENABLED) == 0) { g->mt_comp = MT_COMP_DISABLED; } else { g->mt_comp = softc->comp_algorithm; } g->mt_comp0 = softc->comp_algorithm; g->mt_comp1 = softc->comp_algorithm; g->mt_comp2 = softc->comp_algorithm; g->mt_comp3 = softc->comp_algorithm; } g->mt_density = softc->media_density; g->mt_density0 = softc->media_density; g->mt_density1 = softc->media_density; g->mt_density2 = softc->media_density; g->mt_density3 = softc->media_density; g->mt_blksiz = softc->media_blksize; g->mt_blksiz0 = softc->media_blksize; g->mt_blksiz1 = softc->media_blksize; g->mt_blksiz2 = softc->media_blksize; g->mt_blksiz3 = softc->media_blksize; g->mt_fileno = softc->fileno; g->mt_blkno = softc->blkno; g->mt_dsreg = (short) softc->dsreg; /* * Yes, we know that this is likely to overflow */ if (softc->last_resid_was_io) { if ((g->mt_resid = (short) softc->last_io_resid) != 0) { if (SA_IS_CTRL(dev) == 0 || didlockperiph) { softc->last_io_resid = 0; } } } else { if ((g->mt_resid = (short)softc->last_ctl_resid) != 0) { if (SA_IS_CTRL(dev) == 0 || didlockperiph) { softc->last_ctl_resid = 0; } } } error = 0; break; } case MTIOCEXTGET: case MTIOCPARAMGET: { struct mtextget *g = (struct mtextget *)arg; char *tmpstr2; struct sbuf *sb; /* * Report drive status using an XML format. */ /* * XXX KDM will dropping the lock cause any problems here? */ cam_periph_unlock(periph); sb = sbuf_new(NULL, NULL, g->alloc_len, SBUF_FIXEDLEN); if (sb == NULL) { g->status = MT_EXT_GET_ERROR; snprintf(g->error_str, sizeof(g->error_str), "Unable to allocate %d bytes for status info", g->alloc_len); cam_periph_lock(periph); goto extget_bailout; } cam_periph_lock(periph); if (cmd == MTIOCEXTGET) error = saextget(dev, periph, sb, g); else error = saparamget(softc, sb); if (error != 0) goto extget_bailout; error = sbuf_finish(sb); if (error == ENOMEM) { g->status = MT_EXT_GET_NEED_MORE_SPACE; error = 0; } else if (error != 0) { g->status = MT_EXT_GET_ERROR; snprintf(g->error_str, sizeof(g->error_str), "Error %d returned from sbuf_finish()", error); } else g->status = MT_EXT_GET_OK; error = 0; tmpstr2 = sbuf_data(sb); g->fill_len = strlen(tmpstr2) + 1; cam_periph_unlock(periph); error = copyout(tmpstr2, g->status_xml, g->fill_len); cam_periph_lock(periph); extget_bailout: sbuf_delete(sb); break; } case MTIOCPARAMSET: { struct mtsetlist list; struct mtparamset *ps = (struct mtparamset *)arg; bzero(&list, sizeof(list)); list.num_params = 1; list.param_len = sizeof(*ps); list.params = ps; error = saparamsetlist(periph, &list, /*need_copy*/ 0); break; } case MTIOCSETLIST: { struct mtsetlist *list = (struct mtsetlist *)arg; error = saparamsetlist(periph, list, /*need_copy*/ 1); break; } case MTIOCERRSTAT: { struct scsi_tape_errors *sep = &((union mterrstat *)arg)->scsi_errstat; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("saioctl: MTIOCERRSTAT\n")); bzero(sep, sizeof(*sep)); sep->io_resid = softc->last_io_resid; bcopy((caddr_t) &softc->last_io_sense, sep->io_sense, sizeof (sep->io_sense)); bcopy((caddr_t) &softc->last_io_cdb, sep->io_cdb, sizeof (sep->io_cdb)); sep->ctl_resid = softc->last_ctl_resid; bcopy((caddr_t) &softc->last_ctl_sense, sep->ctl_sense, sizeof (sep->ctl_sense)); bcopy((caddr_t) &softc->last_ctl_cdb, sep->ctl_cdb, sizeof (sep->ctl_cdb)); if ((SA_IS_CTRL(dev) == 0 && !softc->open_pending_mount) || didlockperiph) bzero((caddr_t) &softc->errinfo, sizeof (softc->errinfo)); error = 0; break; } case MTIOCTOP: { struct mtop *mt; int count; PENDING_MOUNT_CHECK(softc, periph, dev); mt = (struct mtop *)arg; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("saioctl: op=0x%x count=0x%x\n", mt->mt_op, mt->mt_count)); count = mt->mt_count; switch (mt->mt_op) { case MTWEOF: /* write an end-of-file marker */ /* * We don't need to clear the SA_FLAG_TAPE_WRITTEN * flag because by keeping track of filemarks * we have last written we know whether or not * we need to write more when we close the device. */ error = sawritefilemarks(periph, count, FALSE, FALSE); break; case MTWEOFI: /* write an end-of-file marker without waiting */ error = sawritefilemarks(periph, count, FALSE, TRUE); break; case MTWSS: /* write a setmark */ error = sawritefilemarks(periph, count, TRUE, FALSE); break; case MTBSR: /* backward space record */ case MTFSR: /* forward space record */ case MTBSF: /* backward space file */ case MTFSF: /* forward space file */ case MTBSS: /* backward space setmark */ case MTFSS: /* forward space setmark */ case MTEOD: /* space to end of recorded medium */ { int nmarks; spaceop = SS_FILEMARKS; nmarks = softc->filemarks; error = sacheckeod(periph); if (error) { xpt_print(periph->path, "EOD check prior to spacing failed\n"); softc->flags |= SA_FLAG_EIO_PENDING; break; } nmarks -= softc->filemarks; switch(mt->mt_op) { case MTBSR: count = -count; /* FALLTHROUGH */ case MTFSR: spaceop = SS_BLOCKS; break; case MTBSF: count = -count; /* FALLTHROUGH */ case MTFSF: break; case MTBSS: count = -count; /* FALLTHROUGH */ case MTFSS: spaceop = SS_SETMARKS; break; case MTEOD: spaceop = SS_EOD; count = 0; nmarks = 0; break; default: error = EINVAL; break; } if (error) break; nmarks = softc->filemarks; /* * XXX: Why are we checking again? */ error = sacheckeod(periph); if (error) break; nmarks -= softc->filemarks; error = saspace(periph, count - nmarks, spaceop); /* * At this point, clear that we've written the tape * and that we've written any filemarks. We really * don't know what the applications wishes to do next- * the sacheckeod's will make sure we terminated the * tape correctly if we'd been writing, but the next * action the user application takes will set again * whether we need to write filemarks. */ softc->flags &= ~(SA_FLAG_TAPE_WRITTEN|SA_FLAG_TAPE_FROZEN); softc->filemarks = 0; break; } case MTREW: /* rewind */ PENDING_MOUNT_CHECK(softc, periph, dev); (void) sacheckeod(periph); error = sarewind(periph); /* see above */ softc->flags &= ~(SA_FLAG_TAPE_WRITTEN|SA_FLAG_TAPE_FROZEN); softc->flags &= ~SA_FLAG_ERR_PENDING; softc->filemarks = 0; break; case MTERASE: /* erase */ PENDING_MOUNT_CHECK(softc, periph, dev); error = saerase(periph, count); softc->flags &= ~(SA_FLAG_TAPE_WRITTEN|SA_FLAG_TAPE_FROZEN); softc->flags &= ~SA_FLAG_ERR_PENDING; break; case MTRETENS: /* re-tension tape */ PENDING_MOUNT_CHECK(softc, periph, dev); error = saretension(periph); softc->flags &= ~(SA_FLAG_TAPE_WRITTEN|SA_FLAG_TAPE_FROZEN); softc->flags &= ~SA_FLAG_ERR_PENDING; break; case MTOFFL: /* rewind and put the drive offline */ PENDING_MOUNT_CHECK(softc, periph, dev); (void) sacheckeod(periph); /* see above */ softc->flags &= ~SA_FLAG_TAPE_WRITTEN; softc->filemarks = 0; error = sarewind(periph); /* clear the frozen flag anyway */ softc->flags &= ~SA_FLAG_TAPE_FROZEN; /* * Be sure to allow media removal before ejecting. */ saprevent(periph, PR_ALLOW); if (error == 0) { error = saloadunload(periph, FALSE); if (error == 0) { softc->flags &= ~SA_FLAG_TAPE_MOUNTED; } } break; case MTLOAD: error = saloadunload(periph, TRUE); break; case MTNOP: /* no operation, sets status only */ case MTCACHE: /* enable controller cache */ case MTNOCACHE: /* disable controller cache */ error = 0; break; case MTSETBSIZ: /* Set block size for device */ PENDING_MOUNT_CHECK(softc, periph, dev); if ((softc->sili != 0) && (count != 0)) { xpt_print(periph->path, "Can't enter fixed " "block mode with SILI enabled\n"); error = EINVAL; break; } error = sasetparams(periph, SA_PARAM_BLOCKSIZE, count, 0, 0, 0); if (error == 0) { softc->last_media_blksize = softc->media_blksize; softc->media_blksize = count; if (count) { softc->flags |= SA_FLAG_FIXED; if (powerof2(count)) { softc->blk_shift = ffs(count) - 1; softc->blk_mask = count - 1; } else { softc->blk_mask = ~0; softc->blk_shift = 0; } /* * Make the user's desire 'persistent'. */ softc->quirks &= ~SA_QUIRK_VARIABLE; softc->quirks |= SA_QUIRK_FIXED; } else { softc->flags &= ~SA_FLAG_FIXED; if (softc->max_blk == 0) { softc->max_blk = ~0; } softc->blk_shift = 0; if (softc->blk_gran != 0) { softc->blk_mask = softc->blk_gran - 1; } else { softc->blk_mask = 0; } /* * Make the user's desire 'persistent'. */ softc->quirks |= SA_QUIRK_VARIABLE; softc->quirks &= ~SA_QUIRK_FIXED; } } break; case MTSETDNSTY: /* Set density for device and mode */ PENDING_MOUNT_CHECK(softc, periph, dev); if (count > UCHAR_MAX) { error = EINVAL; break; } else { error = sasetparams(periph, SA_PARAM_DENSITY, 0, count, 0, 0); } break; case MTCOMP: /* enable compression */ PENDING_MOUNT_CHECK(softc, periph, dev); /* * Some devices don't support compression, and * don't like it if you ask them for the * compression page. */ if ((softc->quirks & SA_QUIRK_NOCOMP) || (softc->flags & SA_FLAG_COMP_UNSUPP)) { error = ENODEV; break; } error = sasetparams(periph, SA_PARAM_COMPRESSION, 0, 0, count, SF_NO_PRINT); break; default: error = EINVAL; } break; } case MTIOCIEOT: case MTIOCEEOT: error = 0; break; case MTIOCRDSPOS: PENDING_MOUNT_CHECK(softc, periph, dev); error = sardpos(periph, 0, (u_int32_t *) arg); break; case MTIOCRDHPOS: PENDING_MOUNT_CHECK(softc, periph, dev); error = sardpos(periph, 1, (u_int32_t *) arg); break; case MTIOCSLOCATE: case MTIOCHLOCATE: { struct mtlocate locate_info; int hard; bzero(&locate_info, sizeof(locate_info)); locate_info.logical_id = *((uint32_t *)arg); if (cmd == MTIOCSLOCATE) hard = 0; else hard = 1; PENDING_MOUNT_CHECK(softc, periph, dev); error = sasetpos(periph, hard, &locate_info); break; } case MTIOCEXTLOCATE: PENDING_MOUNT_CHECK(softc, periph, dev); error = sasetpos(periph, /*hard*/ 0, (struct mtlocate *)arg); softc->flags &= ~(SA_FLAG_TAPE_WRITTEN|SA_FLAG_TAPE_FROZEN); softc->flags &= ~SA_FLAG_ERR_PENDING; softc->filemarks = 0; break; case MTIOCGETEOTMODEL: error = 0; if (softc->quirks & SA_QUIRK_1FM) mode = 1; else mode = 2; *((u_int32_t *) arg) = mode; break; case MTIOCSETEOTMODEL: error = 0; switch (*((u_int32_t *) arg)) { case 1: softc->quirks &= ~SA_QUIRK_2FM; softc->quirks |= SA_QUIRK_1FM; break; case 2: softc->quirks &= ~SA_QUIRK_1FM; softc->quirks |= SA_QUIRK_2FM; break; default: error = EINVAL; break; } break; case MTIOCRBLIM: { struct mtrblim *rblim; rblim = (struct mtrblim *)arg; rblim->granularity = softc->blk_gran; rblim->min_block_length = softc->min_blk; rblim->max_block_length = softc->max_blk; break; } default: error = cam_periph_ioctl(periph, cmd, arg, saerror); break; } /* * Check to see if we cleared a frozen state */ if (error == 0 && (softc->flags & SA_FLAG_TAPE_FROZEN)) { switch(cmd) { case MTIOCRDSPOS: case MTIOCRDHPOS: case MTIOCSLOCATE: case MTIOCHLOCATE: /* * XXX KDM look at this. */ softc->fileno = (daddr_t) -1; softc->blkno = (daddr_t) -1; softc->rep_blkno = (daddr_t) -1; softc->rep_fileno = (daddr_t) -1; softc->partition = (daddr_t) -1; softc->flags &= ~SA_FLAG_TAPE_FROZEN; xpt_print(periph->path, "tape state now unfrozen.\n"); break; default: break; } } if (didlockperiph) { cam_periph_unhold(periph); } cam_periph_unlock(periph); return (error); } static void sainit(void) { cam_status status; /* * Install a global async callback. */ status = xpt_register_async(AC_FOUND_DEVICE, saasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("sa: Failed to attach master async callback " "due to status 0x%x!\n", status); } } static void sadevgonecb(void *arg) { struct cam_periph *periph; struct mtx *mtx; struct sa_softc *softc; periph = (struct cam_periph *)arg; softc = (struct sa_softc *)periph->softc; mtx = cam_periph_mtx(periph); mtx_lock(mtx); softc->num_devs_to_destroy--; if (softc->num_devs_to_destroy == 0) { int i; /* * When we have gotten all of our callbacks, we will get * no more close calls from devfs. So if we have any * dangling opens, we need to release the reference held * for that particular context. */ for (i = 0; i < softc->open_count; i++) cam_periph_release_locked(periph); softc->open_count = 0; /* * Release the reference held for devfs, all of our * instances are gone now. */ cam_periph_release_locked(periph); } /* * We reference the lock directly here, instead of using * cam_periph_unlock(). The reason is that the final call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. */ mtx_unlock(mtx); } static void saoninvalidate(struct cam_periph *periph) { struct sa_softc *softc; softc = (struct sa_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, saasync, periph, periph->path); softc->flags |= SA_FLAG_INVALID; /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ bioq_flush(&softc->bio_queue, NULL, ENXIO); softc->queue_count = 0; /* * Tell devfs that all of our devices have gone away, and ask for a * callback when it has cleaned up its state. */ destroy_dev_sched_cb(softc->devs.ctl_dev, sadevgonecb, periph); destroy_dev_sched_cb(softc->devs.r_dev, sadevgonecb, periph); destroy_dev_sched_cb(softc->devs.nr_dev, sadevgonecb, periph); destroy_dev_sched_cb(softc->devs.er_dev, sadevgonecb, periph); } static void sacleanup(struct cam_periph *periph) { struct sa_softc *softc; softc = (struct sa_softc *)periph->softc; cam_periph_unlock(periph); if ((softc->flags & SA_FLAG_SCTX_INIT) != 0 && (((softc->sysctl_timeout_tree != NULL) && (sysctl_ctx_free(&softc->sysctl_timeout_ctx) != 0)) || sysctl_ctx_free(&softc->sysctl_ctx) != 0)) xpt_print(periph->path, "can't remove sysctl context\n"); cam_periph_lock(periph); devstat_remove_entry(softc->device_stats); free(softc, M_SCSISA); } static void saasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_SCSI) break; if (SID_QUAL(&cgd->inq_data) != SID_QUAL_LU_CONNECTED) break; if (SID_TYPE(&cgd->inq_data) != T_SEQUENTIAL) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(saregister, saoninvalidate, sacleanup, sastart, "sa", CAM_PERIPH_BIO, path, saasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("saasync: Unable to probe new device " "due to status 0x%x\n", status); break; } default: cam_periph_async(periph, code, path, arg); break; } } static void sasetupdev(struct sa_softc *softc, struct cdev *dev) { dev->si_iosize_max = softc->maxio; dev->si_flags |= softc->si_flags; /* * Keep a count of how many non-alias devices we have created, * so we can make sure we clean them all up on shutdown. Aliases * are cleaned up when we destroy the device they're an alias for. */ if ((dev->si_flags & SI_ALIAS) == 0) softc->num_devs_to_destroy++; } /* * Load the global (for all sa(4) instances) and per-instance tunable * values for timeouts for various sa(4) commands. This should be run * after the default timeouts are fetched from the drive, so the user's * preference will override the drive's defaults. */ static void saloadtotunables(struct sa_softc *softc) { int i; char tmpstr[80]; for (i = 0; i < SA_TIMEOUT_TYPE_MAX; i++) { int tmpval, retval; /* First grab any global timeout setting */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.sa.timeout.