/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019-2020 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Hardware overview.
*
* An incoming transaction from a peripheral device has an address, size,
* attributes and StreamID.
*
* In case of PCI-based devices, StreamID is a PCI rid.
*
* The StreamID is used to select a Stream Table Entry (STE) in a Stream table,
* which contains per-device configuration.
*
* Stream table is a linear or 2-level walk table (this driver supports both).
* Note that a linear table could occupy 1GB or more of memory depending on
* sid_bits value.
*
* STE is used to locate a Context Descriptor, which is a struct in memory
* that describes stages of translation, translation table type, pointer to
* level 0 of page tables, ASID, etc.
*
* Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2):
* o S1 is used for the host machine traffic translation
* o S2 is for a hypervisor
*
* This driver enables S1 stage with standard AArch64 page tables.
*
* Note that SMMU does not share TLB with a main CPU.
* Command queue is used by this driver to Invalidate SMMU TLB, STE cache.
*
* An arm64 SoC could have more than one SMMU instance.
* ACPI IORT table describes which SMMU unit is assigned for a particular
* peripheral device.
*
* Queues.
*
* Register interface and Memory-based circular buffer queues are used
* to inferface SMMU.
*
* These are a Command queue for commands to send to the SMMU and an Event
* queue for event/fault reports from the SMMU. Optionally PRI queue is
* designed for PCIe page requests reception.
*
* Note that not every hardware supports PRI services. For instance they were
* not found in Neoverse N1 SDP machine.
* (This drivers does not implement PRI queue.)
*
* All SMMU queues are arranged as circular buffers in memory. They are used
* in a producer-consumer fashion so that an output queue contains data
* produced by the SMMU and consumed by software.
* An input queue contains data produced by software, consumed by the SMMU.
*
* Interrupts.
*
* Interrupts are not required by this driver for normal operation.
* The standard wired interrupt is only triggered when an event comes from
* the SMMU, which is only in a case of errors (e.g. translation fault).
*/
#include "opt_platform.h"
#include "opt_acpi.h"
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef DEV_ACPI
#include
#include
#endif
#include
#include
#include
#include
#include
#ifdef FDT
#include
#include
#include
#endif
#include "iommu.h"
#include "iommu_if.h"
#include "smmureg.h"
#include "smmuvar.h"
#define STRTAB_L1_SZ_SHIFT 20
#define STRTAB_SPLIT 8
#define STRTAB_L1_DESC_L2PTR_M (0x3fffffffffff << 6)
#define STRTAB_L1_DESC_DWORDS 1
#define STRTAB_STE_DWORDS 8
#define CMDQ_ENTRY_DWORDS 2
#define EVTQ_ENTRY_DWORDS 4
#define PRIQ_ENTRY_DWORDS 2
#define CD_DWORDS 8
#define Q_WRP(q, p) ((p) & (1 << (q)->size_log2))
#define Q_IDX(q, p) ((p) & ((1 << (q)->size_log2) - 1))
#define Q_OVF(p) ((p) & (1 << 31)) /* Event queue overflowed */
#define SMMU_Q_ALIGN (64 * 1024)
#define MAXADDR_48BIT 0xFFFFFFFFFFFFUL
#define MAXADDR_52BIT 0xFFFFFFFFFFFFFUL
static struct resource_spec smmu_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ SYS_RES_IRQ, 3, RF_ACTIVE },
RESOURCE_SPEC_END
};
MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR);
#define dprintf(fmt, ...)
struct smmu_event {
int ident;
char *str;
char *msg;
};
static struct smmu_event events[] = {
{ 0x01, "F_UUT",
"Unsupported Upstream Transaction."},
{ 0x02, "C_BAD_STREAMID",
"Transaction StreamID out of range."},
{ 0x03, "F_STE_FETCH",
"Fetch of STE caused external abort."},
{ 0x04, "C_BAD_STE",
"Used STE invalid."},
{ 0x05, "F_BAD_ATS_TREQ",
"Address Translation Request disallowed for a StreamID "
"and a PCIe ATS Translation Request received."},
{ 0x06, "F_STREAM_DISABLED",
"The STE of a transaction marks non-substream transactions "
"disabled."},
{ 0x07, "F_TRANSL_FORBIDDEN",
"An incoming PCIe transaction is marked Translated but "
"SMMU bypass is disallowed for this StreamID."},
{ 0x08, "C_BAD_SUBSTREAMID",
"Incoming SubstreamID present, but configuration is invalid."},
{ 0x09, "F_CD_FETCH",
"Fetch of CD caused external abort."},
{ 0x0a, "C_BAD_CD",
"Fetched CD invalid."},
{ 0x0b, "F_WALK_EABT",
"An external abort occurred fetching (or updating) "
"a translation table descriptor."},
{ 0x10, "F_TRANSLATION",
"Translation fault."},
{ 0x11, "F_ADDR_SIZE",
"Address Size fault."},
{ 0x12, "F_ACCESS",
"Access flag fault due to AF == 0 in a page or block TTD."},
{ 0x13, "F_PERMISSION",
"Permission fault occurred on page access."},
{ 0x20, "F_TLB_CONFLICT",
"A TLB conflict occurred because of the transaction."},
{ 0x21, "F_CFG_CONFLICT",
"A configuration cache conflict occurred due to "
"the transaction."},
{ 0x24, "E_PAGE_REQUEST",
"Speculative page request hint."},
{ 0x25, "F_VMS_FETCH",
"Fetch of VMS caused external abort."},
{ 0, NULL, NULL },
};
static int
smmu_q_has_space(struct smmu_queue *q)
{
/*
* See 6.3.27 SMMU_CMDQ_PROD
*
* There is space in the queue for additional commands if:
* SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||
* SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
*/
if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) ||
Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
return (1);
return (0);
}
static int
smmu_q_empty(struct smmu_queue *q)
