/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 2020 Michal Meloun * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include "tegra210_car.h" #if 0 #define dprintf(...) printf(__VA_ARGS__) #else #define dprintf(...) #endif /* All PLLs. */ enum pll_type { PLL_M, PLL_MB, PLL_X, PLL_C, PLL_C2, PLL_C3, PLL_C4, PLL_P, PLL_A, PLL_A1, PLL_U, PLL_D, PLL_D2, PLL_DP, PLL_E, PLL_REFE}; /* Flags for PLLs */ #define PLL_FLAG_PDIV_POWER2 0x01 /* P Divider is 2^n */ #define PLL_FLAG_VCO_OUT 0x02 /* Output VCO directly */ #define PLL_FLAG_HAVE_SDM 0x04 /* Have SDM implemented */ #define PLL_FLAG_HAVE_SDA 0x04 /* Have SDA implemented */ /* Common base register bits. */ #define PLL_BASE_BYPASS (1U << 31) #define PLL_BASE_ENABLE (1 << 30) #define PLL_BASE_REFDISABLE (1 << 29) #define PLL_BASE_LOCK (1 << 27) #define PLLREFE_MISC_LOCK (1 << 27) #define PLL_MISC_LOCK_ENABLE (1 << 18) #define PLLM_LOCK_ENABLE (1 << 4) #define PLLMB_LOCK_ENABLE (1 << 16) #define PLLC_LOCK_ENABLE (1 << 24) #define PLLC4_LOCK_ENABLE (1 << 30) #define PLLA_LOCK_ENABLE (1 << 28) #define PLLD2_LOCK_ENABLE (1 << 30) #define PLLU_LOCK_ENABLE (1 << 29) #define PLLREFE_LOCK_ENABLE (1 << 30) #define PLLPD_LOCK_ENABLE (1 << 30) #define PLLE_LOCK_ENABLE (1 << 9) #define PLLM_IDDQ_BIT 5 #define PLLMB_IDDQ_BIT 17 #define PLLC_IDDQ_BIT 27 #define PLLC4_IDDQ_BIT 18 #define PLLP_IDDQ_BIT 3 #define PLLA_IDDQ_BIT 25 #define PLLA1_IDDQ_BIT 27 #define PLLU_IDDQ_BIT 31 #define PLLD_IDDQ_BIT 20 #define PLLD2_IDDQ_BIT 18 #define PLLX_IDDQ_BIT 3 #define PLLREFE_IDDQ_BIT 24 #define PLLDP_IDDQ_BIT 18 #define PLL_LOCK_TIMEOUT 5000 /* Post divider <-> register value mapping. */ struct pdiv_table { uint32_t divider; /* real divider */ uint32_t value; /* register value */ }; /* Bits definition of M, N and P fields. */ struct mnp_bits { uint32_t m_width; uint32_t n_width; uint32_t p_width; uint32_t m_shift; uint32_t n_shift; uint32_t p_shift; }; struct clk_pll_def { struct clknode_init_def clkdef; enum pll_type type; uint32_t base_reg; uint32_t misc_reg; uint32_t lock_enable; uint32_t iddq_reg; uint32_t iddq_mask; uint32_t flags; struct pdiv_table *pdiv_table; struct mnp_bits mnp_bits; }; #define PLIST(x) static const char *x[] #define PLL(_id, cname, pname) \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){pname}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS /* multiplexer for pll sources. */ #define MUX(_id, cname, plists, o, s, w) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = plists, \ .clkdef.parent_cnt = nitems(plists), \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .offset = o, \ .shift = s, \ .width = w, \ } /* Fractional divider (7.1) for PLL branch. */ #define DIV7_1(_id, cname, plist, o, s) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){plist}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .offset = o, \ .i_shift = (s) + 1, \ .i_width = 7, \ .f_shift = s, \ .f_width = 1, \ } /* P divider (2^n). for PLL branch. */ #define DIV5_E(_id, cname, plist, o, s) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){plist}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .offset = o, \ .i_shift = s, \ .i_width = 5, \ } /* P divider (2^n). for PLL branch. */ #define DIV_TB(_id, cname, plist, o, s, n, table) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){plist}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .div_flags = CLK_DIV_WITH_TABLE | CLK_DIV_ZERO_BASED, \ .offset = o, \ .i_shift = s, \ .i_width = n, \ .div_table = table, \ } /* Standard gate. */ #define GATE(_id, cname, plist, o, s) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){plist}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .offset = o, \ .shift = s, \ .mask = 1, \ .on_value = 1, \ .off_value = 0, \ } /* Gate for PLL branch. */ #define GATE_PLL(_id, cname, plist, o, s) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){plist}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .offset = o, \ .shift = s, \ .mask = 3, \ .on_value = 3, \ .off_value = 0, \ } /* Fixed rate multipier/divider. */ #define FACT(_id, cname, pname, _mult, _div) \ { \ .clkdef.id = _id, \ .clkdef.name = cname, \ .clkdef.parent_names = (const char *[]){pname}, \ .clkdef.parent_cnt = 1, \ .clkdef.flags = CLK_NODE_STATIC_STRINGS, \ .mult = _mult, \ .div = _div, \ } static struct pdiv_table qlin_map[] = { { 1, 0}, { 2, 1}, { 3, 2}, { 4, 3}, { 5, 4}, { 6, 5}, { 8, 6}, { 9, 7}, {10, 8}, {12, 9}, {15, 10}, {16, 11}, {18, 12}, {20, 13}, {24, 14}, {30, 15}, {32, 16}, { 0, 0}, }; static struct clk_pll_def pll_clks[] = { /* PLLM: 880 MHz Clock source for EMC 2x clock */ { PLL(TEGRA210_CLK_PLL_M, "pllM_out0", "osc"), .type = PLL_M, .base_reg = PLLM_BASE, .misc_reg = PLLM_MISC2, .lock_enable = PLLM_LOCK_ENABLE, .iddq_reg = PLLM_MISC2, .iddq_mask = 1 << PLLM_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 20}, }, /* PLLMB: 880 MHz Clock source for EMC 2x clock */ { PLL(TEGRA210_CLK_PLL_M, "pllMB_out0", "osc"), .type = PLL_MB, .base_reg = PLLMB_BASE, .misc_reg = PLLMB_MISC1, .lock_enable = PLLMB_LOCK_ENABLE, .iddq_reg = PLLMB_MISC1, .iddq_mask = 1 << PLLMB_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 20}, }, /* PLLX: 1GHz Clock source for the fast CPU cluster and the shadow CPU */ { PLL(TEGRA210_CLK_PLL_X, "pllX_out0", "osc_div_clk"), .type = PLL_X, .base_reg = PLLX_BASE, .misc_reg = PLLX_MISC, .lock_enable = PLL_MISC_LOCK_ENABLE, .iddq_reg = PLLX_MISC_3, .iddq_mask = 1 << PLLX_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 20}, }, /* PLLC: 510 MHz Clock source for camera use */ { PLL(TEGRA210_CLK_PLL_C, "pllC_out0", "osc_div_clk"), .type = PLL_C, .base_reg = PLLC_BASE, .misc_reg = PLLC_MISC_0, .iddq_reg = PLLC_MISC_1, .iddq_mask = 1 << PLLC_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 10, 20}, }, /* PLLC2: 510 MHz Clock source for SE, VIC, TSECB, NVJPG scaling */ { PLL(TEGRA210_CLK_PLL_C2, "pllC2_out0", "osc_div_clk"), .type = PLL_C2, .base_reg = PLLC2_BASE, .misc_reg = PLLC2_MISC_0, .iddq_reg = PLLC2_MISC_1, .iddq_mask = 1 << PLLC_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 10, 20}, }, /* PLLC3: 510 MHz Clock source for NVENC, NVDEC scaling */ { PLL(TEGRA210_CLK_PLL_C3, "pllC3_out0", "osc_div_clk"), .type = PLL_C3, .base_reg = PLLC3_BASE, .misc_reg = PLLC3_MISC_0, .lock_enable = PLL_MISC_LOCK_ENABLE, .iddq_reg = PLLC3_MISC_1, .iddq_mask = 1 << PLLC_IDDQ_BIT, .mnp_bits = {8, 8, 5, 0, 10, 20}, }, /* PLLC4: 600 MHz Clock source for SD/eMMC ans system busses */ { PLL(TEGRA210_CLK_PLL_C4, "pllC4", "pllC4_src"), .type = PLL_C4, .flags = PLL_FLAG_VCO_OUT, .base_reg = PLLC4_BASE, .misc_reg = PLLC4_MISC, .lock_enable = PLLC4_LOCK_ENABLE, .iddq_reg = PLLC4_BASE, .iddq_mask = 1 << PLLC4_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 19}, }, /* PLLP: 408 MHz Clock source for most peripherals */ { /* * VCO is directly exposed as pllP_out0, P div is used for * pllP_out2 */ PLL(TEGRA210_CLK_PLL_P, "pllP_out0", "osc_div_clk"), .type = PLL_P, .flags = PLL_FLAG_VCO_OUT, .base_reg = PLLP_BASE, .misc_reg = PLLP_MISC, .lock_enable = PLL_MISC_LOCK_ENABLE, .iddq_reg = PLLP_MISC, .iddq_mask = 1 << PLLA_IDDQ_BIT, .mnp_bits = {8, 8, 5, 0, 10, 20}, }, /* PLLA: Audio clock for precise codec sampling */ { PLL(TEGRA210_CLK_PLL_A, "pllA", "osc_div_clk"), .type = PLL_A, .base_reg = PLLA_BASE, .misc_reg = PLLA_MISC, .lock_enable = PLLA_LOCK_ENABLE, .iddq_reg = PLLA_BASE, .iddq_mask = 1 << PLLA_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 20}, }, /* PLLA1: Audio clock for ADSP */ { PLL(TEGRA210_CLK_PLL_A1, "pllA1_out0", "osc_div_clk"), .type = PLL_A1, .base_reg = PLLA1_BASE, .misc_reg = PLLA1_MISC_1, .iddq_reg = PLLA1_MISC_1, .iddq_mask = 1 << PLLA_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 20}, }, /* PLLU: 480 MHz Clock source for USB PHY, provides 12/60/480 MHz */ { PLL(TEGRA210_CLK_PLL_U, "pllU", "osc_div_clk"), .type = PLL_U, .flags = PLL_FLAG_VCO_OUT | PLL_FLAG_HAVE_SDA, .base_reg = PLLU_BASE, .misc_reg = PLLU_MISC, .lock_enable = PLLU_LOCK_ENABLE, .iddq_reg = PLLU_MISC, .iddq_mask = 1 << PLLU_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 16}, }, /* PLLD: 594 MHz Clock sources for the DSI and display subsystem */ { PLL(TEGRA210_CLK_PLL_D, "pllD_out", "osc_div_clk"), .type = PLL_D, .flags = PLL_FLAG_PDIV_POWER2, .base_reg = PLLD_BASE, .misc_reg = PLLD_MISC, .lock_enable = PLL_MISC_LOCK_ENABLE, .iddq_reg = PLLA1_MISC_1, .iddq_mask = 1 << PLLA_IDDQ_BIT, .mnp_bits = {8, 8, 3, 0, 11, 20}, }, /* PLLD2: 594 MHz