%s", sa_default_timeouts[i].desc); retval = TUNABLE_INT_FETCH(tmpstr, &tmpval); if (retval != 0) softc->timeout_info[i] = tmpval; /* * Then overwrite any global timeout settings with * per-instance timeout settings. */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.sa.%u.timeout.%s", softc->periph->unit_number, sa_default_timeouts[i].desc); retval = TUNABLE_INT_FETCH(tmpstr, &tmpval); if (retval != 0) softc->timeout_info[i] = tmpval; } } static void sasysctlinit(void *context, int pending) { struct cam_periph *periph; struct sa_softc *softc; char tmpstr[64], tmpstr2[16]; int i; periph = (struct cam_periph *)context; /* * If the periph is invalid, no need to setup the sysctls. */ if (periph->flags & CAM_PERIPH_INVALID) goto bailout; softc = (struct sa_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM SA unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%u", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); softc->flags |= SA_FLAG_SCTX_INIT; softc->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_sa), OID_AUTO, tmpstr2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr, "device_index"); if (softc->sysctl_tree == NULL) goto bailout; SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "allow_io_split", CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &softc->allow_io_split, 0, "Allow Splitting I/O"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "maxio", CTLFLAG_RD, &softc->maxio, 0, "Maximum I/O size"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "cpi_maxio", CTLFLAG_RD, &softc->cpi_maxio, 0, "Maximum Controller I/O size"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "inject_eom", CTLFLAG_RW, &softc->inject_eom, 0, "Queue EOM for the next write/read"); sysctl_ctx_init(&softc->sysctl_timeout_ctx); softc->sysctl_timeout_tree = SYSCTL_ADD_NODE(&softc->sysctl_timeout_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "timeout", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Timeouts"); if (softc->sysctl_timeout_tree == NULL) goto bailout; for (i = 0; i < SA_TIMEOUT_TYPE_MAX; i++) { snprintf(tmpstr, sizeof(tmpstr), "%s timeout", sa_default_timeouts[i].desc); /* * Do NOT change this sysctl declaration to also load any * tunable values for this sa(4) instance. In other words, * do not change this to CTLFLAG_RWTUN. This function is * run in parallel with the probe routine that fetches * recommended timeout values from the tape drive, and we * don't want the values from the drive to override the * user's preference. */ SYSCTL_ADD_INT(&softc->sysctl_timeout_ctx, SYSCTL_CHILDREN(softc->sysctl_timeout_tree), OID_AUTO, sa_default_timeouts[i].desc, CTLFLAG_RW, &softc->timeout_info[i], 0, tmpstr); } bailout: /* * Release the reference that was held when this task was enqueued. */ cam_periph_release(periph); } static cam_status saregister(struct cam_periph *periph, void *arg) { struct sa_softc *softc; struct ccb_getdev *cgd; struct ccb_pathinq cpi; struct make_dev_args args; caddr_t match; char tmpstr[80]; int error; int i; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("saregister: no getdev CCB, can't register device\n"); return (CAM_REQ_CMP_ERR); } softc = (struct sa_softc *) malloc(sizeof (*softc), M_SCSISA, M_NOWAIT | M_ZERO); if (softc == NULL) { printf("saregister: Unable to probe new device. " "Unable to allocate softc\n"); return (CAM_REQ_CMP_ERR); } softc->scsi_rev = SID_ANSI_REV(&cgd->inq_data); softc->state = SA_STATE_NORMAL; softc->fileno = (daddr_t) -1; softc->blkno = (daddr_t) -1; softc->rep_fileno = (daddr_t) -1; softc->rep_blkno = (daddr_t) -1; softc->partition = (daddr_t) -1; softc->bop = -1; softc->eop = -1; softc->bpew = -1; bioq_init(&softc->bio_queue); softc->periph = periph; periph->softc = softc; /* * See if this device has any quirks. */ match = cam_quirkmatch((caddr_t)&cgd->inq_data, (caddr_t)sa_quirk_table, nitems(sa_quirk_table), sizeof(*sa_quirk_table), scsi_inquiry_match); if (match != NULL) { softc->quirks = ((struct sa_quirk_entry *)match)->quirks; softc->last_media_blksize = ((struct sa_quirk_entry *)match)->prefblk; } else softc->quirks = SA_QUIRK_NONE; /* * Initialize the default timeouts. If this drive supports * timeout descriptors we'll overwrite these values with the * recommended timeouts from the drive. */ for (i = 0; i < SA_TIMEOUT_TYPE_MAX; i++) softc->timeout_info[i] = sa_default_timeouts[i].value; /* * Long format data for READ POSITION was introduced in SSC, which * was after SCSI-2. (Roughly equivalent to SCSI-3.) If the drive * reports that it is SCSI-2 or older, it is unlikely to support * long position data, but it might. Some drives from that era * claim to be SCSI-2, but do support long position information. * So, instead of immediately disabling long position information * for SCSI-2 devices, we'll try one pass through sagetpos(), and * then disable long position information if we get an error. */ if (cgd->inq_data.version <= SCSI_REV_CCS) softc->quirks |= SA_QUIRK_NO_LONG_POS; /* * The SCSI REPORT SUPPORTED OPERATION CODES command was added in * SPC-4. That command optionally includes timeout data for * different commands. Timeout values can vary wildly among * different drives, so if the drive itself has recommended values, * we will try to use them. Set this flag to indicate we're going * to ask the drive for timeout data. This flag also tells us to * wait on loading timeout tunables so we can properly override * timeouts with any user-specified values. */ if (SID_ANSI_REV(&cgd->inq_data) >= SCSI_REV_SPC4) softc->flags |= SA_FLAG_RSOC_TO_TRY; if (cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) { struct ccb_dev_advinfo cdai; struct scsi_vpd_extended_inquiry_data ext_inq; bzero(&ext_inq, sizeof(ext_inq)); memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.flags = CDAI_FLAG_NONE; cdai.buftype = CDAI_TYPE_EXT_INQ; cdai.bufsiz = sizeof(ext_inq); cdai.buf = (uint8_t *)&ext_inq; xpt_action((union ccb *)&cdai); if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if ((cdai.ccb_h.status == CAM_REQ_CMP) && (ext_inq.flags1 & SVPD_EID_SA_SPT_LBP)) softc->flags |= SA_FLAG_PROTECT_SUPP; } xpt_path_inq(&cpi, periph->path); /* * The SA driver supports a blocksize, but we don't know the * blocksize until we media is inserted. So, set a flag to * indicate that the blocksize is unavailable right now. */ cam_periph_unlock(periph); softc->device_stats = devstat_new_entry("sa", periph->unit_number, 0, DEVSTAT_BS_UNAVAILABLE, SID_TYPE(&cgd->inq_data) | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_TAPE); /* * Load the default value that is either compiled in, or loaded * in the global kern.cam.sa.allow_io_split tunable. */ softc->allow_io_split = sa_allow_io_split; /* * Load a per-instance tunable, if it exists. NOTE that this * tunable WILL GO AWAY in FreeBSD 11.0. */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.sa.%u.allow_io_split", periph->unit_number); TUNABLE_INT_FETCH(tmpstr, &softc->allow_io_split); /* * If maxio isn't set, we fall back to DFLTPHYS. Otherwise we take * the smaller of cpi.maxio or maxphys. */ if (cpi.maxio == 0) softc->maxio = DFLTPHYS; else if (cpi.maxio > maxphys) softc->maxio = maxphys; else softc->maxio = cpi.maxio; /* * Record the controller's maximum I/O size so we can report it to * the user later. */ softc->cpi_maxio = cpi.maxio; /* * By default we tell physio that we do not want our I/O split. * The user needs to have a 1:1 mapping between the size of his * write to a tape character device and the size of the write * that actually goes down to the drive. */ if (softc->allow_io_split == 0) softc->si_flags = SI_NOSPLIT; else softc->si_flags = 0; TASK_INIT(&softc->sysctl_task, 0, sasysctlinit, periph); /* * If the SIM supports unmapped I/O, let physio know that we can * handle unmapped buffers. */ if (cpi.hba_misc & PIM_UNMAPPED) softc->si_flags |= SI_UNMAPPED; /* * Acquire a reference to the periph before we create the devfs * instances for it. We'll release this reference once the devfs * instances have been freed. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } make_dev_args_init(&args); args.mda_devsw = &sa_cdevsw; args.mda_si_drv1 = softc->periph; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0660; args.mda_unit = SAMINOR(SA_CTLDEV, SA_ATYPE_R); error = make_dev_s(&args, &softc->devs.ctl_dev, "%s%d.ctl", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } sasetupdev(softc, softc->devs.ctl_dev); args.mda_unit = SAMINOR(SA_NOT_CTLDEV, SA_ATYPE_R); error = make_dev_s(&args, &softc->devs.r_dev, "%s%d", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } sasetupdev(softc, softc->devs.r_dev); args.mda_unit = SAMINOR(SA_NOT_CTLDEV, SA_ATYPE_NR); error = make_dev_s(&args, &softc->devs.nr_dev, "n%s%d", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } sasetupdev(softc, softc->devs.nr_dev); args.mda_unit = SAMINOR(SA_NOT_CTLDEV, SA_ATYPE_ER); error = make_dev_s(&args, &softc->devs.er_dev, "e%s%d", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } sasetupdev(softc, softc->devs.er_dev); cam_periph_lock(periph); softc->density_type_bits[0] = 0; softc->density_type_bits[1] = SRDS_MEDIA; softc->density_type_bits[2] = SRDS_MEDIUM_TYPE; softc->density_type_bits[3] = SRDS_MEDIUM_TYPE | SRDS_MEDIA; /* * Bump the peripheral refcount for the sysctl thread, in case we * get invalidated before the thread has a chance to run. Note * that this runs in parallel with the probe for the timeout * values. */ cam_periph_acquire(periph); taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task); /* * Add an async callback so that we get * notified if this device goes away. */ xpt_register_async(AC_LOST_DEVICE, saasync, periph, periph->path); /* * See comment above, try fetching timeout values for drives that * might support it. Otherwise, use the defaults. * * We get timeouts from the following places in order of increasing * priority: * 1. Driver default timeouts. * 2. Timeouts loaded from the drive via REPORT SUPPORTED OPERATION * CODES. (We kick that off here if SA_FLAG_RSOC_TO_TRY is set.) * 3. Global loader tunables, used for all sa(4) driver instances on * a machine. * 4. Instance-specific loader tunables, used for say sa5. * 5. On the fly user sysctl changes. * * Each step will overwrite the timeout value set from the one * before, so you go from general to most specific. */ if (softc->flags & SA_FLAG_RSOC_TO_TRY) { /* * Bump the peripheral refcount while we are probing. */ cam_periph_acquire(periph); softc->state = SA_STATE_PROBE; xpt_schedule(periph, CAM_PRIORITY_DEV); } else { /* * This drive doesn't support Report Supported Operation * Codes, so we load the tunables at this point to bring * in any user preferences. */ saloadtotunables(softc); xpt_announce_periph(periph, NULL); xpt_announce_quirks(periph, softc->quirks, SA_QUIRK_BIT_STRING); } return (CAM_REQ_CMP); } static void sastart(struct cam_periph *periph, union ccb *start_ccb) { struct sa_softc *softc; softc = (struct sa_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sastart\n")); switch (softc->state) { case SA_STATE_NORMAL: { /* Pull a buffer from the queue and get going on it */ struct bio *bp; /* * See if there is a buf with work for us to do.. */ bp = bioq_first(&softc->bio_queue); if (bp == NULL) { xpt_release_ccb(start_ccb); } else if (((softc->flags & SA_FLAG_ERR_PENDING) != 0) || (softc->inject_eom != 0)) { struct bio *done_bp; if (softc->inject_eom != 0) { softc->flags |= SA_FLAG_EOM_PENDING; softc->inject_eom = 0; /* * If we're injecting EOM for writes, we * need to keep PEWS set for 3 queries * to cover 2 position requests from the * kernel via sagetpos(), and then allow * for one for the user to see the BPEW * flag (e.g. via mt status). After that, * it will be cleared. */ if (bp->bio_cmd == BIO_WRITE) softc->set_pews_status = 3; else softc->set_pews_status = 1; } again: softc->queue_count--; bioq_remove(&softc->bio_queue, bp); bp->bio_resid = bp->bio_bcount; done_bp = bp; if ((softc->flags & SA_FLAG_EOM_PENDING) != 0) { /* * We have two different behaviors for * writes when we hit either Early Warning * or the PEWZ (Programmable Early Warning * Zone). The default behavior is that * for all writes that are currently * queued after the write where we saw the * early warning, we will return the write * with the residual equal to the count. * i.e. tell the application that 0 bytes * were written. * * The alternate behavior, which is enabled * when eot_warn is set, is that in * addition to setting the residual equal * to the count, we will set the error * to ENOSPC. * * In either case, once queued writes are * cleared out, we clear the error flag * (see below) and the application is free to * attempt to write more. */ if (softc->eot_warn != 0) { bp->bio_flags |= BIO_ERROR; bp->bio_error = ENOSPC; } else bp->bio_error = 0; } else if ((softc->flags & SA_FLAG_EOF_PENDING) != 0) { /* * This can only happen if we're reading * in fixed length mode. In this case, * we dump the rest of the list the * same way. */ bp->bio_error = 0; if (bioq_first(&softc->bio_queue) != NULL) { biodone(done_bp); goto again; } } else if ((softc->flags & SA_FLAG_EIO_PENDING) != 0) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; } bp = bioq_first(&softc->bio_queue); /* * Only if we have no other buffers queued up * do we clear the pending error flag. */ if (bp == NULL) softc->flags &= ~SA_FLAG_ERR_PENDING; CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("sastart- ERR_PENDING now 0x%x, bp is %sNULL, " "%d more buffers queued up\n", (softc->flags & SA_FLAG_ERR_PENDING), (bp != NULL)? "not " : " ", softc->queue_count)); xpt_release_ccb(start_ccb); biodone(done_bp); } else { u_int32_t length; bioq_remove(&softc->bio_queue, bp); softc->queue_count--; if ((bp->bio_cmd != BIO_READ) && (bp->bio_cmd != BIO_WRITE)) { biofinish(bp, NULL, EOPNOTSUPP); xpt_release_ccb(start_ccb); return; } length = bp->bio_bcount; if ((softc->flags & SA_FLAG_FIXED) != 0) { if (softc->blk_shift != 0) { length = length >> softc->blk_shift; } else if (softc->media_blksize != 0) { length = length / softc->media_blksize; } else { bp->bio_error = EIO; xpt_print(periph->path, "zero blocksize" " for FIXED length writes?