{
if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) &&
Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
return (1);
return (0);
}
static int __unused
smmu_q_consumed(struct smmu_queue *q, uint32_t prod)
{
if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) &&
(Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod)))
return (1);
if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) &&
(Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod)))
return (1);
return (0);
}
static uint32_t
smmu_q_inc_cons(struct smmu_queue *q)
{
uint32_t cons;
uint32_t val;
cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1;
val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons));
return (val);
}
static uint32_t
smmu_q_inc_prod(struct smmu_queue *q)
{
uint32_t prod;
uint32_t val;
prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1;
val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod));
return (val);
}
static int
smmu_write_ack(struct smmu_softc *sc, uint32_t reg,
uint32_t reg_ack, uint32_t val)
{
uint32_t v;
int timeout;
timeout = 100000;
bus_write_4(sc->res[0], reg, val);
do {
v = bus_read_4(sc->res[0], reg_ack);
if (v == val)
break;
} while (timeout--);
if (timeout <= 0) {
device_printf(sc->dev, "Failed to write reg.\n");
return (-1);
}
return (0);
}
static inline int
ilog2(long x)
{
KASSERT(x > 0 && powerof2(x), ("%s: invalid arg %ld", __func__, x));
return (flsl(x) - 1);
}
static int
smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q,
uint32_t prod_off, uint32_t cons_off, uint32_t dwords)
{
int sz;
sz = (1 << q->size_log2) * dwords * 8;
/* Set up the command circular buffer */
q->vaddr = contigmalloc(sz, M_SMMU,
M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0);
if (q->vaddr == NULL) {
device_printf(sc->dev, "failed to allocate %d bytes\n", sz);
return (-1);
}
q->prod_off = prod_off;
q->cons_off = cons_off;
q->paddr = vtophys(q->vaddr);
q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA;
q->base |= q->paddr & Q_BASE_ADDR_M;
q->base |= q->size_log2 << Q_LOG2SIZE_S;
return (0);
}
static int
smmu_init_queues(struct smmu_softc *sc)
{
int err;
/* Command queue. */
err = smmu_init_queue(sc, &sc->cmdq,
SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS);
if (err)
return (ENXIO);
/* Event queue. */
err = smmu_init_queue(sc, &sc->evtq,
SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS);
if (err)
return (ENXIO);
if (!(sc->features & SMMU_FEATURE_PRI))
return (0);
/* PRI queue. */
err = smmu_init_queue(sc, &sc->priq,
SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS);
if (err)
return (ENXIO);
return (0);
}
/*
* Dump 2LVL or linear STE.
*/
static void
smmu_dump_ste(struct smmu_softc *sc, int sid)
{
struct smmu_strtab *strtab;
struct l1_desc *l1_desc;
uint64_t *ste, *l1;
int i;
strtab = &sc->strtab;
if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
i = sid >> STRTAB_SPLIT;
l1 = (void *)((uint64_t)strtab->vaddr +
STRTAB_L1_DESC_DWORDS * 8 * i);
device_printf(sc->dev, "L1 ste == %lx\n", l1[0]);
l1_desc = &strtab->l1[i];
ste = l1_desc->va;
if (ste == NULL) /* L2 is not initialized */
return;
} else {
ste = (void *)((uint64_t)strtab->vaddr +
sid * (STRTAB_STE_DWORDS << 3));
}
/* Dump L2 or linear STE. */
for (i = 0; i < STRTAB_STE_DWORDS; i++)
device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]);
}
static void __unused
smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd)
{
uint64_t *vaddr;
int i;
device_printf(sc->dev, "%s\n", __func__);
vaddr = cd->vaddr;
for (i = 0; i < CD_DWORDS; i++)
device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]);
}
static void
smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt)
{
struct smmu_queue *evtq;
void *entry_addr;
evtq = &sc->evtq;
evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off);
entry_addr = (void *)((uint64_t)evtq->vaddr +
evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8);
memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8);
evtq->lc.cons = smmu_q_inc_cons(evtq);
bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons);
}
static void
smmu_print_event(struct smmu_softc *sc, uint32_t *evt)
{
struct smmu_event *ev;
uintptr_t input_addr;
uint8_t event_id;
device_t dev;
int sid;
int i;
dev = sc->dev;
ev = NULL;
event_id = evt[0] & 0xff;
for (i = 0; events[i].ident != 0; i++) {
if (events[i].ident == event_id) {
ev = &events[i];
break;
}
}
sid = evt[1];
input_addr = evt[5];
input_addr <<= 32;
input_addr |= evt[4];
if (smmu_quirks_check(dev, sid, event_id, input_addr)) {
/* The event is known. Don't print anything. */
return;
}
if (ev) {
device_printf(sc->dev,
"Event %s (%s) received.\n", ev->str, ev->msg);
} else
device_printf(sc->dev, "Event 0x%x received\n", event_id);
device_printf(sc->dev, "SID %x, Input Address: %jx\n",
sid, input_addr);
for (i = 0; i < 8; i++)
device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]);
smmu_dump_ste(sc, sid);
}
static void
make_cmd(struct smmu_softc *sc, uint64_t *cmd,
struct smmu_cmdq_entry *entry)
{
memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8);
cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S;
switch (entry->opcode) {
case CMD_TLBI_NH_VA:
cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M;
if (entry->tlbi.leaf) {
/*
* Leaf flag means that only cached entries
* for the last level of translation table walk
* are required to be invalidated.