Clock sources for the DSI and display subsystem */ { PLL(TEGRA210_CLK_PLL_D2, "pllD2_out", "pllD2_src"), .type = PLL_D2, .flags = PLL_FLAG_HAVE_SDM, .base_reg = PLLD2_BASE, .misc_reg = PLLD2_MISC, .lock_enable = PLLD2_LOCK_ENABLE, .iddq_reg = PLLD2_BASE, .iddq_mask = 1 << PLLD_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 19}, }, /* PLLREFE: 624 Mhz*/ { PLL(0, "pllREFE", "osc_div_clk"), .type = PLL_REFE, .flags = PLL_FLAG_VCO_OUT, .base_reg = PLLREFE_BASE, .misc_reg = PLLREFE_MISC, .lock_enable = PLLREFE_LOCK_ENABLE, .iddq_reg = PLLREFE_MISC, .iddq_mask = 1 << PLLREFE_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 16}, }, /* PLLE: 100 MHz reference clock for PCIe/SATA/USB 3.0 (spread spectrum) */ { PLL(TEGRA210_CLK_PLL_E, "pllE_out0", "pllE_src"), .type = PLL_E, .base_reg = PLLE_BASE, .misc_reg = PLLE_MISC, .lock_enable = PLLE_LOCK_ENABLE, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 24}, }, /* PLLDP: 270 MHz Clock source fordisplay SOR (spread spectrum) */ { PLL(0, "pllDP_out0", "pllDP_src"), .type = PLL_DP, .flags = PLL_FLAG_HAVE_SDM, .base_reg = PLLDP_BASE, .misc_reg = PLLDP_MISC, .lock_enable = PLLPD_LOCK_ENABLE, .iddq_reg = PLLDP_BASE, .iddq_mask = 1 << PLLDP_IDDQ_BIT, .pdiv_table = qlin_map, .mnp_bits = {8, 8, 5, 0, 8, 19}, }, }; /* Fixed rate dividers. */ static struct clk_fixed_def tegra210_pll_fdivs[] = { FACT(0, "pllP_UD", "pllP_out0", 1, 1), FACT(0, "pllC_UD", "pllC_out0", 1, 1), FACT(0, "pllD_UD", "pllD_out0", 1, 1), FACT(0, "pllM_UD", "pllM_out0", 1, 1), FACT(0, "pllMB_UD", "pllMB_out0", 1, 1), FACT(TEGRA210_CLK_PLL_D_OUT0, "pllD_out0", "pllD_out", 1, 2), FACT(0, "pllC4_out1", "pllC4", 1, 3), FACT(0, "pllC4_out2", "pllC4", 1, 5), FACT(0, "pllD2_out0", "pllD2_out", 1, 2), /* Aliases used in super mux. */ FACT(0, "pllX_out0_alias", "pllX_out0", 1, 1), FACT(0, "dfllCPU_out_alias", "dfllCPU_out", 1, 1), }; /* MUXes for PLL sources. */ PLIST(mux_pll_srcs) = {"osc_div_clk", NULL, "pllP_out0", NULL}; /* FIXME */ PLIST(mux_plle_src1) = {"osc_div_clk", "pllP_out0"}; PLIST(mux_plle_src) = {"pllE_src1", "pllREFE_out0"}; static struct clk_mux_def tegra210_pll_sources[] = { /* Core clocks. */ MUX(0, "pllD2_src", mux_pll_srcs, PLLD2_BASE, 25, 2), MUX(0, "pllDP_src", mux_pll_srcs, PLLDP_BASE, 25, 2), MUX(0, "pllC4_src", mux_pll_srcs, PLLC4_BASE, 25, 2), MUX(0, "pllE_src1", mux_plle_src1, PLLE_AUX, 2, 1), MUX(0, "pllE_src", mux_plle_src, PLLE_AUX, 28, 1), }; /* Gates for PLL branches. */ static struct clk_gate_def tegra210_pll_gates[] = { /* Core clocks. */ GATE_PLL(0, "pllC_out1", "pllC_out1_div", PLLC_OUT, 0), GATE_PLL(0, "pllP_out1", "pllP_out1_div", PLLP_OUTA, 0), GATE_PLL(0, "pllP_out3", "pllP_out3_div", PLLP_OUTB, 0), GATE_PLL(TEGRA210_CLK_PLL_P_OUT4, "pllP_out4", "pllP_out4_div", PLLP_OUTB, 16), GATE_PLL(0, "pllP_out5", "pllP_out5_div", PLLP_OUTC, 16), GATE_PLL(0, "pllU_out1", "pllU_out1_div", PLLU_OUTA, 0), GATE_PLL(0, "pllU_out2", "pllU_out2_div", PLLU_OUTA, 16), GATE(0, "pllU_480", "pllU", PLLU_BASE, 22), GATE(0, "pllU_60", "pllU_out2", PLLU_BASE, 23), GATE(0, "pllU_48", "pllU_out1", PLLU_BASE, 25), GATE_PLL(0, "pllREFE_out1", "pllREFE_out1_div", PLLREFE_OUT, 0), GATE_PLL(0, "pllC4_out3", "pllC4_out3_div", PLLC4_OUT, 0), GATE_PLL(0, "pllA_out0", "pllA_out0_div", PLLA_OUT, 0), }; struct clk_div_table tegra210_pll_pdiv_tbl[] = { /* value , divider */ { 0, 1 }, { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 5 }, { 5, 6 }, { 6, 8 }, { 7, 10 }, { 8, 12 }, { 9, 16 }, {10, 12 }, {11, 16 }, {12, 20 }, {13, 24 }, {14, 32 }, { 0, 0 }, }; /* Dividers for PLL branches. */ static struct clk_div_def tegra210_pll_divs[] = { /* Core clocks. */ DIV7_1(0, "pllC_out1_div", "pllC_out0", PLLC_OUT, 8), DIV7_1(0, "pllP_out1_div", "pllP_out0", PLLP_OUTA, 8), DIV_TB(0, "pllP_out2", "pllP_out0", PLLP_BASE, 20, 5, tegra210_pll_pdiv_tbl), DIV7_1(0, "pllP_out3_div", "pllP_out0", PLLP_OUTB, 8), DIV7_1(0, "pllP_out4_div", "pllP_out0", PLLP_OUTB, 24), DIV7_1(0, "pllP_out5_div", "pllP_out0", PLLP_OUTC, 24), DIV_TB(0, "pllU_out0", "pllU", PLLU_BASE, 16, 5, tegra210_pll_pdiv_tbl), DIV7_1(0, "pllU_out1_div", "pllU_out0", PLLU_OUTA, 8), DIV7_1(0, "pllU_out2_div", "pllU_out0", PLLU_OUTA, 24), DIV_TB(0, "pllREFE_out0", "pllREFE", PLLREFE_BASE, 