\n"); biodone(bp); break; } #if 0 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO, ("issuing a %d fixed record %s\n", length, (bp->bio_cmd == BIO_READ)? "read" : "write")); #endif } else { #if 0 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO, ("issuing a %d variable byte %s\n", length, (bp->bio_cmd == BIO_READ)? "read" : "write")); #endif } devstat_start_transaction_bio(softc->device_stats, bp); /* * Some people have theorized that we should * suppress illegal length indication if we are * running in variable block mode so that we don't * have to request sense every time our requested * block size is larger than the written block. * The residual information from the ccb allows * us to identify this situation anyway. The only * problem with this is that we will not get * information about blocks that are larger than * our read buffer unless we set the block size * in the mode page to something other than 0. * * I believe that this is a non-issue. If user apps * don't adjust their read size to match our record * size, that's just life. Anyway, the typical usage * would be to issue, e.g., 64KB reads and occasionally * have to do deal with 512 byte or 1KB intermediate * records. * * That said, though, we now support setting the * SILI bit on reads, and we set the blocksize to 4 * bytes when we do that. This gives us * compatibility with software that wants this, * although the only real difference between that * and not setting the SILI bit on reads is that we * won't get a check condition on reads where our * request size is larger than the block on tape. * That probably only makes a real difference in * non-packetized SCSI, where you have to go back * to the drive to request sense and thus incur * more latency. */ softc->dsreg = (bp->bio_cmd == BIO_READ)? MTIO_DSREG_RD : MTIO_DSREG_WR; scsi_sa_read_write(&start_ccb->csio, 0, sadone, MSG_SIMPLE_Q_TAG, (bp->bio_cmd == BIO_READ ? SCSI_RW_READ : SCSI_RW_WRITE) | ((bp->bio_flags & BIO_UNMAPPED) != 0 ? SCSI_RW_BIO : 0), softc->sili, (softc->flags & SA_FLAG_FIXED) != 0, length, (bp->bio_flags & BIO_UNMAPPED) != 0 ? (void *)bp : bp->bio_data, bp->bio_bcount, SSD_FULL_SIZE, (bp->bio_cmd == BIO_READ) ? softc->timeout_info[SA_TIMEOUT_READ] : softc->timeout_info[SA_TIMEOUT_WRITE]); start_ccb->ccb_h.ccb_pflags &= ~SA_POSITION_UPDATED; start_ccb->ccb_h.ccb_bp = bp; bp = bioq_first(&softc->bio_queue); xpt_action(start_ccb); } if (bp != NULL) { /* Have more work to do, so ensure we stay scheduled */ xpt_schedule(periph, CAM_PRIORITY_NORMAL); } break; } case SA_STATE_PROBE: { int num_opcodes; size_t alloc_len; uint8_t *params; /* * This is an arbitrary number. An IBM LTO-6 drive reports * 67 entries, and an IBM LTO-9 drive reports 71 entries. * There can theoretically be more than 256 because * service actions of a particular opcode are reported * separately, but we're far enough ahead of the practical * number here that we don't need to implement logic to * retry if we don't get all the timeout descriptors. */ num_opcodes = 256; alloc_len = num_opcodes * (sizeof(struct scsi_report_supported_opcodes_descr) + sizeof(struct scsi_report_supported_opcodes_timeout)); params = malloc(alloc_len, M_SCSISA, M_NOWAIT| M_ZERO); if (params == NULL) { /* * If this happens, go with default * timeouts and announce the drive. */ saloadtotunables(softc); softc->state = SA_STATE_NORMAL; xpt_announce_periph(periph, NULL); xpt_announce_quirks(periph, softc->quirks, SA_QUIRK_BIT_STRING); xpt_release_ccb(start_ccb); cam_periph_release_locked(periph); return; } scsi_report_supported_opcodes(&start_ccb->csio, /*retries*/ 3, /*cbfcnp*/ sadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*options*/ RSO_RCTD, /*req_opcode*/ 0, /*req_service_action*/ 0, /*data_ptr*/ params, /*dxfer_len*/ alloc_len, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_TUR]); xpt_action(start_ccb); break; } case SA_STATE_ABNORMAL: default: panic("state 0x%x in sastart", softc->state); break; } } static void sadone(struct cam_periph *periph, union ccb *done_ccb) { struct sa_softc *softc; struct ccb_scsiio *csio; struct bio *bp; int error; softc = (struct sa_softc *)periph->softc; csio = &done_ccb->csio; error = 0; if (softc->state == SA_STATE_NORMAL) { softc->dsreg = MTIO_DSREG_REST; bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if ((error = saerror(done_ccb, 0, 0)) == ERESTART) { /* * A retry was scheduled, so just return. */ return; } } } else if (softc->state == SA_STATE_PROBE) { bp = NULL; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { /* * Note that on probe, we just run through * cam_periph_error(), since saerror() has a lot of * special handling for I/O errors. We don't need * that to get the opcodes. We either succeed * after a retry or two, or give up. We don't * print sense, we don't need to worry the user if * this drive doesn't support timeout descriptors. */ if ((error = cam_periph_error(done_ccb, 0, SF_NO_PRINT)) == ERESTART) { /* * A retry was scheduled, so just return. */ return; } else if (error != 0) { /* We failed to get opcodes. Give up. */ saloadtotunables(softc); softc->state = SA_STATE_NORMAL; xpt_release_ccb(done_ccb); xpt_announce_periph(periph, NULL); xpt_announce_quirks(periph, softc->quirks, SA_QUIRK_BIT_STRING); cam_periph_release_locked(periph); return; } } /* * At this point, we have succeeded, so load the timeouts * and go into the normal state. */ softc->state = SA_STATE_NORMAL; /* * First, load the timeouts we got from the drive. */ saloadtimeouts(softc, done_ccb); /* * Next, overwrite the timeouts from the drive with any * loader tunables that the user set. */ saloadtotunables(softc); xpt_release_ccb(done_ccb); xpt_announce_periph(periph, NULL); xpt_announce_quirks(periph, softc->quirks, SA_QUIRK_BIT_STRING); cam_periph_release_locked(periph); return; } else { panic("state 0x%x in sadone", softc->state); } if (error == EIO) { /* * Catastrophic error. Mark the tape as frozen * (we no longer know tape position). * * Return all queued I/O with EIO, and unfreeze * our queue so that future transactions that * attempt to fix this problem can get to the * device. * */ softc->flags |= SA_FLAG_TAPE_FROZEN; bioq_flush(&softc->bio_queue, NULL, EIO); } if (error != 0) { bp->bio_resid = bp->bio_bcount; bp->bio_error = error; bp->bio_flags |= BIO_ERROR; /* * In the error case, position is updated in saerror. */ } else { bp->bio_resid = csio->resid; bp->bio_error = 0; if (csio->resid != 0) { bp->bio_flags |= BIO_ERROR; } if (bp->bio_cmd == BIO_WRITE) { softc->flags |= SA_FLAG_TAPE_WRITTEN; softc->filemarks = 0; } if (!(csio->ccb_h.ccb_pflags & SA_POSITION_UPDATED) && (softc->blkno != (daddr_t) -1)) { if ((softc->flags & SA_FLAG_FIXED) != 0) { u_int32_t l; if (softc->blk_shift != 0) { l = bp->bio_bcount >> softc->blk_shift; } else { l = bp->bio_bcount / softc->media_blksize; } softc->blkno += (daddr_t) l; } else { softc->blkno++; } } } /* * If we had an error (immediate or pending), * release the device queue now. */ if (error || (softc->flags & SA_FLAG_ERR_PENDING)) cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0); if (error || bp->bio_resid) { CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("error %d resid %ld count %ld\n", error, bp->bio_resid, bp->bio_bcount)); } biofinish(bp, softc->device_stats, 0); xpt_release_ccb(done_ccb); } /* * Mount the tape (make sure it's ready for I/O). */ static int samount(struct cam_periph *periph, int oflags, struct cdev *dev) { struct sa_softc *softc; union ccb *ccb; int error; /* * oflags can be checked for 'kind' of open (read-only check) - later * dev can be checked for a control-mode or compression open - later */ UNUSED_PARAMETER(oflags); UNUSED_PARAMETER(dev); softc = (struct sa_softc *)periph->softc; /* * This should determine if something has happened since the last * open/mount that would invalidate the mount. We do *not* want * to retry this command- we just want the status. But we only * do this if we're mounted already- if we're not mounted, * we don't care about the unit read state and can instead use * this opportunity to attempt to reserve the tape unit. */ if (softc->flags & SA_FLAG_TAPE_MOUNTED) { ccb = cam_periph_getccb(periph, 1); scsi_test_unit_ready(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_TUR]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); if (error == ENXIO) { softc->flags &= ~SA_FLAG_TAPE_MOUNTED; scsi_test_unit_ready(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_TUR]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); } else if (error) { /* * We don't need to freeze the tape because we * will now attempt to rewind/load it. */ softc->flags &= ~SA_FLAG_TAPE_MOUNTED; if (CAM_DEBUGGED(periph->path, CAM_DEBUG_INFO)) { xpt_print(periph->path, "error %d on TUR in samount\n", error); } } } else { error = sareservereleaseunit(periph, TRUE); if (error) { return (error); } ccb = cam_periph_getccb(periph, 1); scsi_test_unit_ready(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_TUR]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); } if ((softc->flags & SA_FLAG_TAPE_MOUNTED) == 0) { struct scsi_read_block_limits_data *rblim = NULL; int comp_enabled, comp_supported; u_int8_t write_protect, guessing = 0; /* * Clear out old state. */ softc->flags &= ~(SA_FLAG_TAPE_WP|SA_FLAG_TAPE_WRITTEN| SA_FLAG_ERR_PENDING|SA_FLAG_COMPRESSION); softc->filemarks = 0; /* * *Very* first off, make sure we're loaded to BOT. */ scsi_load_unload(&ccb->csio, 2, NULL, MSG_SIMPLE_Q_TAG, FALSE, FALSE, FALSE, 1, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_LOAD]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); /* * In case this doesn't work, do a REWIND instead */ if (error) { scsi_rewind(&ccb->csio, 2, NULL, MSG_SIMPLE_Q_TAG, FALSE, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_REWIND]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); } if (error) { xpt_release_ccb(ccb); goto exit; } /* * Do a dummy test read to force access to the * media so that the drive will really know what's * there. We actually don't really care what the * blocksize on tape is and don't expect to really * read a full record. */ rblim = (struct scsi_read_block_limits_data *) malloc(8192, M_SCSISA, M_NOWAIT); if (rblim == NULL) { xpt_print(periph->path, "no memory for test read\n"); xpt_release_ccb(ccb); error = ENOMEM; goto exit; } if ((softc->quirks & SA_QUIRK_NODREAD) == 0) { scsi_sa_read_write(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, 1, FALSE, 0, 8192, (void *) rblim, 8192, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_READ]); (void) cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); scsi_rewind(&ccb->csio, 1, NULL, MSG_SIMPLE_Q_TAG, FALSE, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_REWIND]); error = cam_periph_runccb(ccb, saerror, CAM_RETRY_SELTO, SF_NO_PRINT | SF_RETRY_UA, softc->device_stats); if (error) { xpt_print(periph->path, "unable to rewind after test read\n"); xpt_release_ccb(ccb); goto exit; } } /* * Next off, determine block limits. */ scsi_read_block_limits(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, rblim, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_READ_BLOCK_LIMITS]); error = cam_periph_runccb(ccb, saerror, CAM_RETRY_SELTO, SF_NO_PRINT | SF_RETRY_UA, softc->device_stats); xpt_release_ccb(ccb); if (error != 0) { /* * If it's less than SCSI-2, READ BLOCK LIMITS is not * a MANDATORY command. Anyway- it doesn't matter- * we can proceed anyway. */ softc->blk_gran = 0; softc->max_blk = ~0; softc->min_blk = 0; } else { if (softc->scsi_rev >= SCSI_REV_SPC) { softc->blk_gran = RBL_GRAN(rblim); } else { softc->blk_gran = 0; } /* * We take max_blk == min_blk to mean a default to * fixed mode- but note that whatever we get out of * sagetparams below will actually determine whether * we are actually *in* fixed mode. */ softc->max_blk = scsi_3btoul(rblim->maximum); softc->min_blk = scsi_2btoul(rblim->minimum); } /* * Next, perform a mode sense to determine * current density, blocksize, compression etc. */ error = sagetparams(periph, SA_PARAM_ALL, &softc->media_blksize, &softc->media_density, &softc->media_numblks, &softc->buffer_mode, &write_protect, &softc->speed, &comp_supported, &comp_enabled, &softc->comp_algorithm, NULL, NULL, 0, 0); if (error != 0) { /* * We could work a little harder here. We could * adjust our attempts to get information. It * might be an ancient tape drive. If someone * nudges us, we'll do that. */ goto exit; } /* * If no quirk has determined that this is a device that is * preferred to be in fixed or variable mode, now is the time * to find out. */ if ((softc->quirks & (SA_QUIRK_FIXED|SA_QUIRK_VARIABLE)) == 0) { guessing = 1; /* * This could be expensive to find out. Luckily we * only need to do this once. If we start out in * 'default' mode, try and set ourselves to one * of the densities that would determine a wad * of other stuff. Go from highest to lowest. */ if (softc->media_density == SCSI_DEFAULT_DENSITY) { int i; static u_int8_t ctry[] = { SCSI_DENSITY_HALFINCH_PE, SCSI_DENSITY_HALFINCH_6250C, SCSI_DENSITY_HALFINCH_6250, SCSI_DENSITY_HALFINCH_1600, SCSI_DENSITY_HALFINCH_800, SCSI_DENSITY_QIC_4GB, SCSI_DENSITY_QIC_2GB, SCSI_DENSITY_QIC_525_320, SCSI_DENSITY_QIC_150, SCSI_DENSITY_QIC_120, SCSI_DENSITY_QIC_24, SCSI_DENSITY_QIC_11_9TRK, SCSI_DENSITY_QIC_11_4TRK, SCSI_DENSITY_QIC_1320, SCSI_DENSITY_QIC_3080, 0 }; for (i = 0; ctry[i]; i++) { error = sasetparams(periph, SA_PARAM_DENSITY, 0, ctry[i], 0, SF_NO_PRINT); if (error == 0) { softc->media_density = ctry[i]; break; } } } switch (softc->media_density) { case SCSI_DENSITY_QIC_11_4TRK: case SCSI_DENSITY_QIC_11_9TRK: case SCSI_DENSITY_QIC_24: case SCSI_DENSITY_QIC_120: case SCSI_DENSITY_QIC_150: case SCSI_DENSITY_QIC_525_320: case SCSI_DENSITY_QIC_1320: case SCSI_DENSITY_QIC_3080: softc->quirks &= ~SA_QUIRK_2FM; softc->quirks |= SA_QUIRK_FIXED|SA_QUIRK_1FM; softc->last_media_blksize = 512; break; case SCSI_DENSITY_QIC_4GB: case SCSI_DENSITY_QIC_2GB: softc->quirks &= ~SA_QUIRK_2FM; softc->quirks |= SA_QUIRK_FIXED|SA_QUIRK_1FM; softc->last_media_blksize = 1024; break; default: softc->last_media_blksize = softc->media_blksize; softc->quirks |= SA_QUIRK_VARIABLE; break; } } /* * If no quirk has determined that this is a device that needs * to have 2 Filemarks at EOD, now is the time to find out. */ if ((softc->quirks & SA_QUIRK_2FM) == 0) { switch (softc->media_density) { case SCSI_DENSITY_HALFINCH_800: case SCSI_DENSITY_HALFINCH_1600: case SCSI_DENSITY_HALFINCH_6250: case SCSI_DENSITY_HALFINCH_6250C: case SCSI_DENSITY_HALFINCH_PE: softc->quirks &= ~SA_QUIRK_1FM; softc->quirks |= SA_QUIRK_2FM; break; default: break; } } /* * Now validate that some info we got makes sense. */ if ((softc->max_blk < softc->media_blksize) || (softc->min_blk > softc->media_blksize && softc->media_blksize)) { xpt_print(periph->path, "BLOCK LIMITS (%d..