*/
cmd[1] |= TLBI_1_LEAF;
}
break;
case CMD_TLBI_NH_ASID:
cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
break;
case CMD_TLBI_NSNH_ALL:
case CMD_TLBI_NH_ALL:
case CMD_TLBI_EL2_ALL:
break;
case CMD_CFGI_CD:
cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S);
/* FALLTROUGH */
case CMD_CFGI_STE:
cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S);
cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S);
break;
case CMD_CFGI_STE_RANGE:
cmd[1] = (31 << CFGI_1_STE_RANGE_S);
break;
case CMD_SYNC:
cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB;
if (entry->sync.msiaddr) {
cmd[0] |= SYNC_0_CS_SIG_IRQ;
cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M);
} else
cmd[0] |= SYNC_0_CS_SIG_SEV;
break;
case CMD_PREFETCH_CONFIG:
cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S);
break;
};
}
static void
smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry)
{
uint64_t cmd[CMDQ_ENTRY_DWORDS];
struct smmu_queue *cmdq;
void *entry_addr;
cmdq = &sc->cmdq;
make_cmd(sc, cmd, entry);
SMMU_LOCK(sc);
/* Ensure that a space is available. */
do {
cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off);
} while (smmu_q_has_space(cmdq) == 0);
/* Write the command to the current prod entry. */
entry_addr = (void *)((uint64_t)cmdq->vaddr +
Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8);
memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8);
/* Increment prod index. */
cmdq->lc.prod = smmu_q_inc_prod(cmdq);
bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod);
SMMU_UNLOCK(sc);
}
static void __unused
smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q)
{
while (1) {
q->lc.val = bus_read_8(sc->res[0], q->prod_off);
if (smmu_q_empty(q))
break;
cpu_spinwait();
}
}
static int
smmu_sync(struct smmu_softc *sc)
{
struct smmu_cmdq_entry cmd;
struct smmu_queue *q;
uint32_t *base;
int timeout;
int prod;
q = &sc->cmdq;
prod = q->lc.prod;
/* Enqueue sync command. */
cmd.opcode = CMD_SYNC;
cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8;
smmu_cmdq_enqueue_cmd(sc, &cmd);
/* Wait for the sync completion. */
base = (void *)((uint64_t)q->vaddr +
Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8);
/*
* It takes around 200 loops (6 instructions each)
* on Neoverse N1 to complete the sync.
*/
timeout = 10000;
do {
if (*base == 0) {
/* MSI write completed. */
break;
}
cpu_spinwait();
} while (timeout--);
if (timeout < 0)
device_printf(sc->dev, "Failed to sync\n");
return (0);
}
static int
smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf)
{
struct smmu_cmdq_entry cmd;
cmd.opcode = CMD_CFGI_CD;
cmd.cfgi.sid = sid;
cmd.cfgi.ssid = ssid;
cmd.cfgi.leaf = leaf;
smmu_cmdq_enqueue_cmd(sc, &cmd);
return (0);
}
static void
smmu_invalidate_all_sid(struct smmu_softc *sc)
{
struct smmu_cmdq_entry cmd;
/* Invalidate cached config */
cmd.opcode = CMD_CFGI_STE_RANGE;
smmu_cmdq_enqueue_cmd(sc, &cmd);
smmu_sync(sc);
}
static void
smmu_tlbi_all(struct smmu_softc *sc)
{
struct smmu_cmdq_entry cmd;
/* Invalidate entire TLB */
cmd.opcode = CMD_TLBI_NSNH_ALL;
smmu_cmdq_enqueue_cmd(sc, &cmd);
smmu_sync(sc);
}
static void
smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid)
{
struct smmu_cmdq_entry cmd;
/* Invalidate TLB for an ASID. */
cmd.opcode = CMD_TLBI_NH_ASID;
cmd.tlbi.asid = asid;
smmu_cmdq_enqueue_cmd(sc, &cmd);
smmu_sync(sc);
}
static void
smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid)
{
struct smmu_cmdq_entry cmd;
/* Invalidate specific range */
cmd.opcode = CMD_TLBI_NH_VA;
cmd.tlbi.asid = asid;
cmd.tlbi.vmid = 0;
cmd.tlbi.leaf = true; /* We change only L3. */
cmd.tlbi.addr = va;
smmu_cmdq_enqueue_cmd(sc, &cmd);
}
static void
smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid)
{
struct smmu_cmdq_entry cmd;
/* Invalidate cached config */
cmd.opcode = CMD_CFGI_STE;
cmd.cfgi.sid = sid;
smmu_cmdq_enqueue_cmd(sc, &cmd);
smmu_sync(sc);
}
static void
smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid)
{
struct smmu_cmdq_entry cmd;
cmd.opcode = CMD_PREFETCH_CONFIG;
cmd.prefetch.sid = sid;
smmu_cmdq_enqueue_cmd(sc, &cmd);
smmu_sync(sc);
}
/*
* Init STE in bypass mode. Traffic is not translated for the sid.
*/
static void
smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste)
{
uint64_t val;
val = STE0_VALID | STE0_CONFIG_BYPASS;
ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS;
ste[2] = 0;
ste[3] = 0;
ste[4] = 0;
ste[5] = 0;
ste[6] = 0;
ste[7] = 0;
smmu_invalidate_sid(sc, sid);
ste[0] = val;
dsb(sy);
smmu_invalidate_sid(sc, sid);
smmu_prefetch_sid(sc, sid);
}
/*
* Enable Stage1 (S1) translation for the sid.