16, 5, tegra210_pll_pdiv_tbl), DIV7_1(0, "pllREFE_out1_div", "pllREFE", PLLREFE_OUT, 8), DIV_TB(TEGRA210_CLK_PLL_C4_OUT0, "pllC4_out0", "pllC4", PLLC4_BASE, 19, 5, tegra210_pll_pdiv_tbl), DIV7_1(0, "pllC4_out3_div", "pllC4_out0", PLLC4_OUT, 8), DIV7_1(0, "pllA_out0_div", "pllA", PLLA_OUT, 8), }; static int tegra210_pll_init(struct clknode *clk, device_t dev); static int tegra210_pll_set_gate(struct clknode *clk, bool enable); static int tegra210_pll_recalc(struct clknode *clk, uint64_t *freq); static int tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin, uint64_t *fout, int flags, int *stop); struct pll_sc { device_t clkdev; enum pll_type type; uint32_t base_reg; uint32_t misc_reg; uint32_t lock_enable; uint32_t iddq_reg; uint32_t iddq_mask; uint32_t flags; struct pdiv_table *pdiv_table; struct mnp_bits mnp_bits; }; static clknode_method_t tegra210_pll_methods[] = { /* Device interface */ CLKNODEMETHOD(clknode_init, tegra210_pll_init), CLKNODEMETHOD(clknode_set_gate, tegra210_pll_set_gate), CLKNODEMETHOD(clknode_recalc_freq, tegra210_pll_recalc), CLKNODEMETHOD(clknode_set_freq, tegra210_pll_set_freq), CLKNODEMETHOD_END }; DEFINE_CLASS_1(tegra210_pll, tegra210_pll_class, tegra210_pll_methods, sizeof(struct pll_sc), clknode_class); static int pll_enable(struct pll_sc *sc) { uint32_t reg; RD4(sc, sc->base_reg, ®); if (sc->type != PLL_E) reg &= ~PLL_BASE_BYPASS; reg |= PLL_BASE_ENABLE; WR4(sc, sc->base_reg, reg); return (0); } static int pll_disable(struct pll_sc *sc) { uint32_t reg; RD4(sc, sc->base_reg, ®); if (sc->type != PLL_E) reg |= PLL_BASE_BYPASS; reg &= ~PLL_BASE_ENABLE; WR4(sc, sc->base_reg, reg); return (0); } static uint32_t pdiv_to_reg(struct pll_sc *sc, uint32_t p_div) { struct pdiv_table *tbl; tbl = sc->pdiv_table; if (tbl == NULL) { if (sc->flags & PLL_FLAG_PDIV_POWER2) return (ffs(p_div) - 1); else return (p_div); } while (tbl->divider != 0) { if (p_div <= tbl->divider) return (tbl->value); tbl++; } return (0xFFFFFFFF); } static uint32_t reg_to_pdiv(struct pll_sc *sc, uint32_t reg) { struct pdiv_table *tbl; tbl = sc->pdiv_table; if (tbl == NULL) { if (sc->flags & PLL_FLAG_PDIV_POWER2) return (1 << reg); else return (reg == 0 ? 1: reg); } while (tbl->divider) { if (reg == tbl->value) return (tbl->divider); tbl++; } return (0); } static uint32_t get_masked(uint32_t val, uint32_t shift, uint32_t width) { return ((val >> shift) & ((1 << width) - 1)); } static uint32_t set_masked(uint32_t val, uint32_t v, uint32_t shift, uint32_t width) { val &= ~(((1 << width) - 1) << shift); val |= (v & ((1 << width) - 1)) << shift; return (val); } static void get_divisors(struct pll_sc *sc, uint32_t *m, uint32_t *n, uint32_t *p) { uint32_t val; struct mnp_bits *mnp_bits; mnp_bits = &sc->mnp_bits; RD4(sc, sc->base_reg, &val); *m = get_masked(val, mnp_bits->m_shift, mnp_bits->m_width); *n = get_masked(val, mnp_bits->n_shift, mnp_bits->n_width); *p = get_masked(val, mnp_bits->p_shift, mnp_bits->p_width); } static uint32_t set_divisors(struct pll_sc *sc, uint32_t val, uint32_t m, uint32_t n, uint32_t p) { struct mnp_bits *mnp_bits; mnp_bits = &sc->mnp_bits; val = set_masked(val, m, mnp_bits->m_shift, mnp_bits->m_width); val = set_masked(val, n, mnp_bits->n_shift, mnp_bits->n_width); val = set_masked(val, p, mnp_bits->p_shift, mnp_bits->p_width); return (val); } static bool is_locked(struct pll_sc *sc) { uint32_t reg; switch (sc->type) { case PLL_REFE: RD4(sc, sc->misc_reg, ®); reg &= PLLREFE_MISC_LOCK; break; case PLL_E: RD4(sc, sc->misc_reg, ®); reg &= PLLE_MISC_LOCK; break; default: RD4(sc, sc->base_reg, ®); reg &= PLL_BASE_LOCK; break; } return (reg != 0); } static int wait_for_lock(struct pll_sc *sc) { int i; for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) { if (is_locked(sc)) break; DELAY(10); } if (i <= 0) { printf("PLL lock timeout\n"); return (ETIMEDOUT); } return (0); } static int plle_enable(struct pll_sc *sc) { uint32_t reg; int rv; struct mnp_bits *mnp_bits; uint32_t pll_m = 2; uint32_t pll_n = 125; uint32_t pll_cml = 14; mnp_bits = &sc->mnp_bits; /* Disable lock override. */ RD4(sc, sc->base_reg, ®); reg &= ~PLLE_BASE_LOCK_OVERRIDE; WR4(sc, sc->base_reg, reg); /* Enable SW control */ RD4(sc, PLLE_AUX, ®); reg |= PLLE_AUX_ENABLE_SWCTL; reg &= ~PLLE_AUX_SEQ_ENABLE; WR4(sc, PLLE_AUX, reg); DELAY(10); RD4(sc, sc->misc_reg, ®); reg |= PLLE_MISC_LOCK_ENABLE; reg |= PLLE_MISC_IDDQ_SWCTL; reg &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE; reg |= PLLE_MISC_PTS; reg &= ~PLLE_MISC_VREG_BG_CTRL(~0); reg &= ~PLLE_MISC_VREG_CTRL(~0); WR4(sc, sc->misc_reg, reg); DELAY(10); RD4(sc, PLLE_SS_CNTL, ®); reg |= PLLE_SS_CNTL_DISABLE; WR4(sc, PLLE_SS_CNTL, reg); RD4(sc, sc->base_reg, ®); reg = set_divisors(sc, reg, pll_m, pll_n, pll_cml); WR4(sc, sc->base_reg, reg); DELAY(10); pll_enable(sc); rv = wait_for_lock(sc); if (rv != 0) return (rv); RD4(sc, PLLE_SS_CNTL, ®); reg &= ~PLLE_SS_CNTL_SSCINCINTRV(~0); reg &= ~PLLE_SS_CNTL_SSCINC(~0); reg &= ~PLLE_SS_CNTL_SSCINVERT; reg &= ~PLLE_SS_CNTL_SSCCENTER; reg &= ~PLLE_SS_CNTL_SSCMAX(~0); reg |= PLLE_SS_CNTL_SSCINCINTRV(0x23); reg |= PLLE_SS_CNTL_SSCINC(0x1); reg |= PLLE_SS_CNTL_SSCMAX(0x21); WR4(sc, PLLE_SS_CNTL, reg); reg &= ~PLLE_SS_CNTL_SSCBYP; reg &= ~PLLE_SS_CNTL_BYPASS_SS; WR4(sc, PLLE_SS_CNTL, reg); DELAY(10); reg &= ~PLLE_SS_CNTL_INTERP_RESET; WR4(sc, PLLE_SS_CNTL, reg); DELAY(10); /* HW control of brick pll. */ RD4(sc, sc->misc_reg, ®); reg &= ~PLLE_MISC_IDDQ_SWCTL; WR4(sc, sc->misc_reg, reg); RD4(sc, PLLE_AUX, ®); reg |= PLLE_AUX_USE_LOCKDET; reg |= PLLE_AUX_SS_SEQ_INCLUDE; reg &= ~PLLE_AUX_ENABLE_SWCTL; reg &= ~PLLE_AUX_SS_SWCTL; WR4(sc, PLLE_AUX, reg); reg |= PLLE_AUX_SEQ_START_STATE; DELAY(10); reg |= PLLE_AUX_SEQ_ENABLE; WR4(sc, PLLE_AUX, reg); /* Enable and start XUSBIO PLL HW control*/ RD4(sc, XUSBIO_PLL_CFG0, ®); reg &= ~XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL; reg &= ~XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL; reg |= XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET; reg |= XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ; reg &= ~XUSBIO_PLL_CFG0_SEQ_ENABLE; WR4(sc, XUSBIO_PLL_CFG0, reg); DELAY(10); reg |= XUSBIO_PLL_CFG0_SEQ_ENABLE; WR4(sc, XUSBIO_PLL_CFG0, reg); /* Enable and start SATA PLL HW control */ RD4(sc, SATA_PLL_CFG0, ®); reg &= ~SATA_PLL_CFG0_PADPLL_RESET_SWCTL; reg &= ~SATA_PLL_CFG0_PADPLL_RESET_OVERRIDE_VALUE; reg |= SATA_PLL_CFG0_PADPLL_USE_LOCKDET; reg |= SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ; reg &= ~SATA_PLL_CFG0_SEQ_IN_SWCTL; reg &= ~SATA_PLL_CFG0_SEQ_RESET_INPUT_VALUE; reg &= ~SATA_PLL_CFG0_SEQ_LANE_PD_INPUT_VALUE; reg &= ~SATA_PLL_CFG0_SEQ_PADPLL_PD_INPUT_VALUE; reg &= ~SATA_PLL_CFG0_SEQ_ENABLE; WR4(sc, SATA_PLL_CFG0, reg); DELAY(10); reg |= SATA_PLL_CFG0_SEQ_ENABLE; WR4(sc, SATA_PLL_CFG0, reg); /* Enable HW control of PCIe PLL. */ RD4(sc, PCIE_PLL_CFG, ®); reg |= PCIE_PLL_CFG_SEQ_ENABLE; WR4(sc, PCIE_PLL_CFG, reg); return (0); } static int tegra210_pll_set_gate(struct clknode *clknode, bool enable) { int rv; struct pll_sc *sc; sc = clknode_get_softc(clknode); if (enable == 0) { rv = pll_disable(sc); return(rv); } if (sc->type == PLL_E) rv = plle_enable(sc); else rv = pll_enable(sc); return (rv); } static int pll_set_std(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags, uint32_t m, uint32_t n, uint32_t p) { uint32_t reg; struct mnp_bits *mnp_bits; int rv; mnp_bits = &sc->mnp_bits; if (m >= (1 << mnp_bits->m_width)) return (ERANGE); if (n >= (1 << mnp_bits->n_width)) return (ERANGE); if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width)) return (ERANGE); if (flags & CLK_SET_DRYRUN) { if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) && (*fout != (((fin / m) * n) /p))) return (ERANGE); *fout = ((fin / m) * n) /p; return (0); } pll_disable(sc); /* take pll out of IDDQ */ if (sc->iddq_reg != 0) MD4(sc, sc->iddq_reg, sc->iddq_mask, 0); RD4(sc, sc->base_reg, ®); reg = set_masked(reg, m, mnp_bits->m_shift, mnp_bits->m_width); reg = set_masked(reg, n, mnp_bits->n_shift, mnp_bits->n_width); reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift, mnp_bits->p_width); WR4(sc, sc->base_reg, reg); /* Enable PLL. */ RD4(sc, sc->base_reg, ®); reg |= PLL_BASE_ENABLE; WR4(sc, sc->base_reg, reg); /* Enable lock detection. */ RD4(sc, sc->misc_reg, ®); reg |= sc->lock_enable; WR4(sc, sc->misc_reg, reg); rv = wait_for_lock(sc); if (rv != 0) { /* Disable PLL */ RD4(sc, sc->base_reg, ®); reg &= ~PLL_BASE_ENABLE; WR4(sc, sc->base_reg, reg); return (rv); } RD4(sc, sc->misc_reg, ®); pll_enable(sc); *fout = ((fin / m) * n) / p; return 0; } static int plla_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; p = 1; m = 3; n = (*fout * p * m + fin / 2)/ fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); return (pll_set_std(sc, fin, fout, flags, m, n, p)); } static int pllc_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; p = 2; m = 3; n = (*fout * p * m + fin / 2)/ fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); return (pll_set_std( sc, fin, fout, flags, m, n, p)); } static int pllc4_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; p = 1; m = 4; n = (*fout * p * m + fin / 2)/ fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); return (pll_set_std( sc, fin, fout, flags, m, n, p)); } static int plldp_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; p = 1; m = 4; n = (*fout * p * m + fin / 2)/ fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); return (pll_set_std( sc, fin, fout, flags, m, n, p)); } /* * PLLD2 is used as source for pixel clock for HDMI. * We must be able to set it frequency very flexibly and * precisely (within 5% tolerance limit allowed by HDMI specs). * * For this reason, it is necessary to search the full state space. * Fortunately, thanks to early cycle terminations, performance * is within acceptable limits. */ #define PLLD2_PFD_MIN 12000000 /* 12 MHz */ #define PLLD2_PFD_MAX 38400000 /* 38.4 MHz */ #define PLLD2_VCO_MIN 750000000 /* 750 MHz */ #define PLLD2_VCO_MAX 1500000000 /* 1.5 GHz */ static int plld2_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; uint32_t best_m, best_n, best_p; uint64_t vco, pfd; int64_t err, best_err; struct mnp_bits *mnp_bits; struct pdiv_table *tbl; int p_idx, rv; mnp_bits = &sc->mnp_bits; tbl = sc->pdiv_table; best_err = INT64_MAX; for (p_idx = 0; tbl[p_idx].divider != 0; p_idx++) { p = tbl[p_idx].divider; /* Check constraints */ vco = *fout * p; if (vco < PLLD2_VCO_MIN) continue; if (vco > PLLD2_VCO_MAX) break; for (m = 1; m < (1 << mnp_bits->m_width); m++) { n = (*fout * p * m + fin / 2) / fin; /* Check constraints */ if (n == 0) continue; if (n >= (1 << mnp_bits->n_width)) break; vco = (fin * n) / m; if (vco > PLLD2_VCO_MAX || vco < PLLD2_VCO_MIN) continue; pfd = fin / m; if (pfd > PLLD2_PFD_MAX || vco < PLLD2_PFD_MIN) continue; /* Constraints passed, save best result */ err = *fout - vco / p; if (err < 0) err = -err; if (err < best_err) { best_err = err; best_p = p; best_m = m; best_n = n; } if (err == 0) goto done; } } done: /* * HDMI specification allows 5% pixel clock tolerance, * we will by a slightly stricter */ if (best_err > ((*fout * 100) / 4)) return (ERANGE); if (flags & CLK_SET_DRYRUN) return (0); rv = pll_set_std(sc, fin, fout, flags, best_m, best_n, best_p); /* XXXX Panic for rv == ERANGE ? */ return (rv); } static int pllrefe_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { uint32_t m, n, p; m = 1; p = 1; n = *fout * p * m / fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); return (pll_set_std(sc, fin, fout, flags, m, n, p)); } #define PLLX_PFD_MIN 12000000LL /* 12 MHz */ #define PLLX_PFD_MAX 38400000LL /* 38.4 MHz */ #define PLLX_VCO_MIN 900000000LL /* 0.9 GHz */ #define PLLX_VCO_MAX 3000000000LL /* 3 GHz */ static int pllx_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags) { struct mnp_bits *mnp_bits; uint32_t m, n, p; uint32_t old_m, old_n, old_p; uint32_t reg; int i, rv; mnp_bits = &sc->mnp_bits; get_divisors(sc, &old_m, &old_n, &old_p); old_p = reg_to_pdiv(sc, old_p); /* Pre-divider is fixed, Compute post-divider */ m = old_m; p = 1; while ((*fout * p) < PLLX_VCO_MIN) p++; if ((*fout * p) > PLLX_VCO_MAX) return (ERANGE); n = (*fout * p * m + fin / 2) / fin; dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p); if (m >= (1 << mnp_bits->m_width)) return (ERANGE); if (n >= (1 << mnp_bits->n_width)) return (ERANGE); if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width)) return (ERANGE); if (flags & CLK_SET_DRYRUN) { if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) && (*fout != (((fin / m) * n) /p))) return (ERANGE); *fout = ((fin / m) * n) /p; return (0); } /* If new post-divider is bigger that original, set