%d) could not match current " "block settings (%d)- adjusting\n", softc->min_blk, softc->max_blk, softc->media_blksize); softc->max_blk = softc->min_blk = softc->media_blksize; } /* * Now put ourselves into the right frame of mind based * upon quirks... */ tryagain: /* * If we want to be in FIXED mode and our current blocksize * is not equal to our last blocksize (if nonzero), try and * set ourselves to this last blocksize (as the 'preferred' * block size). The initial quirkmatch at registry sets the * initial 'last' blocksize. If, for whatever reason, this * 'last' blocksize is zero, set the blocksize to 512, * or min_blk if that's larger. */ if ((softc->quirks & SA_QUIRK_FIXED) && (softc->quirks & SA_QUIRK_NO_MODESEL) == 0 && (softc->media_blksize != softc->last_media_blksize)) { softc->media_blksize = softc->last_media_blksize; if (softc->media_blksize == 0) { softc->media_blksize = 512; if (softc->media_blksize < softc->min_blk) { softc->media_blksize = softc->min_blk; } } error = sasetparams(periph, SA_PARAM_BLOCKSIZE, softc->media_blksize, 0, 0, SF_NO_PRINT); if (error) { xpt_print(periph->path, "unable to set fixed blocksize to %d\n", softc->media_blksize); goto exit; } } if ((softc->quirks & SA_QUIRK_VARIABLE) && (softc->media_blksize != 0)) { softc->last_media_blksize = softc->media_blksize; softc->media_blksize = 0; error = sasetparams(periph, SA_PARAM_BLOCKSIZE, 0, 0, 0, SF_NO_PRINT); if (error) { /* * If this fails and we were guessing, just * assume that we got it wrong and go try * fixed block mode. Don't even check against * density code at this point. */ if (guessing) { softc->quirks &= ~SA_QUIRK_VARIABLE; softc->quirks |= SA_QUIRK_FIXED; if (softc->last_media_blksize == 0) softc->last_media_blksize = 512; goto tryagain; } xpt_print(periph->path, "unable to set variable blocksize\n"); goto exit; } } /* * Now that we have the current block size, * set up some parameters for sastart's usage. */ if (softc->media_blksize) { softc->flags |= SA_FLAG_FIXED; if (powerof2(softc->media_blksize)) { softc->blk_shift = ffs(softc->media_blksize) - 1; softc->blk_mask = softc->media_blksize - 1; } else { softc->blk_mask = ~0; softc->blk_shift = 0; } } else { /* * The SCSI-3 spec allows 0 to mean "unspecified". * The SCSI-1 spec allows 0 to mean 'infinite'. * * Either works here. */ if (softc->max_blk == 0) { softc->max_blk = ~0; } softc->blk_shift = 0; if (softc->blk_gran != 0) { softc->blk_mask = softc->blk_gran - 1; } else { softc->blk_mask = 0; } } if (write_protect) softc->flags |= SA_FLAG_TAPE_WP; if (comp_supported) { if (softc->saved_comp_algorithm == 0) softc->saved_comp_algorithm = softc->comp_algorithm; softc->flags |= SA_FLAG_COMP_SUPP; if (comp_enabled) softc->flags |= SA_FLAG_COMP_ENABLED; } else softc->flags |= SA_FLAG_COMP_UNSUPP; if ((softc->buffer_mode == SMH_SA_BUF_MODE_NOBUF) && (softc->quirks & SA_QUIRK_NO_MODESEL) == 0) { error = sasetparams(periph, SA_PARAM_BUFF_MODE, 0, 0, 0, SF_NO_PRINT); if (error == 0) { softc->buffer_mode = SMH_SA_BUF_MODE_SIBUF; } else { xpt_print(periph->path, "unable to set buffered mode\n"); } error = 0; /* not an error */ } if (error == 0) { softc->flags |= SA_FLAG_TAPE_MOUNTED; } exit: if (rblim != NULL) free(rblim, M_SCSISA); if (error != 0) { softc->dsreg = MTIO_DSREG_NIL; } else { softc->fileno = softc->blkno = 0; softc->rep_fileno = softc->rep_blkno = -1; softc->partition = 0; softc->dsreg = MTIO_DSREG_REST; } #ifdef SA_1FM_AT_EOD if ((softc->quirks & SA_QUIRK_2FM) == 0) softc->quirks |= SA_QUIRK_1FM; #else if ((softc->quirks & SA_QUIRK_1FM) == 0) softc->quirks |= SA_QUIRK_2FM; #endif } else xpt_release_ccb(ccb); /* * If we return an error, we're not mounted any more, * so release any device reservation. */ if (error != 0) { (void) sareservereleaseunit(periph, FALSE); } else { /* * Clear I/O residual. */ softc->last_io_resid = 0; softc->last_ctl_resid = 0; } return (error); } /* * How many filemarks do we need to write if we were to terminate the * tape session right now? Note that this can be a negative number */ static int samarkswanted(struct cam_periph *periph) { int markswanted; struct sa_softc *softc; softc = (struct sa_softc *)periph->softc; markswanted = 0; if ((softc->flags & SA_FLAG_TAPE_WRITTEN) != 0) { markswanted++; if (softc->quirks & SA_QUIRK_2FM) markswanted++; } markswanted -= softc->filemarks; return (markswanted); } static int sacheckeod(struct cam_periph *periph) { int error; int markswanted; markswanted = samarkswanted(periph); if (markswanted > 0) { error = sawritefilemarks(periph, markswanted, FALSE, FALSE); } else { error = 0; } return (error); } static int saerror(union ccb *ccb, u_int32_t cflgs, u_int32_t sflgs) { static const char *toobig = "%d-byte tape record bigger than supplied buffer\n"; struct cam_periph *periph; struct sa_softc *softc; struct ccb_scsiio *csio; struct scsi_sense_data *sense; uint64_t resid = 0; int64_t info = 0; cam_status status; int error_code, sense_key, asc, ascq, error, aqvalid, stream_valid; int sense_len; uint8_t stream_bits; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct sa_softc *)periph->softc; csio = &ccb->csio; sense = &csio->sense_data; sense_len = csio->sense_len - csio->sense_resid; scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); if (asc != -1 && ascq != -1) aqvalid = 1; else aqvalid = 0; if (scsi_get_stream_info(sense, sense_len, NULL, &stream_bits) == 0) stream_valid = 1; else stream_valid = 0; error = 0; status = csio->ccb_h.status & CAM_STATUS_MASK; /* * Calculate/latch up, any residuals... We do this in a funny 2-step * so we can print stuff here if we have CAM_DEBUG enabled for this * unit. */ if (status == CAM_SCSI_STATUS_ERROR) { if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &resid, &info) == 0) { if ((softc->flags & SA_FLAG_FIXED) != 0) resid *= softc->media_blksize; } else { resid = csio->dxfer_len; info = resid; if ((softc->flags & SA_FLAG_FIXED) != 0) { if (softc->media_blksize) info /= softc->media_blksize; } } if (csio->cdb_io.cdb_bytes[0] == SA_READ || csio->cdb_io.cdb_bytes[0] == SA_WRITE) { bcopy((caddr_t) sense, (caddr_t) &softc->last_io_sense, sizeof (struct scsi_sense_data)); bcopy(csio->cdb_io.cdb_bytes, softc->last_io_cdb, (int) csio->cdb_len); softc->last_io_resid = resid; softc->last_resid_was_io = 1; } else { bcopy((caddr_t) sense, (caddr_t) &softc->last_ctl_sense, sizeof (struct scsi_sense_data)); bcopy(csio->cdb_io.cdb_bytes, softc->last_ctl_cdb, (int) csio->cdb_len); softc->last_ctl_resid = resid; softc->last_resid_was_io = 0; } CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("CDB[0]=0x%x Key 0x%x " "ASC/ASCQ 0x%x/0x%x CAM STATUS 0x%x flags 0x%x resid %jd " "dxfer_len %d\n", csio->cdb_io.cdb_bytes[0] & 0xff, sense_key, asc, ascq, status, (stream_valid) ? stream_bits : 0, (intmax_t)resid, csio->dxfer_len)); } else { CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Cam Status 0x%x\n", status)); } switch (status) { case CAM_REQ_CMP: return (0); case CAM_SCSI_STATUS_ERROR: /* * If a read/write command, we handle it here. */ if (csio->cdb_io.cdb_bytes[0] == SA_READ || csio->cdb_io.cdb_bytes[0] == SA_WRITE) { break; } /* * If this was just EOM/EOP, Filemark, Setmark, ILI or * PEW detected on a non read/write command, we assume * it's not an error and propagate the residual and return. */ if ((aqvalid && asc == 0 && ((ascq > 0 && ascq <= 5) || (ascq == 0x07))) || (aqvalid == 0 && sense_key == SSD_KEY_NO_SENSE)) { csio->resid = resid; QFRLS(ccb); return (0); } /* * Otherwise, we let the common code handle this. */ return (cam_periph_error(ccb, cflgs, sflgs)); /* * XXX: To Be Fixed * We cannot depend upon CAM honoring retry counts for these. */ case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: if (ccb->ccb_h.retry_count <= 0) { return (EIO); } /* FALLTHROUGH */ default: return (cam_periph_error(ccb, cflgs, sflgs)); } /* * Handle filemark, end of tape, mismatched record sizes.... * From this point out, we're only handling read/write cases. * Handle writes && reads differently. */ if (csio->cdb_io.cdb_bytes[0] == SA_WRITE) { if (sense_key == SSD_KEY_VOLUME_OVERFLOW) { csio->resid = resid; error = ENOSPC; } else if ((stream_valid != 0) && (stream_bits & SSD_EOM)) { softc->flags |= SA_FLAG_EOM_PENDING; /* * Grotesque as it seems, the few times * I've actually seen a non-zero resid, * the tape drive actually lied and had * written all the data!. */ csio->resid = 0; } } else { csio->resid = resid; if (sense_key == SSD_KEY_BLANK_CHECK) { if (softc->quirks & SA_QUIRK_1FM) { error = 0; softc->flags |= SA_FLAG_EOM_PENDING; } else { error = EIO; } } else if ((stream_valid != 0) && (stream_bits & SSD_FILEMARK)){ if (softc->flags & SA_FLAG_FIXED) { error = -1; softc->flags |= SA_FLAG_EOF_PENDING; } /* * Unconditionally, if we detected a filemark on a read, * mark that we've run moved a file ahead. */ if (softc->fileno != (daddr_t) -1) { softc->fileno++; softc->blkno = 0; csio->ccb_h.ccb_pflags |= SA_POSITION_UPDATED; } } } /* * Incorrect Length usually applies to read, but can apply to writes. */ if (error == 0 && (stream_valid != 0) && (stream_bits & SSD_ILI)) { if (info < 0) { xpt_print(csio->ccb_h.path, toobig, csio->dxfer_len - info); csio->resid = csio->dxfer_len; error = EIO; } else { csio->resid = resid; if (softc->flags & SA_FLAG_FIXED) { softc->flags |= SA_FLAG_EIO_PENDING; } /* * Bump the block number if we hadn't seen a filemark. * Do this independent of errors (we've moved anyway). */ if ((stream_valid == 0) || (stream_bits & SSD_FILEMARK) == 0) { if (softc->blkno != (daddr_t) -1) { softc->blkno++; csio->ccb_h.ccb_pflags |= SA_POSITION_UPDATED; } } } } if (error <= 0) { /* * Unfreeze the queue if frozen as we're not returning anything * to our waiters that would indicate an I/O error has occurred * (yet). */ QFRLS(ccb); error = 0; } return (error); } static int sagetparams(struct cam_periph *periph, sa_params params_to_get, u_int32_t *blocksize, u_int8_t *density, u_int32_t *numblocks, int *buff_mode, u_int8_t *write_protect, u_int8_t *speed, int *comp_supported, int *comp_enabled, u_int32_t *comp_algorithm, sa_comp_t *tcs, struct scsi_control_data_prot_subpage *prot_page, int dp_size, int prot_changeable) { union ccb *ccb; void *mode_buffer; struct scsi_mode_header_6 *mode_hdr; struct scsi_mode_blk_desc *mode_blk; int mode_buffer_len; struct sa_softc *softc; u_int8_t cpage; int error; cam_status status; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); if (softc->quirks & SA_QUIRK_NO_CPAGE) cpage = SA_DEVICE_CONFIGURATION_PAGE; else cpage = SA_DATA_COMPRESSION_PAGE; retry: mode_buffer_len = sizeof(*mode_hdr) + sizeof(*mode_blk); if (params_to_get & SA_PARAM_COMPRESSION) { if (softc->quirks & SA_QUIRK_NOCOMP) { *comp_supported = FALSE; params_to_get &= ~SA_PARAM_COMPRESSION; } else mode_buffer_len += sizeof (sa_comp_t); } /* XXX Fix M_NOWAIT */ mode_buffer = malloc(mode_buffer_len, M_SCSISA, M_NOWAIT | M_ZERO); if (mode_buffer == NULL) { xpt_release_ccb(ccb); return (ENOMEM); } mode_hdr = (struct scsi_mode_header_6 *)mode_buffer; mode_blk = (struct scsi_mode_blk_desc *)&mode_hdr[1]; /* it is safe to retry this */ scsi_mode_sense(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, FALSE, SMS_PAGE_CTRL_CURRENT, (params_to_get & SA_PARAM_COMPRESSION) ? cpage : SMS_VENDOR_SPECIFIC_PAGE, mode_buffer, mode_buffer_len, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_MODE_SENSE]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); status = ccb->ccb_h.status & CAM_STATUS_MASK; if (error == EINVAL && (params_to_get & SA_PARAM_COMPRESSION) != 0) { /* * Hmm. Let's see if we can try another page... * If we've already done that, give up on compression * for this device and remember this for the future * and attempt the request without asking for compression * info. */ if (cpage == SA_DATA_COMPRESSION_PAGE) { cpage = SA_DEVICE_CONFIGURATION_PAGE; goto retry; } softc->quirks |= SA_QUIRK_NOCOMP; free(mode_buffer, M_SCSISA); goto retry; } else if (status == CAM_SCSI_STATUS_ERROR) { /* Tell the user about the fatal error. */ scsi_sense_print(&ccb->csio); goto sagetparamsexit; } /* * If the user only wants the compression information, and * the device doesn't send back the block descriptor, it's * no big deal. If the user wants more than just * compression, though, and the device doesn't pass back the * block descriptor, we need to send another mode sense to * get the block descriptor. */ if ((mode_hdr->blk_desc_len == 0) && (params_to_get & SA_PARAM_COMPRESSION) && (params_to_get & ~(SA_PARAM_COMPRESSION))) { /* * Decrease the mode buffer length by the size of * the compression page, to make sure the data * there doesn't get overwritten. */ mode_buffer_len -= sizeof (sa_comp_t); /* * Now move the compression page that we presumably * got back down the memory chunk a little bit so * it doesn't get spammed. */ bcopy(&mode_hdr[0], &mode_hdr[1], sizeof (sa_comp_t)); bzero(&mode_hdr[0], sizeof (mode_hdr[0])); /* * Now, we issue another mode sense and just ask * for the block descriptor, etc. */ scsi_mode_sense(&ccb->csio, 2, NULL, MSG_SIMPLE_Q_TAG, FALSE, SMS_PAGE_CTRL_CURRENT, SMS_VENDOR_SPECIFIC_PAGE, mode_buffer, mode_buffer_len, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_MODE_SENSE]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); if (error != 0) goto sagetparamsexit; } if (params_to_get & SA_PARAM_BLOCKSIZE) *blocksize = scsi_3btoul(mode_blk->blklen); if (params_to_get & SA_PARAM_NUMBLOCKS) *numblocks = scsi_3btoul(mode_blk->nblocks); if (params_to_get & SA_PARAM_BUFF_MODE) *buff_mode = mode_hdr->dev_spec & SMH_SA_BUF_MODE_MASK; if (params_to_get & SA_PARAM_DENSITY) *density = mode_blk->density; if (params_to_get & SA_PARAM_WP) *write_protect = (mode_hdr->dev_spec & SMH_SA_WP)? TRUE : FALSE; if (params_to_get & SA_PARAM_SPEED) *speed = mode_hdr->dev_spec & SMH_SA_SPEED_MASK; if (params_to_get & SA_PARAM_COMPRESSION) { sa_comp_t *ntcs = (sa_comp_t *) &mode_blk[1]; if (cpage == SA_DATA_COMPRESSION_PAGE) { struct scsi_data_compression_page *cp = &ntcs->dcomp; *comp_supported = (cp->dce_and_dcc & SA_DCP_DCC)? TRUE : FALSE; *comp_enabled = (cp->dce_and_dcc & SA_DCP_DCE)? TRUE : FALSE; *comp_algorithm = scsi_4btoul(cp->comp_algorithm); } else { struct scsi_dev_conf_page *cp = &ntcs->dconf; /* * We