*/
static int
smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd,
uint32_t sid, uint64_t *ste)
{
uint64_t val;
val = STE0_VALID;
/* S1 */
ste[1] = STE1_EATS_FULLATS |
STE1_S1CSH_IS |
STE1_S1CIR_WBRA |
STE1_S1COR_WBRA |
STE1_STRW_NS_EL1;
ste[2] = 0;
ste[3] = 0;
ste[4] = 0;
ste[5] = 0;
ste[6] = 0;
ste[7] = 0;
if (sc->features & SMMU_FEATURE_STALL &&
((sc->features & SMMU_FEATURE_STALL_FORCE) == 0))
ste[1] |= STE1_S1STALLD;
/* Configure STE */
val |= (cd->paddr & STE0_S1CONTEXTPTR_M);
val |= STE0_CONFIG_S1_TRANS;
smmu_invalidate_sid(sc, sid);
/* The STE[0] has to be written in a single blast, last of all. */
ste[0] = val;
dsb(sy);
smmu_invalidate_sid(sc, sid);
smmu_sync_cd(sc, sid, 0, true);
smmu_invalidate_sid(sc, sid);
/* The sid will be used soon most likely. */
smmu_prefetch_sid(sc, sid);
return (0);
}
static uint64_t *
smmu_get_ste_addr(struct smmu_softc *sc, int sid)
{
struct smmu_strtab *strtab;
struct l1_desc *l1_desc;
uint64_t *addr;
strtab = &sc->strtab;
if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
addr = l1_desc->va;
addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
} else {
addr = (void *)((uint64_t)strtab->vaddr +
STRTAB_STE_DWORDS * 8 * sid);
};
return (addr);
}
static int
smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass)
{
uint64_t *addr;
addr = smmu_get_ste_addr(sc, sid);
if (bypass)
smmu_init_ste_bypass(sc, sid, addr);
else
smmu_init_ste_s1(sc, cd, sid, addr);
smmu_sync(sc);
return (0);
}
static void
smmu_deinit_ste(struct smmu_softc *sc, int sid)
{
uint64_t *ste;
ste = smmu_get_ste_addr(sc, sid);
ste[0] = 0;
smmu_invalidate_sid(sc, sid);
smmu_sync_cd(sc, sid, 0, true);
smmu_invalidate_sid(sc, sid);
smmu_sync(sc);
}
static int
smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain)
{
vm_paddr_t paddr;
uint64_t *ptr;
uint64_t val;
vm_size_t size;
struct smmu_cd *cd;
struct smmu_pmap *p;
size = 1 * (CD_DWORDS << 3);
p = &domain->p;
cd = domain->cd = malloc(sizeof(struct smmu_cd),
M_SMMU, M_WAITOK | M_ZERO);
cd->vaddr = contigmalloc(size, M_SMMU,
M_WAITOK | M_ZERO, /* flags */
0, /* low */
(1ul << 40) - 1, /* high */
size, /* alignment */
0); /* boundary */
if (cd->vaddr == NULL) {
device_printf(sc->dev, "Failed to allocate CD\n");
return (ENXIO);
}
cd->size = size;
cd->paddr = vtophys(cd->vaddr);
ptr = cd->vaddr;
val = CD0_VALID;
val |= CD0_AA64;
val |= CD0_R;
val |= CD0_A;
val |= CD0_ASET;
val |= (uint64_t)domain->asid << CD0_ASID_S;
val |= CD0_TG0_4KB;
val |= CD0_EPD1; /* Disable TT1 */
val |= ((64 - sc->ias) << CD0_T0SZ_S);
val |= CD0_IPS_48BITS;
paddr = p->sp_l0_paddr & CD1_TTB0_M;
KASSERT(paddr == p->sp_l0_paddr, ("bad allocation 1"));
ptr[1] = paddr;
ptr[2] = 0;
ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE) |
MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE) |
MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK) |
MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH);
/* Install the CD. */
ptr[0] = val;
return (0);
}
static int
smmu_init_strtab_linear(struct smmu_softc *sc)
{
struct smmu_strtab *strtab;
vm_paddr_t base;
uint32_t size;
uint64_t reg;
strtab = &sc->strtab;
strtab->num_l1_entries = (1 << sc->sid_bits);
size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3);
if (bootverbose)
device_printf(sc->dev,
"%s: linear strtab size %d, num_l1_entries %d\n",
__func__, size, strtab->num_l1_entries);
strtab->vaddr = contigmalloc(size, M_SMMU,
M_WAITOK | M_ZERO, /* flags */
0, /* low */
(1ul << 48) - 1, /* high */
size, /* alignment */
0); /* boundary */
if (strtab->vaddr == NULL) {
device_printf(sc->dev, "failed to allocate strtab\n");
return (ENXIO);
}
reg = STRTAB_BASE_CFG_FMT_LINEAR;
reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S;
strtab->base_cfg = (uint32_t)reg;
base = vtophys(strtab->vaddr);
reg = base & STRTAB_BASE_ADDR_M;
KASSERT(reg == base, ("bad allocation 2"));
reg |= STRTAB_BASE_RA;
strtab->base = reg;
return (0);
}
static int
smmu_init_strtab_2lvl(struct smmu_softc *sc)
{
struct smmu_strtab *strtab;
vm_paddr_t base;
uint64_t reg_base;
uint32_t l1size;
uint32_t size;
uint32_t reg;
int sz;
strtab = &sc->strtab;
size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
size = min(size, sc->sid_bits - STRTAB_SPLIT);
strtab->num_l1_entries = (1 << size);
size += STRTAB_SPLIT;
l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3);
if (bootverbose)
device_printf(sc->dev,
"%s: size %d, l1 entries %d, l1size %d\n",
__func__, size, strtab->num_l1_entries, l1size);
strtab->vaddr = contigmalloc(l1size, M_SMMU,
M_WAITOK | M_ZERO, /* flags */
0, /* low */
(1ul << 48) - 1, /* high */
l1size, /* alignment */
0); /* boundary */
if (strtab->vaddr == NULL) {
device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n");
return (ENOMEM);
}
sz = strtab->num_l1_entries * sizeof(struct l1_desc);
strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO);
if (strtab->l1 == NULL) {
contigfree(strtab->vaddr, l1size, M_SMMU);
return (ENOMEM);
}
reg = STRTAB_BASE_CFG_FMT_2LVL;
reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S;
reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S;
strtab->base_cfg = (uint32_t)reg;
base = vtophys(strtab->vaddr);
reg_base = base & STRTAB_BASE_ADDR_M;
KASSERT(reg_base == base, ("bad allocation 3"));
reg_base |= STRTAB_BASE_RA;
strtab->base = reg_base;
return (0);
}
static int
smmu_init_strtab(struct smmu_softc *sc)
{
int error;
if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE)
error = smmu_init_strtab_2lvl(sc);
else
error = smmu_init_strtab_linear(sc);
return (error);
}
static int
smmu_init_l1_entry(struct smmu_softc *sc, int sid)
{
struct smmu_strtab *strtab;
struct l1_desc *l1_desc;
uint64_t *addr;
uint64_t val;
size_t size;
int i;
strtab = &sc->strtab;
l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