it now. */ if (p < old_p) { RD4(sc, sc->base_reg, ®); reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift, mnp_bits->p_width); WR4(sc, sc->base_reg, reg); } DELAY(100); /* vvv Program dynamic VCO ramp. vvv */ /* 1 - disable dynamic ramp mode. */ RD4(sc, PLLX_MISC_2, ®); reg &= ~PLLX_MISC_2_EN_DYNRAMP; WR4(sc, PLLX_MISC_2, reg); /* 2 - Setup new ndiv. */ RD4(sc, PLLX_MISC_2, ®); reg &= ~PLLX_MISC_2_NDIV_NEW(~0); reg |= PLLX_MISC_2_NDIV_NEW(n); WR4(sc, PLLX_MISC_2, reg); /* 3 - enable dynamic ramp. */ RD4(sc, PLLX_MISC_2, ®); reg |= PLLX_MISC_2_EN_DYNRAMP; WR4(sc, PLLX_MISC_2, reg); /* 4 - wait for done. */ for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) { RD4(sc, PLLX_MISC_2, ®); if (reg & PLLX_MISC_2_DYNRAMP_DONE) break; DELAY(10); } if (i <= 0) { printf("PLL X dynamic ramp timedout\n"); return (ETIMEDOUT); } /* 5 - copy new ndiv to base register. */ RD4(sc, sc->base_reg, ®); reg = set_masked(reg, n, mnp_bits->n_shift, mnp_bits->n_width); WR4(sc, sc->base_reg, reg); /* 6 - disable dynamic ramp mode. */ RD4(sc, PLLX_MISC_2, ®); reg &= ~PLLX_MISC_2_EN_DYNRAMP; WR4(sc, PLLX_MISC_2, reg); rv = wait_for_lock(sc); if (rv != 0) { printf("PLL X is not locked !!\n"); } /* ^^^ Dynamic ramp done. ^^^ */ /* If new post-divider is smaller that original, set it. */ if (p > old_p) { RD4(sc, sc->base_reg, ®); reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift, mnp_bits->p_width); WR4(sc, sc->base_reg, reg); } *fout = ((fin / m) * n) / p; return (0); } /* Simplified setup for 38.4 MHz clock. */ #define PLLX_STEP_A 0x04 #define PLLX_STEP_B 0x05 static int pllx_init(struct pll_sc *sc) { uint32_t reg; RD4(sc, PLLX_MISC, ®); reg = PLLX_MISC_LOCK_ENABLE; WR4(sc, PLLX_MISC, reg); /* Setup dynamic ramp. */ reg = 0; reg |= PLLX_MISC_2_DYNRAMP_STEPA(PLLX_STEP_A); reg |= PLLX_MISC_2_DYNRAMP_STEPB(PLLX_STEP_B); WR4(sc, PLLX_MISC_2, reg); /* Disable SDM. */ reg = 0; WR4(sc, PLLX_MISC_4, reg); WR4(sc, PLLX_MISC_5, reg); return (0); } static int tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin, uint64_t *fout, int flags, int *stop) { *stop = 1; int rv; struct pll_sc *sc; sc = clknode_get_softc(clknode); dprintf("%s: %s requested freq: %lu, input freq: %lu\n", __func__, clknode_get_name(clknode), *fout, fin); switch (sc->type) { case PLL_A: rv = plla_set_freq(sc, fin, fout, flags); break; case PLL_C: case PLL_C2: case PLL_C3: rv = pllc_set_freq(sc, fin, fout, flags); break; case PLL_C4: rv = pllc4_set_freq(sc, fin, fout, flags); break; case PLL_D2: rv = plld2_set_freq(sc, fin, fout, flags); break; case PLL_DP: rv = plldp_set_freq(sc, fin, fout, flags); break; case PLL_REFE: rv = pllrefe_set_freq(sc, fin, fout, flags); break; case PLL_X: rv = pllx_set_freq(sc, fin, fout, flags); break; case PLL_U: if (*fout == 480000000) /* PLLU is fixed to 480 MHz */ rv = 0; else rv = ERANGE; break; default: rv = ENXIO; break; } return (rv); } static int tegra210_pll_init(struct clknode *clk, device_t dev) { struct pll_sc *sc; uint32_t reg, rv; sc = clknode_get_softc(clk); if (sc->type == PLL_X) { rv = pllx_init(sc); if (rv != 0) return (rv); } /* If PLL is enabled, enable lock detect too. */ RD4(sc, sc->base_reg, ®); if (reg & PLL_BASE_ENABLE) { RD4(sc, sc->misc_reg, ®); reg |= sc->lock_enable; WR4(sc, sc->misc_reg, reg); } if (sc->type == PLL_REFE) { RD4(sc, sc->misc_reg, ®); reg &= ~(1 << 29); /* Disable lock override */ WR4(sc, sc->misc_reg, reg); } clknode_init_parent_idx(clk, 0); return(0); } static int tegra210_pll_recalc(struct clknode *clk, uint64_t *freq) { struct pll_sc *sc; uint32_t m, n, p, pr; uint32_t reg, misc_reg; int locked; sc = clknode_get_softc(clk); RD4(sc, sc->base_reg, ®); RD4(sc, sc->misc_reg, &misc_reg); get_divisors(sc, &m, &n, &pr); /* If VCO is directlu exposed, P divider is handled by external node */ if (sc->flags & PLL_FLAG_VCO_OUT) p = 1; else p = reg_to_pdiv(sc, pr); locked = is_locked(sc); dprintf("%s: %s (0x%08x, 0x%08x) - m: %d, n: %d, p: %d (%d): " "e: %d, r: %d, o: %d - %s\n", __func__, clknode_get_name(clk), reg, misc_reg, m, n, p, pr, (reg >> 30) & 1, (reg >> 29) & 1, (reg >> 28) & 1, locked ? "locked" : "unlocked"); if ((m == 0) || (n == 0) || (p == 0)) { *freq = 0; return (EINVAL); } if (!locked) { *freq = 0; return (0); } *freq = ((*freq / m) * n) / p; return (0); } static int pll_register(struct clkdom *clkdom, struct clk_pll_def *clkdef) { struct clknode *clk; struct pll_sc *sc; clk = clknode_create(clkdom, &tegra210_pll_class, &clkdef->clkdef); if (clk == NULL) return (ENXIO); sc = clknode_get_softc(clk); sc->clkdev = clknode_get_device(clk); sc->type = clkdef->type; sc->base_reg = clkdef->base_reg; sc->misc_reg = clkdef->misc_reg; sc->lock_enable = clkdef->lock_enable; sc->iddq_reg = clkdef->iddq_reg; sc->iddq_mask = clkdef->iddq_mask; sc->flags = clkdef->flags; sc->pdiv_table = clkdef->pdiv_table; sc->mnp_bits = clkdef->mnp_bits; clknode_register(clkdom, clk); return (0); } static void config_utmi_pll(struct tegra210_car_softc *sc) { uint32_t reg; /* * XXX Simplified UTMIP settings for 38.4MHz base clock. */ #define ENABLE_DELAY_COUNT 0x00 #define STABLE_COUNT 0x00 #define ACTIVE_DELAY_COUNT 0x06 #define XTAL_FREQ_COUNT 0x80 CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, ®); reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE; CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg); CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, ®); reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0); reg |= UTMIP_PLL_CFG2_STABLE_COUNT(STABLE_COUNT); reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0); reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(ACTIVE_DELAY_COUNT); CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg); CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, ®); reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0); reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(ENABLE_DELAY_COUNT); reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0); reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(XTAL_FREQ_COUNT); reg |= UTMIP_PLL_CFG1_FORCE_PLLU_POWERUP; CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg); reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN; reg |= UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP; CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg); DELAY(20); /* Setup samplers. */ CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, ®); reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP; reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP; reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN; CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg); /* Powerup UTMIP. */ CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, ®); reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP; reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN; CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg); DELAY(10); /* Prepare UTMIP sequencer. */ CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, ®); reg |= UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET; reg &= ~UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL; CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg); DELAY(10); CLKDEV_READ_4(sc->dev, XUSB_PLL_CFG0, ®); reg &= ~XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY; CLKDEV_WRITE_4(sc->dev, XUSB_PLL_CFG0, reg); DELAY(10); /* HW control of UTMIPLL. */ CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, ®); reg |= UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE; CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg); } void tegra210_init_plls(struct tegra210_car_softc *sc) { int i, rv; for (i = 0; i < nitems(tegra210_pll_sources); i++) { rv = clknode_mux_register(sc->clkdom, tegra210_pll_sources + i); if (rv != 0) panic("clk_mux_register failed"); } for (i = 0; i < nitems(pll_clks); i++) { rv = pll_register(sc->clkdom, pll_clks + i); if (rv != 0) panic("pll_register failed"); } config_utmi_pll(sc); for (i = 0; i < nitems(tegra210_pll_fdivs); i++) { rv = clknode_fixed_register(sc->clkdom, tegra210_pll_fdivs + i); if (rv != 0) panic("clk_fixed_register failed"); } for (i = 0; i < nitems(tegra210_pll_gates); i++) { rv = clknode_gate_register(sc->clkdom, tegra210_pll_gates + i); if (rv != 0) panic("clk_gate_register failed"); } for (i = 0; i < nitems(tegra210_pll_divs); i++) { rv = clknode_div_register(sc->clkdom, tegra210_pll_divs + i); if (rv != 0) panic("clk_div_register failed"); } }