don't really know whether this device supports * Data Compression if the algorithm field is * zero. Just say we do. */ *comp_supported = TRUE; *comp_enabled = (cp->sel_comp_alg != SA_COMP_NONE)? TRUE : FALSE; *comp_algorithm = cp->sel_comp_alg; } if (tcs != NULL) bcopy(ntcs, tcs, sizeof (sa_comp_t)); } if ((params_to_get & SA_PARAM_DENSITY_EXT) && (softc->scsi_rev >= SCSI_REV_SPC)) { int i; for (i = 0; i < SA_DENSITY_TYPES; i++) { scsi_report_density_support(&ccb->csio, /*retries*/ 1, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*media*/ softc->density_type_bits[i] & SRDS_MEDIA, /*medium_type*/ softc->density_type_bits[i] & SRDS_MEDIUM_TYPE, /*data_ptr*/ softc->density_info[i], /*length*/ sizeof(softc->density_info[i]), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_REP_DENSITY]); error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); status = ccb->ccb_h.status & CAM_STATUS_MASK; /* * Some tape drives won't support this command at * all, but hopefully we'll minimize that with the * check for SPC or greater support above. If they * don't support the default report (neither the * MEDIA or MEDIUM_TYPE bits set), then there is * really no point in continuing on to look for * other reports. */ if ((error != 0) || (status != CAM_REQ_CMP)) { error = 0; softc->density_info_valid[i] = 0; if (softc->density_type_bits[i] == 0) break; else continue; } softc->density_info_valid[i] = ccb->csio.dxfer_len - ccb->csio.resid; } } /* * Get logical block protection parameters if the drive supports it. */ if ((params_to_get & SA_PARAM_LBP) && (softc->flags & SA_FLAG_PROTECT_SUPP)) { struct scsi_mode_header_10 *mode10_hdr; struct scsi_control_data_prot_subpage *dp_page; struct scsi_mode_sense_10 *cdb; struct sa_prot_state *prot; int dp_len, returned_len; if (dp_size == 0) dp_size = sizeof(*dp_page); dp_len = sizeof(*mode10_hdr) + dp_size; mode10_hdr = malloc(dp_len, M_SCSISA, M_NOWAIT | M_ZERO); if (mode10_hdr == NULL) { error = ENOMEM; goto sagetparamsexit; } scsi_mode_sense_len(&ccb->csio, /*retries*/ 5, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*dbd*/ TRUE, /*page_code*/ (prot_changeable == 0) ? SMS_PAGE_CTRL_CURRENT : SMS_PAGE_CTRL_CHANGEABLE, /*page*/ SMS_CONTROL_MODE_PAGE, /*param_buf*/ (uint8_t *)mode10_hdr, /*param_len*/ dp_len, /*minimum_cmd_size*/ 10, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_MODE_SENSE]); /* * XXX KDM we need to be able to set the subpage in the * fill function. */ cdb = (struct scsi_mode_sense_10 *)ccb->csio.cdb_io.cdb_bytes; cdb->subpage = SA_CTRL_DP_SUBPAGE_CODE; error = cam_periph_runccb(ccb, saerror, 0, SF_NO_PRINT, softc->device_stats); if (error != 0) { free(mode10_hdr, M_SCSISA); goto sagetparamsexit; } status = ccb->ccb_h.status & CAM_STATUS_MASK; if (status != CAM_REQ_CMP) { error = EINVAL; free(mode10_hdr, M_SCSISA); goto sagetparamsexit; } /* * The returned data length at least has to be long enough * for us to look at length in the mode page header. */ returned_len = ccb->csio.dxfer_len - ccb->csio.resid; if (returned_len < sizeof(mode10_hdr->data_length)) { error = EINVAL; free(mode10_hdr, M_SCSISA); goto sagetparamsexit; } returned_len = min(returned_len, sizeof(mode10_hdr->data_length) + scsi_2btoul(mode10_hdr->data_length)); dp_page = (struct scsi_control_data_prot_subpage *) &mode10_hdr[1]; /* * We also have to have enough data to include the prot_bits * in the subpage. */ if (returned_len < (sizeof(*mode10_hdr) + __offsetof(struct scsi_control_data_prot_subpage, prot_bits) + sizeof(dp_page->prot_bits))) { error = EINVAL; free(mode10_hdr, M_SCSISA); goto sagetparamsexit; } prot = &softc->prot_info.cur_prot_state; prot->prot_method = dp_page->prot_method; prot->pi_length = dp_page->pi_length & SA_CTRL_DP_PI_LENGTH_MASK; prot->lbp_w = (dp_page->prot_bits & SA_CTRL_DP_LBP_W) ? 1 :0; prot->lbp_r = (dp_page->prot_bits & SA_CTRL_DP_LBP_R) ? 1 :0; prot->rbdp = (dp_page->prot_bits & SA_CTRL_DP_RBDP) ? 1 :0; prot->initialized = 1; if (prot_page != NULL) bcopy(dp_page, prot_page, min(sizeof(*prot_page), sizeof(*dp_page))); free(mode10_hdr, M_SCSISA); } if (CAM_DEBUGGED(periph->path, CAM_DEBUG_INFO)) { int idx; char *xyz = mode_buffer; xpt_print_path(periph->path); printf("Mode Sense Data="); for (idx = 0; idx < mode_buffer_len; idx++) printf(" 0x%02x", xyz[idx] & 0xff); printf("\n"); } sagetparamsexit: xpt_release_ccb(ccb); free(mode_buffer, M_SCSISA); return (error); } /* * Set protection information to the pending protection information stored * in the softc. */ static int sasetprot(struct cam_periph *periph, struct sa_prot_state *new_prot) { struct sa_softc *softc; struct scsi_control_data_prot_subpage *dp_page, *dp_changeable; struct scsi_mode_header_10 *mode10_hdr, *mode10_changeable; union ccb *ccb; uint8_t current_speed; size_t dp_size, dp_page_length; int dp_len, buff_mode; int error; softc = (struct sa_softc *)periph->softc; mode10_hdr = NULL; mode10_changeable = NULL; ccb = NULL; /* * Start off with the size set to the actual length of the page * that we have defined. */ dp_size = sizeof(*dp_changeable); dp_page_length = dp_size - __offsetof(struct scsi_control_data_prot_subpage, prot_method); retry_length: dp_len = sizeof(*mode10_changeable) + dp_size; mode10_changeable = malloc(dp_len, M_SCSISA, M_NOWAIT | M_ZERO); if (mode10_changeable == NULL) { error = ENOMEM; goto bailout; } dp_changeable = (struct scsi_control_data_prot_subpage *)&mode10_changeable[1]; /* * First get the data protection page changeable parameters mask. * We need to know which parameters the drive supports changing. * We also need to know what the drive claims that its page length * is. The reason is that IBM drives in particular are very picky * about the page length. They want it (the length set in the * page structure itself) to be 28 bytes, and they want the * parameter list length specified in the mode select header to be * 40 bytes. So, to work with IBM drives as well as any other tape * drive, find out what the drive claims the page length is, and * make sure that we match that. */ error = sagetparams(periph, SA_PARAM_SPEED | SA_PARAM_LBP, NULL, NULL, NULL, &buff_mode, NULL, ¤t_speed, NULL, NULL, NULL, NULL, dp_changeable, dp_size, /*prot_changeable*/ 1); if (error != 0) goto bailout; if (scsi_2btoul(dp_changeable->length) > dp_page_length) { dp_page_length = scsi_2btoul(dp_changeable->length); dp_size = dp_page_length + __offsetof(struct scsi_control_data_prot_subpage, prot_method); free(mode10_changeable, M_SCSISA); mode10_changeable = NULL; goto retry_length; } mode10_hdr = malloc(dp_len, M_SCSISA, M_NOWAIT | M_ZERO); if (mode10_hdr == NULL) { error = ENOMEM; goto bailout; } dp_page = (struct scsi_control_data_prot_subpage *)&mode10_hdr[1]; /* * Now grab the actual current settings in the page. */ error = sagetparams(periph, SA_PARAM_SPEED | SA_PARAM_LBP, NULL, NULL, NULL, &buff_mode, NULL, ¤t_speed, NULL, NULL, NULL, NULL, dp_page, dp_size, /*prot_changeable*/ 0); if (error != 0) goto bailout; /* These two fields need to be 0 for MODE SELECT */ scsi_ulto2b(0, mode10_hdr->data_length); mode10_hdr->medium_type = 0; /* We are not including a block descriptor */ scsi_ulto2b(0, mode10_hdr->blk_desc_len); mode10_hdr->dev_spec = current_speed; /* if set, set single-initiator buffering mode */ if (softc->buffer_mode == SMH_SA_BUF_MODE_SIBUF) { mode10_hdr->dev_spec |= SMH_SA_BUF_MODE_SIBUF; } /* * For each field, make sure that the drive allows changing it * before bringing in the user's setting. */ if (dp_changeable->prot_method != 0) dp_page->prot_method = new_prot->prot_method; if (dp_changeable->pi_length & SA_CTRL_DP_PI_LENGTH_MASK) { dp_page->pi_length &= ~SA_CTRL_DP_PI_LENGTH_MASK; dp_page->pi_length |= (new_prot->pi_length & SA_CTRL_DP_PI_LENGTH_MASK); } if (dp_changeable->prot_bits & SA_CTRL_DP_LBP_W) { if (new_prot->lbp_w) dp_page->prot_bits |= SA_CTRL_DP_LBP_W; else dp_page->prot_bits &= ~SA_CTRL_DP_LBP_W; } if (dp_changeable->prot_bits & SA_CTRL_DP_LBP_R) { if (new_prot->lbp_r) dp_page->prot_bits |= SA_CTRL_DP_LBP_R; else dp_page->prot_bits &= ~SA_CTRL_DP_LBP_R; } if (dp_changeable->prot_bits & SA_CTRL_DP_RBDP) { if (new_prot->rbdp) dp_page->prot_bits |= SA_CTRL_DP_RBDP; else dp_page->prot_bits &= ~SA_CTRL_DP_RBDP; } ccb = cam_periph_getccb(periph, 1); scsi_mode_select_len(&ccb->csio, /*retries*/ 5, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*scsi_page_fmt*/ TRUE, /*save_pages*/ FALSE, /*param_buf*/ (uint8_t *)mode10_hdr, /*param_len*/ dp_len, /*minimum_cmd_size*/ 10, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_MODE_SELECT]); error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); if (error != 0) goto bailout; if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = EINVAL; goto bailout; } /* * The operation was successful. We could just copy the settings * the user requested, but just in case the drive ignored some of * our settings, let's ask for status again. */ error = sagetparams(periph, SA_PARAM_SPEED | SA_PARAM_LBP, NULL, NULL, NULL, &buff_mode, NULL, ¤t_speed, NULL, NULL, NULL, NULL, dp_page, dp_size, 0); bailout: if (ccb != NULL) xpt_release_ccb(ccb); free(mode10_hdr, M_SCSISA); free(mode10_changeable, M_SCSISA); return (error); } /* * The purpose of this function is to set one of four different parameters * for a tape drive: * - blocksize * - density * - compression / compression algorithm * - buffering mode * * The assumption is that this will be called from saioctl(), and therefore * from a process context. Thus the waiting malloc calls below. If that * assumption ever changes, the malloc calls should be changed to be * NOWAIT mallocs. * * Any or all of the four parameters may be set when this function is * called. It should handle setting more than one parameter at once. */ static int sasetparams(struct cam_periph *periph, sa_params params_to_set, u_int32_t blocksize, u_int8_t density, u_int32_t calg, u_int32_t sense_flags) { struct sa_softc *softc; u_int32_t current_blocksize; u_int32_t current_calg; u_int8_t current_density; u_int8_t current_speed; int comp_enabled, comp_supported; void *mode_buffer; int mode_buffer_len; struct scsi_mode_header_6 *mode_hdr; struct scsi_mode_blk_desc *mode_blk; sa_comp_t *ccomp, *cpage; int buff_mode; union ccb *ccb = NULL; int error; softc = (struct sa_softc *)periph->softc; ccomp = malloc(sizeof (sa_comp_t), M_SCSISA, M_NOWAIT); if (ccomp == NULL) return (ENOMEM); /* * Since it doesn't make sense to set the number of blocks, or * write protection, we won't try to get the current value. We * always want to get the blocksize, so we can set it back to the * proper value. */ error = sagetparams(periph, params_to_set | SA_PARAM_BLOCKSIZE | SA_PARAM_SPEED, ¤t_blocksize, ¤t_density, NULL, &buff_mode, NULL, ¤t_speed, &comp_supported, &comp_enabled, ¤t_calg, ccomp, NULL, 0, 0); if (error != 0) { free(ccomp, M_SCSISA); return (error); } mode_buffer_len = sizeof(*mode_hdr) + sizeof(*mode_blk); if (params_to_set & SA_PARAM_COMPRESSION) mode_buffer_len += sizeof (sa_comp_t); mode_buffer = malloc(mode_buffer_len, M_SCSISA, M_NOWAIT | M_ZERO); if (mode_buffer == NULL) { free(ccomp, M_SCSISA); return (ENOMEM); } mode_hdr = (struct scsi_mode_header_6 *)mode_buffer; mode_blk = (struct scsi_mode_blk_desc *)&mode_hdr[1]; ccb = cam_periph_getccb(periph, 1); retry: if (params_to_set & SA_PARAM_COMPRESSION) { if (mode_blk) { cpage = (sa_comp_t *)&mode_blk[1]; } else { cpage = (sa_comp_t *)&mode_hdr[1]; } bcopy(ccomp, cpage, sizeof (sa_comp_t)); cpage->hdr.pagecode &= ~0x80; } else cpage = NULL; /* * If the caller wants us to set the blocksize, use the one they * pass in. Otherwise, use the blocksize we got back from the * mode select above. */ if (mode_blk) { if (params_to_set & SA_PARAM_BLOCKSIZE) scsi_ulto3b(blocksize, mode_blk->blklen); else scsi_ulto3b(current_blocksize, mode_blk->blklen); /* * Set density if requested, else preserve old density. * SCSI_SAME_DENSITY only applies to SCSI-2 or better * devices, else density we've latched up in our softc. */ if (params_to_set & SA_PARAM_DENSITY) { mode_blk->density = density; } else if (softc->scsi_rev > SCSI_REV_CCS) { mode_blk->density = SCSI_SAME_DENSITY; } else { mode_blk->density = softc->media_density; } } /* * For mode selects, these two fields must be zero. */ mode_hdr->data_length = 0; mode_hdr->medium_type = 0; /* set the speed to the current value */ mode_hdr->dev_spec = current_speed; /* if set, set single-initiator buffering mode */ if (softc->buffer_mode == SMH_SA_BUF_MODE_SIBUF) { mode_hdr->dev_spec |= SMH_SA_BUF_MODE_SIBUF; } if (mode_blk) mode_hdr->blk_desc_len = sizeof(struct scsi_mode_blk_desc); else mode_hdr->blk_desc_len = 0; /* * First, if the user wants us to set the compression algorithm or * just turn compression on, check to make sure that this drive * supports compression. */ if (params_to_set & SA_PARAM_COMPRESSION) { /* * If the compression algorithm is 0, disable compression. * If the compression algorithm is non-zero, enable * compression and set the compression type to the * specified compression algorithm, unless the algorithm is * MT_COMP_ENABLE. In that case, we look at the * compression algorithm that is currently set and if it is * non-zero, we leave it as-is. If it is zero, and we have * saved a compression algorithm from a time when * compression was enabled before, set the compression to * the saved value. */ switch (ccomp->hdr.pagecode & ~0x80) { case SA_DEVICE_CONFIGURATION_PAGE: { struct scsi_dev_conf_page *dcp = &cpage->dconf; if (calg == 0) { dcp->sel_comp_alg = SA_COMP_NONE; break; } if (calg != MT_COMP_ENABLE) { dcp->sel_comp_alg = calg; } else if (dcp->sel_comp_alg == SA_COMP_NONE && softc->saved_comp_algorithm != 0) { dcp->sel_comp_alg = softc->saved_comp_algorithm; } break; } case SA_DATA_COMPRESSION_PAGE: if (ccomp->dcomp.dce_and_dcc & SA_DCP_DCC) { struct scsi_data_compression_page *dcp = &cpage->dcomp; if (calg == 0) { /* * Disable compression, but leave the * decompression and the capability bit * alone. */ dcp->dce_and_dcc = SA_DCP_DCC; dcp->dde_and_red |= SA_DCP_DDE; break; } /* enable compression && decompression */ dcp->dce_and_dcc = SA_DCP_DCE | SA_DCP_DCC; dcp->dde_and_red |= SA_DCP_DDE; /* * If there, use compression algorithm from caller. * Otherwise, if there's a saved compression algorithm * and there is no current algorithm, use the saved * algorithm. Else parrot back what we got and hope * for the best. */ if (calg != MT_COMP_ENABLE) { scsi_ulto4b(calg, dcp->comp_algorithm); scsi_ulto4b(calg, dcp->decomp_algorithm); } else