if (l1_desc->va) {
/* Already allocated. */
return (0);
}
size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
l1_desc->span = STRTAB_SPLIT + 1;
l1_desc->size = size;
l1_desc->va = contigmalloc(size, M_SMMU,
M_WAITOK | M_ZERO, /* flags */
0, /* low */
(1ul << 48) - 1, /* high */
size, /* alignment */
0); /* boundary */
if (l1_desc->va == NULL) {
device_printf(sc->dev, "failed to allocate l2 entry\n");
return (ENXIO);
}
l1_desc->pa = vtophys(l1_desc->va);
i = sid >> STRTAB_SPLIT;
addr = (void *)((uint64_t)strtab->vaddr +
STRTAB_L1_DESC_DWORDS * 8 * i);
/* Install the L1 entry. */
val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M;
KASSERT(val == l1_desc->pa, ("bad allocation 4"));
val |= l1_desc->span;
*addr = val;
return (0);
}
static void __unused
smmu_deinit_l1_entry(struct smmu_softc *sc, int sid)
{
struct smmu_strtab *strtab;
struct l1_desc *l1_desc;
uint64_t *addr;
int i;
strtab = &sc->strtab;
i = sid >> STRTAB_SPLIT;
addr = (void *)((uint64_t)strtab->vaddr +
STRTAB_L1_DESC_DWORDS * 8 * i);
*addr = 0;
l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
contigfree(l1_desc->va, l1_desc->size, M_SMMU);
}
static int
smmu_disable(struct smmu_softc *sc)
{
uint32_t reg;
int error;
/* Disable SMMU */
reg = bus_read_4(sc->res[0], SMMU_CR0);
reg &= ~CR0_SMMUEN;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error)
device_printf(sc->dev, "Could not disable SMMU.\n");
return (0);
}
static int
smmu_event_intr(void *arg)
{
uint32_t evt[EVTQ_ENTRY_DWORDS * 2];
struct smmu_softc *sc;
sc = arg;
do {
smmu_evtq_dequeue(sc, evt);
smmu_print_event(sc, evt);
} while (!smmu_q_empty(&sc->evtq));
return (FILTER_HANDLED);
}
static int __unused
smmu_sync_intr(void *arg)
{
struct smmu_softc *sc;
sc = arg;
device_printf(sc->dev, "%s\n", __func__);
return (FILTER_HANDLED);
}
static int
smmu_gerr_intr(void *arg)
{
struct smmu_softc *sc;
sc = arg;
device_printf(sc->dev, "SMMU Global Error\n");
return (FILTER_HANDLED);
}
static int
smmu_enable_interrupts(struct smmu_softc *sc)
{
uint32_t reg;
int error;
/* Disable MSI. */
bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0);
bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0);
bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0);
bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0);
bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0);
bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0);
if (sc->features & CR0_PRIQEN) {
bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0);
bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0);
bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0);
}
/* Disable any interrupts. */
error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0);
if (error) {
device_printf(sc->dev, "Could not disable interrupts.\n");
return (ENXIO);
}
/* Enable interrupts. */
reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
if (sc->features & SMMU_FEATURE_PRI)
reg |= IRQ_CTRL_PRIQ_IRQEN;
error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable interrupts.\n");
return (ENXIO);
}
return (0);
}
#ifdef DEV_ACPI
static void
smmu_configure_intr(struct smmu_softc *sc, struct resource *res)
{
struct intr_map_data_acpi *ad;
struct intr_map_data *data;
data = rman_get_virtual(res);
KASSERT(data != NULL, ("data is NULL"));
if (data->type == INTR_MAP_DATA_ACPI) {
ad = (struct intr_map_data_acpi *)data;
ad->trig = INTR_TRIGGER_EDGE;
ad->pol = INTR_POLARITY_HIGH;
}
}
#endif
static int
smmu_setup_interrupts(struct smmu_softc *sc)
{
device_t dev;
int error;
dev = sc->dev;
#ifdef DEV_ACPI
/*
* Configure SMMU interrupts as EDGE triggered manually
* as ACPI tables carries no information for that.
*/
smmu_configure_intr(sc, sc->res[1]);
/* PRIQ is not in use. */
smmu_configure_intr(sc, sc->res[3]);
smmu_configure_intr(sc, sc->res[4]);
#endif
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC,
smmu_event_intr, NULL, sc, &sc->intr_cookie[0]);
if (error) {
device_printf(dev, "Couldn't setup Event interrupt handler\n");
return (ENXIO);
}
error = bus_setup_intr(dev, sc->res[4], INTR_TYPE_MISC,
smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]);
if (error) {
device_printf(dev, "Couldn't setup Gerr interrupt handler\n");
return (ENXIO);
}
return (0);
}
static int
smmu_reset(struct smmu_softc *sc)
{
struct smmu_cmdq_entry cmd;
struct smmu_strtab *strtab;
int error;
int reg;
reg = bus_read_4(sc->res[0], SMMU_CR0);
if (reg & CR0_SMMUEN)
device_printf(sc->dev,
"%s: Warning: SMMU is enabled\n", __func__);
error = smmu_disable(sc);
if (error)
device_printf(sc->dev,
"%s: Could not disable SMMU.\n", __func__);
if (smmu_enable_interrupts(sc) != 0) {
device_printf(sc->dev, "Could not enable interrupts.\n");
return (ENXIO);
}
reg = CR1_TABLE_SH_IS |
CR1_TABLE_OC_WBC |
CR1_TABLE_IC_WBC |
CR1_QUEUE_SH_IS |
CR1_QUEUE_OC_WBC |
CR1_QUEUE_IC_WBC;
bus_write_4(sc->res[0], SMMU_CR1, reg);
reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
bus_write_4(sc->res[0], SMMU_CR2, reg);
/* Stream table. */
strtab = &sc->strtab;
bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base);
bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg);
/* Command queue. */
bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base);
bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod);
bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons);
reg = CR0_CMDQEN;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable command queue\n");
return (ENXIO);
}
/* Invalidate cached configuration. */
smmu_invalidate_all_sid(sc);
if (sc->features & SMMU_FEATURE_HYP) {
cmd.opcode = CMD_TLBI_EL2_ALL;
smmu_cmdq_enqueue_cmd(sc, &cmd);
};
/* Invalidate TLB. */
smmu_tlbi_all(sc);
/* Event queue */
bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base);
bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod);
bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons);
reg |= CR0_EVENTQEN;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable event queue\n");
return (ENXIO);
}
if (sc->features & SMMU_FEATURE_PRI) {
/* PRI queue */
bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base);
bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod);
bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons);
reg |= CR0_PRIQEN;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable PRI queue\n");
return (ENXIO);
}
}
if (sc->features & SMMU_FEATURE_ATS) {
reg |= CR0_ATSCHK;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable ATS check.\n");
return (ENXIO);
}
}
reg |= CR0_SMMUEN;
error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
if (error) {
device_printf(sc->dev, "Could not enable SMMU.\n");
return (ENXIO);
}
return (0);
}
static int
smmu_check_features(struct smmu_softc *sc)
{
uint32_t reg;
uint32_t val;
sc->features = 0;
reg = bus_read_4(sc->res[0], SMMU_IDR0);
if (reg & IDR0_ST_LVL_2) {
if (bootverbose)
device_printf(sc->dev,
"2-level stream table supported.\n");
sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE;
}
if (reg & IDR0_CD2L) {
if (bootverbose)
device_printf(sc->dev,
"2-level CD table supported.\n");
sc->features |= SMMU_FEATURE_2_LVL_CD;
}
switch (reg & IDR0_TTENDIAN_M) {
case IDR0_TTENDIAN_MIXED:
if (bootverbose)
device_printf(sc->dev, "Mixed endianess supported.\n");
sc->features |= SMMU_FEATURE_TT_LE;
sc->features |= SMMU_FEATURE_TT_BE;
break;
case IDR0_TTENDIAN_LITTLE:
if (bootverbose)
device_printf(sc->dev,
"Little endian supported only.\n");
sc->features |= SMMU_FEATURE_TT_LE;
break;
case IDR0_TTENDIAN_BIG:
if (bootverbose)
device_printf(sc->dev, "Big endian supported only.\n");
sc->features |= SMMU_FEATURE_TT_BE;
break;
default:
device_printf(sc->dev, "Unsupported endianness.\n");
return (ENXIO);
}
if (reg & IDR0_SEV)
sc->features |= SMMU_FEATURE_SEV;
if (reg & IDR0_MSI) {
if (bootverbose)
device_printf(sc->dev, "MSI feature present.\n");
sc->features |= SMMU_FEATURE_MSI;
}
if (reg & IDR0_HYP) {
if (bootverbose)
device_printf(sc->dev, "HYP feature present.\n");
sc->features |= SMMU_FEATURE_HYP;
}
if (reg & IDR0_ATS)
sc->features |= SMMU_FEATURE_ATS;
if (reg & IDR0_PRI)
sc->features |= SMMU_FEATURE_PRI;
switch (reg & IDR0_STALL_MODEL_M) {
case IDR0_STALL_MODEL_FORCE:
/* Stall is forced. */
sc->features |= SMMU_FEATURE_STALL_FORCE;
/* FALLTHROUGH */
case IDR0_STALL_MODEL_STALL:
sc->features |= SMMU_FEATURE_STALL;
break;
}
/* Grab translation stages supported. */
if (reg & IDR0_S1P) {
if (bootverbose)
device_printf(sc->dev,
"Stage 1 translation supported.\n");
sc->features |= SMMU_FEATURE_S1P;
}
if (reg & IDR0_S2P) {
if (bootverbose)
device_printf(sc->dev,
"Stage 2 translation supported.\n");
sc->features |= SMMU_FEATURE_S2P;
}
switch (reg & IDR0_TTF_M) {
case IDR0_TTF_ALL:
case IDR0_TTF_AA64:
sc->ias = 40;
break;
default:
device_printf(sc->dev, "No AArch64 table format support.\n");
return (ENXIO);
}
if (reg & IDR0_ASID16)
sc->asid_bits = 16;
else
sc->asid_bits = 8;
if (bootverbose)
device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits);
if (reg & IDR0_VMID16)
sc->vmid_bits = 16;
else
sc->vmid_bits = 8;
reg = bus_read_4(sc->res[0], SMMU_IDR1);
if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
device_printf(sc->dev,
"Embedded implementations not supported by this driver.\n");
return (ENXIO);
}
val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S;
sc->cmdq.size_log2 = val;
if (bootverbose)
device_printf(sc->dev, "CMD queue bits %d\n", val);
val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S;
sc->evtq.size_log2 = val;
if (bootverbose)
device_printf(sc->dev, "EVENT queue bits %d\n", val);
if (sc->features & SMMU_FEATURE_PRI) {
val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S;
sc->priq.size_log2 = val;
if (bootverbose)
device_printf(sc->dev, "PRI queue bits %d\n", val);
}
sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S;
sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S;
if (sc->sid_bits <= STRTAB_SPLIT)
sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE;
if (bootverbose) {
device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits);
device_printf(sc->dev, "SID bits %d\n", sc->sid_bits);
}
/* IDR3 */
reg = bus_read_4(sc->res[0], SMMU_IDR3);
if (reg & IDR3_RIL)
sc->features |= SMMU_FEATURE_RANGE_INV;
/* IDR5 */
reg = bus_read_4(sc->res[0], SMMU_IDR5);
switch (reg & IDR5_OAS_M) {
case IDR5_OAS_32:
sc->oas = 32;
break;
case IDR5_OAS_36:
sc->oas = 36;
break;
case IDR5_OAS_40:
sc->oas = 40;
break;
case IDR5_OAS_42:
sc->oas = 42;
break;
case IDR5_OAS_44:
sc->oas = 44;
break;
case IDR5_OAS_48:
sc->oas = 48;
break;
case IDR5_OAS_52:
sc->oas = 52;
break;
}
sc->pgsizes = 0;
if (reg & IDR5_GRAN64K)
sc->pgsizes |= 64 * 1024;
if (reg & IDR5_GRAN16K)
sc->pgsizes |= 16 * 1024;
if (reg & IDR5_GRAN4K)
sc->pgsizes |= 4 * 1024;
if ((reg & IDR5_VAX_M) == IDR5_VAX_52)
sc->features |= SMMU_FEATURE_VAX;
return (0);
}
static void
smmu_init_asids(struct smmu_softc *sc)
{
sc->asid_set_size = (1 << sc->asid_bits);
sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK);
mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN);
}
static int
smmu_asid_alloc(struct smmu_softc *sc, int *new_asid)
{
mtx_lock_spin(&sc->asid_set_mutex);
bit_ffc(sc->asid_set, sc->asid_set_size, new_asid);
if (*new_asid == -1) {
mtx_unlock_spin(&sc->asid_set_mutex);
return (ENOMEM);
}
bit_set(sc->asid_set, *new_asid);
mtx_unlock_spin(&sc->asid_set_mutex);
return (0);
}
static void
smmu_asid_free(struct smmu_softc *sc, int asid)
{
mtx_lock_spin(&sc->asid_set_mutex);
bit_clear(sc->asid_set, asid);
mtx_unlock_spin(&sc->asid_set_mutex);
}
/*
* Device interface.
*/
int
smmu_attach(device_t dev)
{
struct smmu_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF);
error = smmu_setup_interrupts(sc);
if (error) {
bus_release_resources(dev, smmu_spec, sc->res);
return (ENXIO);
}
error = smmu_check_features(sc);
if (error) {
device_printf(dev, "Some features are required "
"but not supported by hardware.\n");
return (ENXIO);
}
smmu_init_asids(sc);
error = smmu_init_queues(sc);
if (error) {
device_printf(dev, "Couldn't allocate queues.\n");
return (ENXIO);
}
error = smmu_init_strtab(sc);
if (error) {
device_printf(dev, "Couldn't allocate strtab.\n");
return (ENXIO);
}
error = smmu_reset(sc);
if (error) {
device_printf(dev, "Couldn't reset SMMU.\n");
return (ENXIO);
}
return (0);
}
int
smmu_detach(device_t dev)
{
struct smmu_softc *sc;
sc = device_get_softc(dev);
bus_release_resources(dev, smmu_spec, sc->res);
return (0);
}
static int
smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct smmu_softc *sc;
sc = device_get_softc(dev);
device_printf(sc->dev, "%s\n", __func__);
return (ENOENT);
}
static int
smmu_unmap(device_t dev, struct iommu_domain *iodom,
vm_offset_t va, bus_size_t size)
{
struct smmu_domain *domain;
struct smmu_softc *sc;
int err;
int i;
sc = device_get_softc(dev);
domain = (struct smmu_domain *)iodom;
err = 0;
dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid);
for (i = 0; i < size; i += PAGE_SIZE) {
if (smmu_pmap_remove(&domain->p, va) == 0) {
/* pmap entry removed, invalidate TLB. */
smmu_tlbi_va(sc, va, domain->asid);
} else {
err = ENOENT;
break;
}
va += PAGE_SIZE;
}
smmu_sync(sc);
return (err);
}
static int
smmu_map(device_t dev, struct iommu_domain *iodom,
vm_offset_t va, vm_page_t *ma, vm_size_t size,
vm_prot_t prot)
{
struct smmu_domain *domain;
struct smmu_softc *sc;
vm_paddr_t pa;
int error;
int i;
sc = device_get_softc(dev);
domain = (struct smmu_domain *)iodom;
dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size,
domain->asid);
for (i = 0; size > 0; size -= PAGE_SIZE) {
pa = VM_PAGE_TO_PHYS(ma[i++]);
error = smmu_pmap_enter(&domain->p, va, pa, prot, 0);
if (error)
return (error);
smmu_tlbi_va(sc, va, domain->asid);
va += PAGE_SIZE;
}
smmu_sync(sc);
return (0);
}
static struct iommu_domain *
smmu_domain_alloc(device_t dev, struct iommu_unit *iommu)
{
struct iommu_domain *iodom;
struct smmu_domain *domain;
struct smmu_unit *unit;
struct smmu_softc *sc;
int error;
int new_asid;
sc = device_get_softc(dev);
unit = (struct smmu_unit *)iommu;
domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO);
error = smmu_asid_alloc(sc, &new_asid);
if (error) {
free(domain, M_SMMU);
device_printf(sc->dev,
"Could not allocate ASID for a new domain.\n");
return (NULL);
}
domain->asid = (uint16_t)new_asid;
smmu_pmap_pinit(&domain->p);
error = smmu_init_cd(sc, domain);
if (error) {
free(domain, M_SMMU);
device_printf(sc->dev, "Could not initialize CD\n");
return (NULL);
}
smmu_tlbi_asid(sc, domain->asid);
LIST_INIT(&domain->ctx_list);
IOMMU_LOCK(iommu);
LIST_INSERT_HEAD(&unit->domain_list, domain, next);
IOMMU_UNLOCK(iommu);
iodom = &domain->iodom;
/*
* Use 48-bit address space regardless of VAX bit
* as we need 64k IOMMU_PAGE_SIZE for 52-bit space.