if (scsi_4btoul(dcp->comp_algorithm) == 0 && softc->saved_comp_algorithm != 0) { scsi_ulto4b(softc->saved_comp_algorithm, dcp->comp_algorithm); scsi_ulto4b(softc->saved_comp_algorithm, dcp->decomp_algorithm); } break; } /* * Compression does not appear to be supported- * at least via the DATA COMPRESSION page. It * would be too much to ask us to believe that * the page itself is supported, but incorrectly * reports an ability to manipulate data compression, * so we'll assume that this device doesn't support * compression. We can just fall through for that. */ /* FALLTHROUGH */ default: /* * The drive doesn't seem to support compression, * so turn off the set compression bit. */ params_to_set &= ~SA_PARAM_COMPRESSION; xpt_print(periph->path, "device does not seem to support compression\n"); /* * If that was the only thing the user wanted us to set, * clean up allocated resources and return with * 'operation not supported'. */ if (params_to_set == SA_PARAM_NONE) { free(mode_buffer, M_SCSISA); xpt_release_ccb(ccb); return (ENODEV); } /* * That wasn't the only thing the user wanted us to set. * So, decrease the stated mode buffer length by the * size of the compression mode page. */ mode_buffer_len -= sizeof(sa_comp_t); } } /* It is safe to retry this operation */ scsi_mode_select(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, (params_to_set & SA_PARAM_COMPRESSION)? TRUE : FALSE, FALSE, mode_buffer, mode_buffer_len, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_MODE_SELECT]); error = cam_periph_runccb(ccb, saerror, 0, sense_flags, softc->device_stats); if (CAM_DEBUGGED(periph->path, CAM_DEBUG_INFO)) { int idx; char *xyz = mode_buffer; xpt_print_path(periph->path); printf("Err%d, Mode Select Data=", error); for (idx = 0; idx < mode_buffer_len; idx++) printf(" 0x%02x", xyz[idx] & 0xff); printf("\n"); } if (error) { /* * If we can, try without setting density/blocksize. */ if (mode_blk) { if ((params_to_set & (SA_PARAM_DENSITY|SA_PARAM_BLOCKSIZE)) == 0) { mode_blk = NULL; goto retry; } } else { mode_blk = (struct scsi_mode_blk_desc *)&mode_hdr[1]; cpage = (sa_comp_t *)&mode_blk[1]; } /* * If we were setting the blocksize, and that failed, we * want to set it to its original value. If we weren't * setting the blocksize, we don't want to change it. */ scsi_ulto3b(current_blocksize, mode_blk->blklen); /* * Set density if requested, else preserve old density. * SCSI_SAME_DENSITY only applies to SCSI-2 or better * devices, else density we've latched up in our softc. */ if (params_to_set & SA_PARAM_DENSITY) { mode_blk->density = current_density; } else if (softc->scsi_rev > SCSI_REV_CCS) { mode_blk->density = SCSI_SAME_DENSITY; } else { mode_blk->density = softc->media_density; } if (params_to_set & SA_PARAM_COMPRESSION) bcopy(ccomp, cpage, sizeof (sa_comp_t)); /* * The retry count is the only CCB field that might have been * changed that we care about, so reset it back to 1. */ ccb->ccb_h.retry_count = 1; cam_periph_runccb(ccb, saerror, 0, sense_flags, softc->device_stats); } xpt_release_ccb(ccb); if (ccomp != NULL) free(ccomp, M_SCSISA); if (params_to_set & SA_PARAM_COMPRESSION) { if (error) { softc->flags &= ~SA_FLAG_COMP_ENABLED; /* * Even if we get an error setting compression, * do not say that we don't support it. We could * have been wrong, or it may be media specific. * softc->flags &= ~SA_FLAG_COMP_SUPP; */ softc->saved_comp_algorithm = softc->comp_algorithm; softc->comp_algorithm = 0; } else { softc->flags |= SA_FLAG_COMP_ENABLED; softc->comp_algorithm = calg; } } free(mode_buffer, M_SCSISA); return (error); } static int saextget(struct cdev *dev, struct cam_periph *periph, struct sbuf *sb, struct mtextget *g) { int indent, error; char tmpstr[80]; struct sa_softc *softc; int tmpint; uint32_t maxio_tmp; struct ccb_getdev cgd; softc = (struct sa_softc *)periph->softc; error = 0; error = sagetparams_common(dev, periph); if (error) goto extget_bailout; if (!SA_IS_CTRL(dev) && !softc->open_pending_mount) sagetpos(periph); indent = 0; SASBADDNODE(sb, indent, mtextget); /* * Basic CAM peripheral information. */ SASBADDVARSTR(sb, indent, periph->periph_name, %s, periph_name, strlen(periph->periph_name) + 1); SASBADDUINT(sb, indent, periph->unit_number, %u, unit_number); memset(&cgd, 0, sizeof(cgd)); xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if ((cgd.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { g->status = MT_EXT_GET_ERROR; snprintf(g->error_str, sizeof(g->error_str), "Error %#x returned for XPT_GDEV_TYPE CCB", cgd.ccb_h.status); goto extget_bailout; } cam_strvis(tmpstr, cgd.inq_data.vendor, sizeof(cgd.inq_data.vendor), sizeof(tmpstr)); SASBADDVARSTRDESC(sb, indent, tmpstr, %s, vendor, sizeof(cgd.inq_data.vendor) + 1, "SCSI Vendor ID"); cam_strvis(tmpstr, cgd.inq_data.product, sizeof(cgd.inq_data.product), sizeof(tmpstr)); SASBADDVARSTRDESC(sb, indent, tmpstr, %s, product, sizeof(cgd.inq_data.product) + 1, "SCSI Product ID"); cam_strvis(tmpstr, cgd.inq_data.revision, sizeof(cgd.inq_data.revision), sizeof(tmpstr)); SASBADDVARSTRDESC(sb, indent, tmpstr, %s, revision, sizeof(cgd.inq_data.revision) + 1, "SCSI Revision"); if (cgd.serial_num_len > 0) { char *tmpstr2; size_t ts2_len; int ts2_malloc; ts2_len = 0; if (cgd.serial_num_len > sizeof(tmpstr)) { ts2_len = cgd.serial_num_len + 1; ts2_malloc = 1; tmpstr2 = malloc(ts2_len, M_SCSISA, M_NOWAIT | M_ZERO); /* * The 80 characters allocated on the stack above * will handle the vast majority of serial numbers. * If we run into one that is larger than that, and * we can't malloc the length without blocking, * bail out with an out of memory error. */ if (tmpstr2 == NULL) { error = ENOMEM; goto extget_bailout; } } else { ts2_len = sizeof(tmpstr); ts2_malloc = 0; tmpstr2 = tmpstr; } cam_strvis(tmpstr2, cgd.serial_num, cgd.serial_num_len, ts2_len); SASBADDVARSTRDESC(sb, indent, tmpstr2, %s, serial_num, (ssize_t)cgd.serial_num_len + 1, "Serial Number"); if (ts2_malloc != 0) free(tmpstr2, M_SCSISA); } else { /* * We return a serial_num element in any case, but it will * be empty if the device has no serial number. */ tmpstr[0] = '\0'; SASBADDVARSTRDESC(sb, indent, tmpstr, %s, serial_num, (ssize_t)0, "Serial Number"); } SASBADDUINTDESC(sb, indent, softc->maxio, %u, maxio, "Maximum I/O size allowed by driver and controller"); SASBADDUINTDESC(sb, indent, softc->cpi_maxio, %u, cpi_maxio, "Maximum I/O size reported by controller"); SASBADDUINTDESC(sb, indent, softc->max_blk, %u, max_blk, "Maximum block size supported by tape drive and media"); SASBADDUINTDESC(sb, indent, softc->min_blk, %u, min_blk, "Minimum block size supported by tape drive and media"); SASBADDUINTDESC(sb, indent, softc->blk_gran, %u, blk_gran, "Block granularity supported by tape drive and media"); maxio_tmp = min(softc->max_blk, softc->maxio); SASBADDUINTDESC(sb, indent, maxio_tmp, %u, max_effective_iosize, "Maximum possible I/O size"); SASBADDINTDESC(sb, indent, softc->flags & SA_FLAG_FIXED ? 1 : 0, %d, fixed_mode, "Set to 1 for fixed block mode, 0 for variable block"); /* * XXX KDM include SIM, bus, target, LUN? */ if (softc->flags & SA_FLAG_COMP_UNSUPP) tmpint = 0; else tmpint = 1; SASBADDINTDESC(sb, indent, tmpint, %d, compression_supported, "Set to 1 if compression is supported, 0 if not"); if (softc->flags & SA_FLAG_COMP_ENABLED) tmpint = 1; else tmpint = 0; SASBADDINTDESC(sb, indent, tmpint, %d, compression_enabled, "Set to 1 if compression is enabled, 0 if not"); SASBADDUINTDESC(sb, indent, softc->comp_algorithm, %u, compression_algorithm, "Numeric compression algorithm"); safillprot(softc, &indent, sb); SASBADDUINTDESC(sb, indent, softc->media_blksize, %u, media_blocksize, "Block size reported by drive or set by user"); SASBADDINTDESC(sb, indent, (intmax_t)softc->fileno, %jd, calculated_fileno, "Calculated file number, -1 if unknown"); SASBADDINTDESC(sb, indent, (intmax_t)softc->blkno, %jd, calculated_rel_blkno, "Calculated block number relative to file, " "set to -1 if unknown"); SASBADDINTDESC(sb, indent, (intmax_t)softc->rep_fileno, %jd, reported_fileno, "File number reported by drive, -1 if unknown"); SASBADDINTDESC(sb, indent, (intmax_t)softc->rep_blkno, %jd, reported_blkno, "Block number relative to BOP/BOT reported by " "drive, -1 if unknown"); SASBADDINTDESC(sb, indent, (intmax_t)softc->partition, %jd, partition, "Current partition number, 0 is the default"); SASBADDINTDESC(sb, indent, softc->bop, %d, bop, "Set to 1 if drive is at the beginning of partition/tape, 0 if " "not, -1 if unknown"); SASBADDINTDESC(sb, indent, softc->eop, %d, eop, "Set to 1 if drive is past early warning, 0 if not, -1 if unknown"); SASBADDINTDESC(sb, indent, softc->bpew, %d, bpew, "Set to 1 if drive is past programmable early warning, 0 if not, " "-1 if unknown"); SASBADDINTDESC(sb, indent, (intmax_t)softc->last_io_resid, %jd, residual, "Residual for the last I/O"); /* * XXX KDM should we send a string with the current driver * status already decoded instead of a numeric value? */ SASBADDINTDESC(sb, indent, softc->dsreg, %d, dsreg, "Current state of the driver"); safilldensitysb(softc, &indent, sb); SASBENDNODE(sb, indent, mtextget); extget_bailout: return (error); } static int saparamget(struct sa_softc *softc, struct sbuf *sb) { int indent; indent = 0; SASBADDNODE(sb, indent, mtparamget); SASBADDINTDESC(sb, indent, softc->sili, %d, sili, "Suppress an error on underlength variable reads"); SASBADDINTDESC(sb, indent, softc->eot_warn, %d, eot_warn, "Return an error to warn that end of tape is approaching"); safillprot(softc, &indent, sb); SASBENDNODE(sb, indent, mtparamget); return (0); } static void saprevent(struct cam_periph *periph, int action) { struct sa_softc *softc; union ccb *ccb; int error, sf; softc = (struct sa_softc *)periph->softc; if ((action == PR_ALLOW) && (softc->flags & SA_FLAG_TAPE_LOCKED) == 0) return; if ((action == PR_PREVENT) && (softc->flags & SA_FLAG_TAPE_LOCKED) != 0) return; /* * We can be quiet about illegal requests. */ if (CAM_DEBUGGED(periph->path, CAM_DEBUG_INFO)) { sf = 0; } else sf = SF_QUIET_IR; ccb = cam_periph_getccb(periph, 1); /* It is safe to retry this operation */ scsi_prevent(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, action, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_PREVENT]); error = cam_periph_runccb(ccb, saerror, 0, sf, softc->device_stats); if (error == 0) { if (action == PR_ALLOW) softc->flags &= ~SA_FLAG_TAPE_LOCKED; else softc->flags |= SA_FLAG_TAPE_LOCKED; } xpt_release_ccb(ccb); } static int sarewind(struct cam_periph *periph) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); /* It is safe to retry this operation */ scsi_rewind(&ccb->csio, 2, NULL, MSG_SIMPLE_Q_TAG, FALSE, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_REWIND]); softc->dsreg = MTIO_DSREG_REW; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); if (error == 0) { softc->partition = softc->fileno = softc->blkno = (daddr_t) 0; softc->rep_fileno = softc->rep_blkno = (daddr_t) 0; } else { softc->fileno = softc->blkno = (daddr_t) -1; softc->partition = (daddr_t) -1; softc->rep_fileno = softc->rep_blkno = (daddr_t) -1; } return (error); } static int saspace(struct cam_periph *periph, int count, scsi_space_code code) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); /* This cannot be retried */ scsi_space(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, code, count, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_SPACE]); /* * Clear residual because we will be using it. */ softc->last_ctl_resid = 0; softc->dsreg = (count < 0)? MTIO_DSREG_REV : MTIO_DSREG_FWD; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); /* * If a spacing operation has failed, we need to invalidate * this mount. * * If the spacing operation was setmarks or to end of recorded data, * we no longer know our relative position. * * If the spacing operations was spacing files in reverse, we * take account of the residual, but still check against less * than zero- if we've gone negative, we must have hit BOT. * * If the spacing operations was spacing records in reverse and * we have a residual, we've either hit BOT or hit a filemark. * In the former case, we know our new record number (0). In * the latter case, we have absolutely no idea what the real * record number is- we've stopped between the end of the last * record in the previous file and the filemark that stopped * our spacing backwards. */ if (error) { softc->fileno = softc->blkno = (daddr_t) -1; softc->rep_blkno = softc->partition = (daddr_t) -1; softc->rep_fileno = (daddr_t) -1; } else if (code == SS_SETMARKS || code == SS_EOD) { softc->fileno = softc->blkno = (daddr_t) -1; } else if (code == SS_FILEMARKS && softc->fileno != (daddr_t) -1) { softc->fileno += (count - softc->last_ctl_resid); if (softc->fileno < 0) /* we must of hit BOT */ softc->fileno = 0; softc->blkno = 0; } else if (code == SS_BLOCKS && softc->blkno != (daddr_t) -1) { softc->blkno += (count - softc->last_ctl_resid); if (count < 0) { if (softc->last_ctl_resid || softc->blkno < 0) { if (softc->fileno == 0) { softc->blkno = 0; } else { softc->blkno = (daddr_t) -1; } } } } if (error == 0) sagetpos(periph); return (error); } static int sawritefilemarks(struct cam_periph *periph, int nmarks, int setmarks, int immed) { union ccb *ccb; struct sa_softc *softc; int error, nwm = 0; softc = (struct sa_softc *)periph->softc; if (softc->open_rdonly) return (EBADF); ccb = cam_periph_getccb(periph, 1); /* * Clear residual because we will be using it. */ softc->last_ctl_resid = 0; softc->dsreg = MTIO_DSREG_FMK; /* this *must* not be retried */ scsi_write_filemarks(&ccb->csio, 0, NULL, MSG_SIMPLE_Q_TAG, immed, setmarks, nmarks, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_WRITE_FILEMARKS]); softc->dsreg = MTIO_DSREG_REST; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); if (error == 0 && nmarks) { struct sa_softc *softc = (struct sa_softc *)periph->softc; nwm = nmarks - softc->last_ctl_resid; softc->filemarks += nwm; } xpt_release_ccb(ccb); /* * Update relative positions (if we're doing that). */ if (error) { softc->fileno = softc->blkno = softc->partition = (daddr_t) -1; } else if (softc->fileno != (daddr_t) -1) { softc->fileno += nwm; softc->blkno = 0; } /* * Ask the tape drive for position information. */ sagetpos(periph); /* * If we got valid position information, since we just wrote a file * mark, we know we're at the file mark and block 0 after that * filemark. */ if (softc->rep_fileno != (daddr_t) -1) { softc->fileno = softc->rep_fileno; softc->blkno = 0; } return (error); } static int sagetpos(struct cam_periph *periph) { union ccb *ccb; struct scsi_tape_position_long_data long_pos; struct sa_softc *softc = (struct sa_softc *)periph->softc; int error; if (softc->quirks & SA_QUIRK_NO_LONG_POS) { softc->rep_fileno = (daddr_t) -1; softc->rep_blkno = (daddr_t) -1; softc->bop = softc->eop = softc->bpew = -1; return (EOPNOTSUPP); } bzero(&long_pos, sizeof(long_pos)); ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_read_position_10(&ccb->csio, /*retries*/ 1, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*service_action*/ SA_RPOS_LONG_FORM, /*data_ptr*/ (uint8_t *)&long_pos, /*length*/ sizeof(long_pos), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_READ_POSITION]); softc->dsreg = MTIO_DSREG_RBSY; error = cam_periph_runccb(ccb, saerror, 0, SF_QUIET_IR, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; if (error == 0) { if (long_pos.flags & SA_RPOS_LONG_MPU) { /* * If the drive doesn't know what file mark it is * on, our calculated filemark isn't going to be * accurate either. */ softc->fileno = (daddr_t) -1; softc->rep_fileno = (daddr_t) -1; } else { softc->fileno = softc->rep_fileno = scsi_8btou64(long_pos.logical_file_num); } if (long_pos.flags & SA_RPOS_LONG_LONU) { softc->partition = (daddr_t) -1; softc->rep_blkno = (daddr_t) -1; /* * If the tape drive doesn't know its block * position, we can't claim to know it either. */ softc->blkno = (daddr_t) -1; } else { softc->partition = scsi_4btoul(long_pos.partition); softc->rep_blkno = scsi_8btou64(long_pos.logical_object_num); } if (long_pos.flags & SA_RPOS_LONG_BOP) softc->bop = 1; else softc->bop = 0; if (long_pos.flags & SA_RPOS_LONG_EOP) softc->eop = 1; else softc->eop = 0; if ((long_pos.flags & SA_RPOS_LONG_BPEW) || (softc->set_pews_status != 0)) { softc->bpew = 1; if (softc->set_pews_status > 0) softc->set_pews_status--; } else softc->bpew = 0; } else if (error == EINVAL) { /* * If this drive returned an invalid-request type error, * then it likely doesn't support the long form report. */ softc->quirks |= SA_QUIRK_NO_LONG_POS; } if (error != 0) { softc->rep_fileno = softc->rep_blkno = (daddr_t) -1; softc->partition = (daddr_t) -1; softc->bop = softc->eop = softc->bpew = -1; } xpt_release_ccb(ccb); return (error); } static int sardpos(struct cam_periph *periph, int hard, u_int32_t *blkptr) { struct scsi_tape_position_data loc; union ccb *ccb; struct sa_softc *softc = (struct sa_softc *)periph->softc; int error; /* * We try and flush any buffered writes here if we were writing * and we're trying to get hardware block position. It eats * up performance substantially, but I'm wary of drive firmware. * * I think that *logical* block position is probably okay- * but hardware block position might have to wait for data * to hit media to be valid. Caveat Emptor. */ if (hard && (softc->flags & SA_FLAG_TAPE_WRITTEN)) { error = sawritefilemarks(periph, 0, 0, 0); if (error && error != EACCES) return (error); } ccb = cam_periph_getccb(periph, 1); scsi_read_position(&ccb->csio, 1, NULL, MSG_SIMPLE_Q_TAG, hard, &loc, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_READ_POSITION]); softc->dsreg = MTIO_DSREG_RBSY; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; if (error == 0) { if (loc.flags & SA_RPOS_UNCERTAIN) { error = EINVAL; /* nothing is certain */ } else { *blkptr = scsi_4btoul(loc.firstblk); } } xpt_release_ccb(ccb); return (error); } static int sasetpos(struct cam_periph *periph, int hard, struct mtlocate *locate_info) { union ccb *ccb; struct sa_softc *softc; int locate16; int immed, cp; int error; /* * We used to try and flush any buffered writes here. * Now we push this onto user applications to either * flush the pending writes themselves (via a zero count * WRITE FILEMARKS command) or they can trust their tape * drive to do this correctly for them. */ softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); cp = locate_info->flags & MT_LOCATE_FLAG_CHANGE_PART ? 1 : 0; immed = locate_info->flags & MT_LOCATE_FLAG_IMMED ? 1 : 0; /* * Determine whether we have to use LOCATE or LOCATE16. The hard * bit is only possible with LOCATE, but the new ioctls do not * allow setting that bit. So we can't get into the situation of * having the hard bit set with a block address that is larger than * 32-bits. */ if (hard != 0) locate16 = 0; else if ((locate_info->dest_type != MT_LOCATE_DEST_OBJECT) || (locate_info->block_address_mode != MT_LOCATE_BAM_IMPLICIT) || (locate_info->logical_id > SA_SPOS_MAX_BLK)) locate16 = 1; else locate16 = 0; if (locate16 != 0) { scsi_locate_16(&ccb->csio, /*retries*/ 1, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*immed*/ immed, /*cp*/ cp, /*dest_type*/ locate_info->dest_type, /*bam*/ locate_info->block_address_mode, /*partition*/ locate_info->partition, /*logical_id*/ locate_info->logical_id, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_LOCATE]); } else { scsi_locate_10(&ccb->csio, /*retries*/ 1, /*cbfcnp*/ NULL, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*immed*/ immed, /*cp*/ cp, /*hard*/ hard, /*partition*/ locate_info->partition, /*block_address*/ locate_info->logical_id, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ softc->timeout_info[SA_TIMEOUT_LOCATE]); } softc->dsreg = MTIO_DSREG_POS; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); /* * We assume the calculated file and block numbers are unknown * unless we have enough information to populate them. */ softc->fileno = softc->blkno = (daddr_t) -1; /* * If the user requested changing the partition and the request * succeeded, note the partition. */ if ((error == 0) && (cp != 0)) softc->partition = locate_info->partition; else softc->partition = (daddr_t) -1; if (error == 0) { switch (locate_info->dest_type) { case MT_LOCATE_DEST_FILE: /* * This is the only case where we can reliably * calculate the file and block numbers. */ softc->fileno = locate_info->logical_id; softc->blkno = 0; break; case MT_LOCATE_DEST_OBJECT: case MT_LOCATE_DEST_SET: case MT_LOCATE_DEST_EOD: default: break; } } /* * Ask the drive for current position information. */ sagetpos(periph); return (error); } static int saretension(struct cam_periph *periph) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); /* It is safe to retry this operation */ scsi_load_unload(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, FALSE, FALSE, TRUE, TRUE, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_LOAD]); softc->dsreg = MTIO_DSREG_TEN; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); if (error == 0) { softc->partition = softc->fileno = softc->blkno = (daddr_t) 0; sagetpos(periph); } else softc->partition = softc->fileno = softc->blkno = (daddr_t) -1; return (error); } static int sareservereleaseunit(struct cam_periph *periph, int reserve) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); /* It is safe to retry this operation */ scsi_reserve_release_unit(&ccb->csio, 2, NULL, MSG_SIMPLE_Q_TAG, FALSE, 0, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_RESERVE], reserve); softc->dsreg = MTIO_DSREG_RBSY; error = cam_periph_runccb(ccb, saerror, 0, SF_RETRY_UA | SF_NO_PRINT, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); /* * If the error was Illegal Request, then the device doesn't support * RESERVE/RELEASE. This is not an error. */ if (error == EINVAL) { error = 0; } return (error); } static int saloadunload(struct cam_periph *periph, int load) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; ccb = cam_periph_getccb(periph, 1); /* It is safe to retry this operation */ scsi_load_unload(&ccb->csio, 5, NULL, MSG_SIMPLE_Q_TAG, FALSE, FALSE, FALSE, load, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_LOAD]); softc->dsreg = (load)? MTIO_DSREG_LD : MTIO_DSREG_UNL; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); if (error || load == 0) { softc->partition = softc->fileno = softc->blkno = (daddr_t) -1; softc->rep_fileno = softc->rep_blkno = (daddr_t) -1; } else if (error == 0) { softc->partition = softc->fileno = softc->blkno = (daddr_t) 0; sagetpos(periph); } return (error); } static int saerase(struct cam_periph *periph, int longerase) { union ccb *ccb; struct sa_softc *softc; int error; softc = (struct sa_softc *)periph->softc; if (softc->open_rdonly) return (EBADF); ccb = cam_periph_getccb(periph, 1); scsi_erase(&ccb->csio, 1, NULL, MSG_SIMPLE_Q_TAG, FALSE, longerase, SSD_FULL_SIZE, softc->timeout_info[SA_TIMEOUT_ERASE]); softc->dsreg = MTIO_DSREG_ZER; error = cam_periph_runccb(ccb, saerror, 0, 0, softc->device_stats); softc->dsreg = MTIO_DSREG_REST; xpt_release_ccb(ccb); return (error); } /* * Fill an sbuf with density data in XML format. This particular macro * works for multi-byte integer fields. * * Note that 1 byte fields aren't supported here. The reason is that the * compiler does not evaluate the sizeof(), and assumes that any of the * sizes are possible for a given field. So passing in a multi-byte * field will result in a warning that the assignment makes an integer * from a pointer without a cast, if there is an assignment in the 1 byte * case. */ #define SAFILLDENSSB(dens_data, sb, indent, field, desc_remain, \ len_to_go, cur_offset, desc){ \ size_t cur_field_len; \ \ cur_field_len = sizeof(dens_data->field); \ if (desc_remain < cur_field_len) { \ len_to_go -= desc_remain; \ cur_offset += desc_remain; \ continue; \ } \ len_to_go -= cur_field_len; \ cur_offset += cur_field_len; \ desc_remain -= cur_field_len; \ \ switch (sizeof(dens_data->field)) { \ case 1: \ KASSERT(1 == 0, ("Programmer error, invalid 1 byte " \ "field width for SAFILLDENSFIELD")); \ break; \ case 2: \ SASBADDUINTDESC(sb, indent, \ scsi_2btoul(dens_data->field), %u, field, desc); \ break; \ case 3: \ SASBADDUINTDESC(sb, indent, \ scsi_3btoul(dens_data->field), %u, field, desc); \ break; \ case 4: \ SASBADDUINTDESC(sb, indent, \ scsi_4btoul(dens_data->field), %u, field, desc); \ break; \ case 8: \ SASBADDUINTDESC(sb, indent, \ (uintmax_t)scsi_8btou64(dens_data->field), %ju, \ field, desc); \ break; \ default: \ break; \ } \ }; /* * Fill an sbuf with density data in XML format. This particular macro * works for strings. */ #define SAFILLDENSSBSTR(dens_data, sb, indent, field, desc_remain, \ len_to_go, cur_offset, desc){ \ size_t cur_field_len; \ char tmpstr[32]; \ \ cur_field_len = sizeof(dens_data->field); \ if (desc_remain < cur_field_len) { \ len_to_go -= desc_remain; \ cur_offset += desc_remain; \ continue; \ } \ len_to_go -= cur_field_len; \ cur_offset += cur_field_len; \ desc_remain -= cur_field_len; \ \ cam_strvis(tmpstr, dens_data->field, \ sizeof(dens_data->field), sizeof(tmpstr)); \ SASBADDVARSTRDESC(sb, indent, tmpstr, %s, field, \ strlen(tmpstr) + 1, desc); \ }; /* * Fill an sbuf with density data descriptors. */ static void safilldenstypesb(struct sbuf *sb, int *indent, uint8_t *buf, int buf_len, int is_density) { struct scsi_density_hdr *hdr; uint32_t hdr_len; int len_to_go, cur_offset; int length_offset; int num_reports, need_close; /* * We need at least the header length. Note that this isn't an * error, not all tape drives will have every data type. */ if (buf_len < sizeof(*hdr)) goto bailout; hdr = (struct scsi_density_hdr *)buf; hdr_len = scsi_2btoul(hdr->length); len_to_go = min(buf_len - sizeof(*hdr), hdr_len); if (is_density) { length_offset = __offsetof(struct scsi_density_data, bits_per_mm); } else { length_offset = __offsetof(struct scsi_medium_type_data, num_density_codes); } cur_offset = sizeof(*hdr); num_reports = 0; need_close = 0; while (len_to_go > length_offset) { struct scsi_density_data *dens_data; struct scsi_medium_type_data *type_data; int desc_remain; size_t cur_field_len; dens_data = NULL; type_data = NULL; if (is_density) { dens_data =(struct scsi_density_data *)&buf[cur_offset]; if (dens_data->byte2 & SDD_DLV) desc_remain = scsi_2btoul(dens_data->length); else desc_remain = SDD_DEFAULT_LENGTH - length_offset; } else { type_data = (struct scsi_medium_type_data *) &buf[cur_offset]; desc_remain = scsi_2btoul(type_data->length); } len_to_go -= length_offset; desc_remain = min(desc_remain, len_to_go); cur_offset += length_offset; if (need_close != 0) { SASBENDNODE(sb, *indent, density_entry); } SASBADDNODENUM(sb, *indent, density_entry, num_reports); num_reports++; need_close = 1; if (is_density) { SASBADDUINTDESC(sb, *indent, dens_data->primary_density_code, %u, primary_density_code, "Primary Density Code"); SASBADDUINTDESC(sb, *indent, dens_data->secondary_density_code, %u, secondary_density_code, "Secondary Density Code"); SASBADDUINTDESC(sb, *indent, dens_data->byte2 & ~SDD_DLV, %#x, density_flags, "Density Flags"); SAFILLDENSSB(dens_data, sb, *indent, bits_per_mm, desc_remain, len_to_go, cur_offset, "Bits per mm"); SAFILLDENSSB(dens_data, sb, *indent, media_width, desc_remain, len_to_go, cur_offset, "Media width"); SAFILLDENSSB(dens_data, sb, *indent, tracks, desc_remain, len_to_go, cur_offset, "Number of Tracks"); SAFILLDENSSB(dens_data, sb, *indent, capacity, desc_remain, len_to_go, cur_offset, "Capacity"); SAFILLDENSSBSTR(dens_data, sb, *indent, assigning_org, desc_remain, len_to_go, cur_offset, "Assigning Organization"); SAFILLDENSSBSTR(dens_data, sb, *indent, density_name, desc_remain, len_to_go, cur_offset, "Density Name"); SAFILLDENSSBSTR(dens_data, sb, *indent, description, desc_remain, len_to_go, cur_offset, "Description"); } else { int i; SASBADDUINTDESC(sb, *indent, type_data->medium_type, %u, medium_type, "Medium Type"); cur_field_len = __offsetof(struct scsi_medium_type_data, media_width) - __offsetof(struct scsi_medium_type_data, num_density_codes); if (desc_remain < cur_field_len) { len_to_go -= desc_remain; cur_offset += desc_remain; continue; } len_to_go -= cur_field_len; cur_offset += cur_field_len; desc_remain -= cur_field_len; SASBADDINTDESC(sb, *indent, type_data->num_density_codes, %d, num_density_codes, "Number of Density Codes"); SASBADDNODE(sb, *indent, density_code_list); for (i = 0; i < type_data->num_density_codes; i++) { SASBADDUINTDESC(sb, *indent, type_data->primary_density_codes[i], %u, density_code, "Density Code"); } SASBENDNODE(sb, *indent, density_code_list); SAFILLDENSSB(type_data, sb, *indent, media_width, desc_remain, len_to_go, cur_offset, "Media width"); SAFILLDENSSB(type_data, sb, *indent, medium_length, desc_remain, len_to_go, cur_offset, "Medium length"); /* * Account for the two reserved bytes. */ cur_field_len = sizeof(type_data->reserved2); if (desc_remain < cur_field_len) { len_to_go -= desc_remain; cur_offset += desc_remain; continue; } len_to_go -= cur_field_len; cur_offset += cur_field_len; desc_remain -= cur_field_len; SAFILLDENSSBSTR(type_data, sb, *indent, assigning_org, desc_remain, len_to_go, cur_offset, "Assigning Organization"); SAFILLDENSSBSTR(type_data, sb, *indent, medium_type_name, desc_remain, len_to_go, cur_offset, "Medium type name"); SAFILLDENSSBSTR(type_data, sb, *indent, description, desc_remain, len_to_go, cur_offset, "Description"); } } if (need_close != 0) { SASBENDNODE(sb, *indent, density_entry); } bailout: return; } /* * Fill an sbuf with density data information */ static void safilldensitysb(struct sa_softc *softc, int *indent, struct sbuf *sb) { int i, is_density; SASBADDNODE(sb, *indent, mtdensity); SASBADDUINTDESC(sb, *indent, softc->media_density, %u, media_density, "Current Medium Density"); is_density = 0; for (i = 0; i < SA_DENSITY_TYPES; i++) { int tmpint; if (softc->density_info_valid[i] == 0) continue; SASBADDNODE(sb, *indent, density_report); if (softc->density_type_bits[i] & SRDS_MEDIUM_TYPE) { tmpint = 1; is_density = 0; } else { tmpint = 0; is_density = 1; } SASBADDINTDESC(sb, *indent, tmpint, %d, medium_type_report, "Medium type report"); if (softc->density_type_bits[i] & SRDS_MEDIA) tmpint = 1; else tmpint = 0; SASBADDINTDESC(sb, *indent, tmpint, %d, media_report, "Media report"); safilldenstypesb(sb, indent, softc->density_info[i], softc->density_info_valid[i], is_density); SASBENDNODE(sb, *indent, density_report); } SASBENDNODE(sb, *indent, mtdensity); } /* * Given a completed REPORT SUPPORTED OPERATION CODES command with timeout * descriptors, go through the descriptors and set the sa(4) driver * timeouts to the recommended values. */ static void saloadtimeouts(struct sa_softc *softc, union ccb *ccb) { uint32_t valid_len, avail_len = 0, used_len = 0; struct scsi_report_supported_opcodes_all *hdr; struct scsi_report_supported_opcodes_descr *desc; uint8_t *buf; hdr = (struct scsi_report_supported_opcodes_all *)ccb->csio.data_ptr; valid_len = ccb->csio.dxfer_len - ccb->csio.resid; if (valid_len < sizeof(*hdr)) return; avail_len = scsi_4btoul(hdr->length) + sizeof(hdr->length); if ((avail_len != 0) && (avail_len > valid_len)) { xpt_print(softc->periph->path, "WARNING: available timeout " "descriptor len %zu > valid len %u\n", avail_len,valid_len); } used_len = sizeof(hdr->length); avail_len = MIN(avail_len, valid_len - sizeof(*hdr)); buf = ccb->csio.data_ptr; while ((avail_len - used_len) > sizeof(*desc)) { struct scsi_report_supported_opcodes_timeout *td; uint32_t td_len; uint32_t rec_time; uint8_t *cur_ptr; cur_ptr = &buf[used_len]; desc = (struct scsi_report_supported_opcodes_descr *)cur_ptr; used_len += sizeof(*desc); /* If there's no timeout descriptor, keep going */ if ((desc->flags & RSO_CTDP) == 0) continue; /* * If we don't have enough space to fit a timeout * descriptor then we're done. */ if ((avail_len - used_len) < sizeof(*td)) { used_len = avail_len; continue; } cur_ptr = &buf[used_len]; td = (struct scsi_report_supported_opcodes_timeout *)cur_ptr; td_len = scsi_2btoul(td->length); td_len += sizeof(td->length); used_len += td_len; if (td_len < sizeof(*td)) continue; /* * Use the recommended timeout. The nominal time is the * time to wait before querying for status. */ rec_time = scsi_4btoul(td->recommended_time); /* * Our timeouts are set in thousandths of a seconds. */ rec_time *= 1000; switch(desc->opcode) { case ERASE: softc->timeout_info[SA_TIMEOUT_ERASE] = rec_time; break; case LOAD_UNLOAD: softc->timeout_info[SA_TIMEOUT_LOAD] = rec_time; break; case LOCATE: case LOCATE_16: /* * We are assuming these are the same timeout. */ softc->timeout_info[SA_TIMEOUT_LOCATE] = rec_time; break; case MODE_SELECT_6: case MODE_SELECT_10: /* * We are assuming these are the same timeout. */ softc->timeout_info[SA_TIMEOUT_MODE_SELECT] = rec_time; break; case MODE_SENSE_6: case MODE_SENSE_10: /* * We are assuming these are the same timeout. */ softc->timeout_info[SA_TIMEOUT_MODE_SENSE] = rec_time; break; case PREVENT_ALLOW: softc->timeout_info[SA_TIMEOUT_PREVENT] = rec_time; break; case SA_READ: softc->timeout_info[SA_TIMEOUT_READ] = rec_time; break; case READ_BLOCK_LIMITS: softc->timeout_info[SA_TIMEOUT_READ_BLOCK_LIMITS] = rec_time; break; case READ_POSITION: /* * Note that this may show up multiple times for * the short form, long form and extended form * service actions. We're assuming they are all * the same. */ softc->timeout_info[SA_TIMEOUT_READ_POSITION] =rec_time; break; case REPORT_DENSITY_SUPPORT: softc->timeout_info[SA_TIMEOUT_REP_DENSITY] = rec_time; break; case RESERVE_UNIT: case RELEASE_UNIT: /* We are assuming these are the same timeout.*/ softc->timeout_info[SA_TIMEOUT_RESERVE] = rec_time; break; case REWIND: softc->timeout_info[SA_TIMEOUT_REWIND] = rec_time; break; case SPACE: softc->timeout_info[SA_TIMEOUT_SPACE] = rec_time; break; case TEST_UNIT_READY: softc->timeout_info[SA_TIMEOUT_TUR] = rec_time; break; case SA_WRITE: softc->timeout_info[SA_TIMEOUT_WRITE] = rec_time; break; case WRITE_FILEMARKS: softc->timeout_info[SA_TIMEOUT_WRITE_FILEMARKS] = rec_time; break; default: /* * We have explicit cases for all of the timeouts * we use. */ break; } } } #endif /* _KERNEL */ /* * Read tape block limits command. */ void scsi_read_block_limits(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, struct scsi_read_block_limits_data *rlimit_buf, u_int8_t sense_len, u_int32_t timeout) { struct scsi_read_block_limits *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_IN, tag_action, (u_int8_t *)rlimit_buf, sizeof(*rlimit_buf), sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_read_block_limits *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = READ_BLOCK_LIMITS; } void scsi_sa_read_write(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int readop, int sli, int fixed, u_int32_t length, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_sa_rw *scsi_cmd; int read; read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; scsi_cmd = (struct scsi_sa_rw *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = read ? SA_READ : SA_WRITE; scsi_cmd->sli_fixed = 0; if (sli && read) scsi_cmd->sli_fixed |= SAR_SLI; if (fixed) scsi_cmd->sli_fixed |= SARW_FIXED; scsi_ulto3b(length, scsi_cmd->length); scsi_cmd->control = 0; cam_fill_csio(csio, retries, cbfcnp, (read ? CAM_DIR_IN : CAM_DIR_OUT) | ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_load_unload(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immediate, int eot, int reten, int load, u_int8_t sense_len, u_int32_t timeout) { struct scsi_load_unload *scsi_cmd; scsi_cmd = (struct scsi_load_unload *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = LOAD_UNLOAD; if (immediate) scsi_cmd->immediate = SLU_IMMED; if (eot) scsi_cmd->eot_reten_load |= SLU_EOT; if (reten) scsi_cmd->eot_reten_load |= SLU_RETEN; if (load) scsi_cmd->eot_reten_load |= SLU_LOAD; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_rewind(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immediate, u_int8_t sense_len, u_int32_t timeout) { struct scsi_rewind *scsi_cmd; scsi_cmd = (struct scsi_rewind *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = REWIND; if (immediate) scsi_cmd->immediate = SREW_IMMED; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_space(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, scsi_space_code code, u_int32_t count, u_int8_t sense_len, u_int32_t timeout) { struct scsi_space *scsi_cmd; scsi_cmd = (struct scsi_space *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = SPACE; scsi_cmd->code = code; scsi_ulto3b(count, scsi_cmd->count); scsi_cmd->control = 0; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_write_filemarks(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immediate, int setmark, u_int32_t num_marks, u_int8_t sense_len, u_int32_t timeout) { struct scsi_write_filemarks *scsi_cmd; scsi_cmd = (struct scsi_write_filemarks *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = WRITE_FILEMARKS; if (immediate) scsi_cmd->byte2 |= SWFMRK_IMMED; if (setmark) scsi_cmd->byte2 |= SWFMRK_WSMK; scsi_ulto3b(num_marks, scsi_cmd->num_marks); cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } /* * The reserve and release unit commands differ only by their opcodes. */ void scsi_reserve_release_unit(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int third_party, int third_party_id, u_int8_t sense_len, u_int32_t timeout, int reserve) { struct scsi_reserve_release_unit *scsi_cmd; scsi_cmd = (struct scsi_reserve_release_unit *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); if (reserve) scsi_cmd->opcode = RESERVE_UNIT; else scsi_cmd->opcode = RELEASE_UNIT; if (third_party) { scsi_cmd->lun_thirdparty |= SRRU_3RD_PARTY; scsi_cmd->lun_thirdparty |= ((third_party_id << SRRU_3RD_SHAMT) & SRRU_3RD_MASK); } cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_erase(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immediate, int long_erase, u_int8_t sense_len, u_int32_t timeout) { struct scsi_erase *scsi_cmd; scsi_cmd = (struct scsi_erase *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = ERASE; if (immediate) scsi_cmd->lun_imm_long |= SE_IMMED; if (long_erase) scsi_cmd->lun_imm_long |= SE_LONG; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, NULL, 0, sense_len, sizeof(*scsi_cmd), timeout); } /* * Read Tape Position command. */ void scsi_read_position(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int hardsoft, struct scsi_tape_position_data *sbp, u_int8_t sense_len, u_int32_t timeout) { struct scsi_tape_read_position *scmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_IN, tag_action, (u_int8_t *)sbp, sizeof (*sbp), sense_len, sizeof(*scmd), timeout); scmd = (struct scsi_tape_read_position *)&csio->cdb_io.cdb_bytes; bzero(scmd, sizeof(*scmd)); scmd->opcode = READ_POSITION; scmd->byte1 = hardsoft; } /* * Read Tape Position command. */ void scsi_read_position_10(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int service_action, u_int8_t *data_ptr, u_int32_t length, u_int32_t sense_len, u_int32_t timeout) { struct scsi_tape_read_position *scmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/data_ptr, /*dxfer_len*/length, sense_len, sizeof(*scmd), timeout); scmd = (struct scsi_tape_read_position *)&csio->cdb_io.cdb_bytes; bzero(scmd, sizeof(*scmd)); scmd->opcode = READ_POSITION; scmd->byte1 = service_action; /* * The length is only currently set (as of SSC4r03) if the extended * form is specified. The other forms have fixed lengths. */ if (service_action == SA_RPOS_EXTENDED_FORM) scsi_ulto2b(length, scmd->length); } /* * Set Tape Position command. */ void scsi_set_position(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int hardsoft, u_int32_t blkno, u_int8_t sense_len, u_int32_t timeout) { struct scsi_tape_locate *scmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, (u_int8_t *)NULL, 0, sense_len, sizeof(*scmd), timeout); scmd = (struct scsi_tape_locate *)&csio->cdb_io.cdb_bytes; bzero(scmd, sizeof(*scmd)); scmd->opcode = LOCATE; if (hardsoft) scmd->byte1 |= SA_SPOS_BT; scsi_ulto4b(blkno, scmd->blkaddr); } /* * XXX KDM figure out how to make a compatibility function. */ void scsi_locate_10(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immed, int cp, int hard, int64_t partition, u_int32_t block_address, int sense_len, u_int32_t timeout) { struct scsi_tape_locate *scmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, /*data_ptr*/ NULL, /*dxfer_len*/ 0, sense_len, sizeof(*scmd), timeout); scmd = (struct scsi_tape_locate *)&csio->cdb_io.cdb_bytes; bzero(scmd, sizeof(*scmd)); scmd->opcode = LOCATE; if (immed) scmd->byte1 |= SA_SPOS_IMMED; if (cp) scmd->byte1 |= SA_SPOS_CP; if (hard) scmd->byte1 |= SA_SPOS_BT; scsi_ulto4b(block_address, scmd->blkaddr); scmd->partition = partition; } void scsi_locate_16(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int immed, int cp, u_int8_t dest_type, int bam, int64_t partition, u_int64_t logical_id, int sense_len, u_int32_t timeout) { struct scsi_locate_16 *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_locate_16 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = LOCATE_16; if (immed) scsi_cmd->byte1 |= SA_LC_IMMEDIATE; if (cp) scsi_cmd->byte1 |= SA_LC_CP; scsi_cmd->byte1 |= (dest_type << SA_LC_DEST_TYPE_SHIFT); scsi_cmd->byte2 |= bam; scsi_cmd->partition = partition; scsi_u64to8b(logical_id, scsi_cmd->logical_id); } void scsi_report_density_support(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int media, int medium_type, u_int8_t *data_ptr, u_int32_t length, u_int32_t sense_len, u_int32_t timeout) { struct scsi_report_density_support *scsi_cmd; scsi_cmd =(struct scsi_report_density_support *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = REPORT_DENSITY_SUPPORT; if (media != 0) scsi_cmd->byte1 |= SRDS_MEDIA; if (medium_type != 0) scsi_cmd->byte1 |= SRDS_MEDIUM_TYPE; scsi_ulto2b(length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/data_ptr, /*dxfer_len*/length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_set_capacity(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int byte1, u_int32_t proportion, u_int32_t sense_len, u_int32_t timeout) { struct scsi_set_capacity *scsi_cmd; scsi_cmd = (struct scsi_set_capacity *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SET_CAPACITY; scsi_cmd->byte1 = byte1; scsi_ulto2b(proportion, scsi_cmd->cap_proportion); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_format_medium(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int byte1, int byte2, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t sense_len, u_int32_t timeout) { struct scsi_format_medium *scsi_cmd; scsi_cmd = (struct scsi_format_medium*)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = FORMAT_MEDIUM; scsi_cmd->byte1 = byte1; scsi_cmd->byte2 = byte2; scsi_ulto2b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/(dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_allow_overwrite(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int allow_overwrite, int partition, u_int64_t logical_id, u_int32_t sense_len, u_int32_t timeout) { struct scsi_allow_overwrite *scsi_cmd; scsi_cmd = (struct scsi_allow_overwrite *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = ALLOW_OVERWRITE; scsi_cmd->allow_overwrite = allow_overwrite; scsi_cmd->partition = partition; scsi_u64to8b(logical_id, scsi_cmd->logical_id); cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, /*data_ptr*/ NULL, /*dxfer_len*/ 0, sense_len, sizeof(*scsi_cmd), timeout); }