*/
iodom->end = MAXADDR_48BIT;
return (iodom);
}
static void
smmu_domain_free(device_t dev, struct iommu_domain *iodom)
{
struct smmu_domain *domain;
struct smmu_softc *sc;
struct smmu_cd *cd;
sc = device_get_softc(dev);
domain = (struct smmu_domain *)iodom;
LIST_REMOVE(domain, next);
cd = domain->cd;
smmu_pmap_remove_pages(&domain->p);
smmu_pmap_release(&domain->p);
smmu_tlbi_asid(sc, domain->asid);
smmu_asid_free(sc, domain->asid);
contigfree(cd->vaddr, cd->size, M_SMMU);
free(cd, M_SMMU);
free(domain, M_SMMU);
}
static int
smmu_set_buswide(device_t dev, struct smmu_domain *domain,
struct smmu_ctx *ctx)
{
struct smmu_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < PCI_SLOTMAX; i++)
smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass);
return (0);
}
static int
smmu_pci_get_sid(device_t child, u_int *xref0, u_int *sid0)
{
struct pci_id_ofw_iommu pi;
int err;
err = pci_get_id(child, PCI_ID_OFW_IOMMU, (uintptr_t *)&pi);
if (err == 0) {
if (sid0)
*sid0 = pi.id;
if (xref0)
*xref0 = pi.xref;
}
return (err);
}
static struct iommu_ctx *
smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child,
bool disabled)
{
struct smmu_domain *domain;
struct smmu_ctx *ctx;
domain = (struct smmu_domain *)iodom;
ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO);
ctx->dev = child;
ctx->domain = domain;
if (disabled)
ctx->bypass = true;
IOMMU_DOMAIN_LOCK(iodom);
LIST_INSERT_HEAD(&domain->ctx_list, ctx, next);
IOMMU_DOMAIN_UNLOCK(iodom);
return (&ctx->ioctx);
}
static int
smmu_ctx_init(device_t dev, struct iommu_ctx *ioctx)
{
struct smmu_domain *domain;
struct iommu_domain *iodom;
struct smmu_softc *sc;
struct smmu_ctx *ctx;
devclass_t pci_class;
u_int sid;
int err;
ctx = (struct smmu_ctx *)ioctx;
sc = device_get_softc(dev);
domain = ctx->domain;
iodom = (struct iommu_domain *)domain;
pci_class = devclass_find("pci");
if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) {
err = smmu_pci_get_sid(ctx->dev, NULL, &sid);
if (err)
return (err);
ioctx->rid = pci_get_rid(dev);
ctx->sid = sid;
ctx->vendor = pci_get_vendor(ctx->dev);
ctx->device = pci_get_device(ctx->dev);
}
if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
err = smmu_init_l1_entry(sc, ctx->sid);
if (err)
return (err);
}
/*
* Neoverse N1 SDP:
* 0x800 xhci
* 0x700 re
* 0x600 sata
*/
smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass);
if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class)
if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev)))
smmu_set_buswide(dev, domain, ctx);
return (0);
}
static void
smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx)
{
struct smmu_softc *sc;
struct smmu_ctx *ctx;
IOMMU_ASSERT_LOCKED(ioctx->domain->iommu);
sc = device_get_softc(dev);
ctx = (struct smmu_ctx *)ioctx;
smmu_deinit_ste(sc, ctx->sid);
LIST_REMOVE(ctx, next);
free(ctx, M_SMMU);
}
struct smmu_ctx *
smmu_ctx_lookup_by_sid(device_t dev, u_int sid)
{
struct smmu_softc *sc;
struct smmu_domain *domain;
struct smmu_unit *unit;
struct smmu_ctx *ctx;
sc = device_get_softc(dev);
unit = &sc->unit;
LIST_FOREACH(domain, &unit->domain_list, next) {
LIST_FOREACH(ctx, &domain->ctx_list, next) {
if (ctx->sid == sid)
return (ctx);
}
}
return (NULL);
}
static struct iommu_ctx *
smmu_ctx_lookup(device_t dev, device_t child)
{
struct iommu_unit *iommu __diagused;
struct smmu_softc *sc;
struct smmu_domain *domain;
struct smmu_unit *unit;
struct smmu_ctx *ctx;
sc = device_get_softc(dev);
unit = &sc->unit;
iommu = &unit->iommu;
IOMMU_ASSERT_LOCKED(iommu);
LIST_FOREACH(domain, &unit->domain_list, next) {
IOMMU_DOMAIN_LOCK(&domain->iodom);
LIST_FOREACH(ctx, &domain->ctx_list, next) {
if (ctx->dev == child) {
IOMMU_DOMAIN_UNLOCK(&domain->iodom);
return (&ctx->ioctx);
}
}
IOMMU_DOMAIN_UNLOCK(&domain->iodom);
}
return (NULL);
}
static int
smmu_find(device_t dev, device_t child)
{
struct smmu_softc *sc;
u_int xref;
int err;
sc = device_get_softc(dev);
err = smmu_pci_get_sid(child, &xref, NULL);
if (err)
return (ENOENT);
/* Check if xref is ours. */
if (xref != sc->xref)
return (EFAULT);
return (0);
}
#ifdef FDT
static int
smmu_ofw_md_data(device_t dev, struct iommu_ctx *ioctx, pcell_t *cells,
int ncells)
{
struct smmu_ctx *ctx;
ctx = (struct smmu_ctx *)ioctx;
if (ncells != 1)
return (-1);
ctx->sid = cells[0];
return (0);
}
#endif
static device_method_t smmu_methods[] = {
/* Device interface */
DEVMETHOD(device_detach, smmu_detach),
/* SMMU interface */
DEVMETHOD(iommu_find, smmu_find),
DEVMETHOD(iommu_map, smmu_map),
DEVMETHOD(iommu_unmap, smmu_unmap),
DEVMETHOD(iommu_domain_alloc, smmu_domain_alloc),
DEVMETHOD(iommu_domain_free, smmu_domain_free),
DEVMETHOD(iommu_ctx_alloc, smmu_ctx_alloc),
DEVMETHOD(iommu_ctx_init, smmu_ctx_init),
DEVMETHOD(iommu_ctx_free, smmu_ctx_free),
DEVMETHOD(iommu_ctx_lookup, smmu_ctx_lookup),
#ifdef FDT
DEVMETHOD(iommu_ofw_md_data, smmu_ofw_md_data),
#endif
/* Bus interface */
DEVMETHOD(bus_read_ivar, smmu_read_ivar),
/* End */
DEVMETHOD_END
};
DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc));