/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020-2021 Ruslan Bukin
* Copyright (c) 2014-2021 Andrew Turner
* Copyright (c) 2014-2016 The FreeBSD Foundation
* All rights reserved.
*
* This work was supported by Innovate UK project 105694, "Digital Security
* by Design (DSbD) Technology Platform Prototype".
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps for ARM SMMUv3 and ARM Mali GPU.
*/
#include "opt_vm.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define IOMMU_PAGE_SIZE 4096
#define NL0PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
#define NL1PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
#define NL2PG (IOMMU_PAGE_SIZE/(sizeof (pd_entry_t)))
#define NL3PG (IOMMU_PAGE_SIZE/(sizeof (pt_entry_t)))
#define NUL0E IOMMU_L0_ENTRIES
#define NUL1E (NUL0E * NL1PG)
#define NUL2E (NUL1E * NL2PG)
#define iommu_l0_pindex(v) (NUL2E + NUL1E + ((v) >> IOMMU_L0_SHIFT))
#define iommu_l1_pindex(v) (NUL2E + ((v) >> IOMMU_L1_SHIFT))
#define iommu_l2_pindex(v) ((v) >> IOMMU_L2_SHIFT)
/* This code assumes all L1 DMAP entries will be used */
CTASSERT((DMAP_MIN_ADDRESS & ~IOMMU_L0_OFFSET) == DMAP_MIN_ADDRESS);
CTASSERT((DMAP_MAX_ADDRESS & ~IOMMU_L0_OFFSET) == DMAP_MAX_ADDRESS);
static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex);
static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct spglist *free);
/*
* These load the old table data and store the new value.
* They need to be atomic as the System MMU may write to the table at
* the same time as the CPU.
*/
#define pmap_load(table) (*table)
#define pmap_clear(table) atomic_store_64(table, 0)
#define pmap_store(table, entry) atomic_store_64(table, entry)
/********************/
/* Inline functions */
/********************/
static __inline pd_entry_t *
pmap_l0(pmap_t pmap, vm_offset_t va)
{
return (&pmap->pm_l0[iommu_l0_index(va)]);
}
static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
{
pd_entry_t *l1;
l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
return (&l1[iommu_l1_index(va)]);
}
static __inline pd_entry_t *
pmap_l1(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l0;
l0 = pmap_l0(pmap, va);
if ((pmap_load(l0) & ATTR_DESCR_MASK) != IOMMU_L0_TABLE)
return (NULL);
return (pmap_l0_to_l1(l0, va));
}
static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
{
pd_entry_t l1, *l2p;
l1 = pmap_load(l1p);
/*
* The valid bit may be clear if pmap_update_entry() is concurrently
* modifying the entry, so for KVA only the entry type may be checked.
*/
KASSERT(va >= VM_MAX_USER_ADDRESS || (l1 & ATTR_DESCR_VALID) != 0,
("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
l2p = (pd_entry_t *)PHYS_TO_DMAP(l1 & ~ATTR_MASK);
return (&l2p[iommu_l2_index(va)]);
}
static __inline pd_entry_t *
pmap_l2(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *l1;
l1 = pmap_l1(pmap, va);
if ((pmap_load(l1) & ATTR_DESCR_MASK) != IOMMU_L1_TABLE)
return (NULL);
return (pmap_l1_to_l2(l1, va));
}
static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
{
pd_entry_t l2;
pt_entry_t *l3p;
l2 = pmap_load(l2p);
/*
* The valid bit may be clear if pmap_update_entry() is concurrently
* modifying the entry, so for KVA only the entry type may be checked.
*/
KASSERT(va >= VM_MAX_USER_ADDRESS || (l2 & ATTR_DESCR_VALID) != 0,
("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
l3p = (pt_entry_t *)PHYS_TO_DMAP(l2 & ~ATTR_MASK);
return (&l3p[iommu_l3_index(va)]);
}
/*
* Returns the lowest valid pde for a given virtual address.
* The next level may or may not point to a valid page or block.
*/
static __inline pd_entry_t *
pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
{
pd_entry_t *l0, *l1, *l2, desc;
l0 = pmap_l0(pmap, va);
desc = pmap_load(l0) & ATTR_DESCR_MASK;
if (desc != IOMMU_L0_TABLE) {
*level = -1;
return (NULL);
}
l1 = pmap_l0_to_l1(l0, va);
desc = pmap_load(l1) & ATTR_DESCR_MASK;
if (desc != IOMMU_L1_TABLE) {
*level = 0;
return (l0);
}
l2 = pmap_l1_to_l2(l1, va);
desc = pmap_load(l2) & ATTR_DESCR_MASK;
if (desc != IOMMU_L2_TABLE) {
*level = 1;
return (l1);
}
*level = 2;
return (l2);
}
/*
* Returns the lowest valid pte block or table entry for a given virtual
* address. If there are no valid entries return NULL and set the level to
* the first invalid level.
*/
static __inline pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
{
pd_entry_t *l1, *l2, desc;
pt_entry_t *l3;
l1 = pmap_l1(pmap, va);
if (l1 == NULL) {
*level = 0;
return (NULL);
}
desc = pmap_load(l1) & ATTR_DESCR_MASK;
if (desc == IOMMU_L1_BLOCK) {
*level = 1;
return (l1);
}
if (desc != IOMMU_L1_TABLE) {
*level = 1;
return (NULL);
}
l2 = pmap_l1_to_l2(l1, va);
desc = pmap_load(l2) & ATTR_DESCR_MASK;
if (desc == IOMMU_L2_BLOCK) {
*level = 2;
return (l2);
}
if (desc != IOMMU_L2_TABLE) {
*level = 2;
return (NULL);
}
*level = 3;
l3 = pmap_l2_to_l3(l2, va);
if ((pmap_load(l3) & ATTR_DESCR_MASK) != IOMMU_L3_PAGE)
return (NULL);
return (l3);
}
static __inline int
pmap_l3_valid(pt_entry_t l3)
{
return ((l3 & ATTR_DESCR_MASK) == IOMMU_L3_PAGE);
}
CTASSERT(IOMMU_L1_BLOCK == IOMMU_L2_BLOCK);
static __inline void
pmap_resident_count_inc(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pmap->pm_stats.resident_count += count;
}
static __inline void
pmap_resident_count_dec(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(pmap->pm_stats.resident_count >= count,
("pmap %p resident count underflow %ld %d", pmap,
pmap->pm_stats.resident_count, count));
pmap->pm_stats.resident_count -= count;
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* Schedule the specified unused page table page to be freed. Specifically,
* add the page to the specified list of pages that will be released to the
* physical memory manager after the TLB has been updated.
*/
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
boolean_t set_PG_ZERO)
{
if (set_PG_ZERO)
m->flags |= PG_ZERO;
else
m->flags &= ~PG_ZERO;
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* Decrements a page table page's reference count, which is used to record the
* number of valid page table entries within the page. If the reference count
* drops to zero, then the page table page is unmapped. Returns TRUE if the
* page table page was unmapped and FALSE otherwise.
*/
static inline boolean_t
pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
--m->ref_count;
if (m->ref_count == 0) {
_pmap_unwire_l3(pmap, va, m, free);
return (TRUE);
} else
return (FALSE);
}
static void
_pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* unmap the page table page
*/
if (m->pindex >= (NUL2E + NUL1E)) {
/* l1 page */
pd_entry_t *l0;
l0 = pmap_l0(pmap, va);
pmap_clear(l0);
} else if (m->pindex >= NUL2E) {
/* l2 page */
pd_entry_t *l1;
l1 = pmap_l1(pmap, va);
pmap_clear(l1);
} else {
/* l3 page */
pd_entry_t *l2;
l2 = pmap_l2(pmap, va);
pmap_clear(l2);
}
pmap_resident_count_dec(pmap, 1);
if (m->pindex < NUL2E) {
/* We just released an l3, unhold the matching l2 */
pd_entry_t *l1, tl1;
vm_page_t l2pg;
l1 = pmap_l1(pmap, va);
tl1 = pmap_load(l1);
l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
pmap_unwire_l3(pmap, va, l2pg, free);
} else if (m->pindex < (NUL2E + NUL1E)) {
/* We just released an l2, unhold the matching l1 */
pd_entry_t *l0, tl0;
vm_page_t l1pg;
l0 = pmap_l0(pmap, va);
tl0 = pmap_load(l0);
l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
pmap_unwire_l3(pmap, va, l1pg, free);
}
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
pmap_add_delayed_free_list(m, free, TRUE);
}
static int
iommu_pmap_pinit_levels(pmap_t pmap, int levels)
{
vm_page_t m;
/*
* allocate the l0 page
*/
m = vm_page_alloc_noobj(VM_ALLOC_WAITOK | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m);
pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
vm_radix_init(&pmap->pm_root);
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
MPASS(levels == 3 || levels == 4);
pmap->pm_levels = levels;
/*
* Allocate the level 1 entry to use as the root. This will increase
* the refcount on the level 1 page so it won't be removed until
* pmap_release() is called.
*/
if (pmap->pm_levels == 3) {
PMAP_LOCK(pmap);
m = _pmap_alloc_l3(pmap, NUL2E + NUL1E);
PMAP_UNLOCK(pmap);
}
pmap->pm_ttbr = VM_PAGE_TO_PHYS(m);
return (1);
}
int
iommu_pmap_pinit(pmap_t pmap)
{
return (iommu_pmap_pinit_levels(pmap, 4));
}
/*
* This routine is called if the desired page table page does not exist.
*
* If page table page allocation fails, this routine may sleep before
* returning NULL. It sleeps only if a lock pointer was given.
*
* Note: If a page allocation fails at page table level two or three,
* one or two pages may be held during the wait, only to be released
* afterwards. This conservative approach is easily argued to avoid
* race conditions.
*/
static vm_page_t
_pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex)
{
vm_page_t m, l1pg, l2pg;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Allocate a page table page.
*/
if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
m->pindex = ptepindex;
/*
* Because of AArch64's weak memory consistency model, we must have a
* barrier here to ensure that the stores for zeroing "m", whether by
* pmap_zero_page() or an earlier function, are visible before adding
* "m" to the page table. Otherwise, a page table walk by another
* processor's MMU could see the mapping to "m" and a stale, non-zero
* PTE within "m".
*/
dmb(ishst);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
if (ptepindex >= (NUL2E + NUL1E)) {
pd_entry_t *l0;
vm_pindex_t l0index;
l0index = ptepindex - (NUL2E + NUL1E);
l0 = &pmap->pm_l0[l0index];
pmap_store(l0, VM_PAGE_TO_PHYS(m) | IOMMU_L0_TABLE);
} else if (ptepindex >= NUL2E) {
vm_pindex_t l0index, l1index;
pd_entry_t *l0, *l1;
pd_entry_t tl0;
l1index = ptepindex - NUL2E;
l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT;
l0 = &pmap->pm_l0[l0index];
tl0 = pmap_load(l0);
if (tl0 == 0) {
/* recurse for allocating page dir */
if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index)
== NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
} else {
l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
l1pg->ref_count++;
}
l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
l1 = &l1[ptepindex & Ln_ADDR_MASK];
pmap_store(l1, VM_PAGE_TO_PHYS(m) | IOMMU_L1_TABLE);
} else {
vm_pindex_t l0index, l1index;
pd_entry_t *l0, *l1, *l2;
pd_entry_t tl0, tl1;
l1index = ptepindex >> Ln_ENTRIES_SHIFT;
l0index = l1index >> IOMMU_L0_ENTRIES_SHIFT;
l0 = &pmap->pm_l0[l0index];
tl0 = pmap_load(l0);
if (tl0 == 0) {
/* recurse for allocating page dir */
if (_pmap_alloc_l3(pmap, NUL2E + l1index) == NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
tl0 = pmap_load(l0);
l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
l1 = &l1[l1index & Ln_ADDR_MASK];
} else {
l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
l1 = &l1[l1index & Ln_ADDR_MASK];
tl1 = pmap_load(l1);
if (tl1 == 0) {
/* recurse for allocating page dir */
if (_pmap_alloc_l3(pmap, NUL2E + l1index)
== NULL) {
vm_page_unwire_noq(m);
vm_page_free_zero(m);
return (NULL);
}
} else {
l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
l2pg->ref_count++;
}
}
l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
l2 = &l2[ptepindex & Ln_ADDR_MASK];
pmap_store(l2, VM_PAGE_TO_PHYS(m) | IOMMU_L2_TABLE);
}
pmap_resident_count_inc(pmap, 1);
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
iommu_pmap_release(pmap_t pmap)
{
boolean_t rv;
struct spglist free;
vm_page_t m;
if (pmap->pm_levels != 4) {
KASSERT(pmap->pm_stats.resident_count == 1,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID,
("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0]));
SLIST_INIT(&free);
m = PHYS_TO_VM_PAGE(pmap->pm_ttbr);
PMAP_LOCK(pmap);
rv = pmap_unwire_l3(pmap, 0, m, &free);
PMAP_UNLOCK(pmap);
MPASS(rv == TRUE);
vm_page_free_pages_toq(&free, true);
}
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
KASSERT(vm_radix_is_empty(&pmap->pm_root),
("pmap_release: pmap has reserved page table page(s)"));
m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
vm_page_unwire_noq(m);
vm_page_free_zero(m);
}
/***************************************************
* page management routines.
***************************************************/
/*
* Add a single Mali GPU entry. This function does not sleep.
*/
int
pmap_gpu_enter(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
vm_prot_t prot, u_int flags)
{
pd_entry_t *pde;
pt_entry_t new_l3, orig_l3;
pt_entry_t *l3;
vm_page_t mpte;
pd_entry_t *l1p;
pd_entry_t *l2p;
int lvl;
int rv;
KASSERT(pmap != kernel_pmap, ("kernel pmap used for GPU"));
KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space"));
KASSERT((va & PAGE_MASK) == 0, ("va is misaligned"));
KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
new_l3 = (pt_entry_t)(pa | ATTR_SH(ATTR_SH_IS) | IOMMU_L3_BLOCK);
if ((prot & VM_PROT_WRITE) != 0)
new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
if ((prot & VM_PROT_READ) != 0)
new_l3 |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
if ((prot & VM_PROT_EXECUTE) == 0)
new_l3 |= ATTR_S2_XN(ATTR_S2_XN_ALL);
CTR2(KTR_PMAP, "pmap_gpu_enter: %.16lx -> %.16lx", va, pa);
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
retry:
pde = pmap_pde(pmap, va, &lvl);
if (pde != NULL && lvl == 2) {
l3 = pmap_l2_to_l3(pde, va);
} else {
mpte = _pmap_alloc_l3(pmap, iommu_l2_pindex(va));
if (mpte == NULL) {
CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
rv = KERN_RESOURCE_SHORTAGE;
goto out;
}
/*
* Ensure newly created l1, l2 are visible to GPU.
* l0 is already visible by similar call in panfrost driver.
* The cache entry for l3 handled below.
*/
l1p = pmap_l1(pmap, va);
l2p = pmap_l2(pmap, va);
cpu_dcache_wb_range((vm_offset_t)l1p, sizeof(pd_entry_t));
cpu_dcache_wb_range((vm_offset_t)l2p, sizeof(pd_entry_t));
goto retry;
}
orig_l3 = pmap_load(l3);
KASSERT(!pmap_l3_valid(orig_l3), ("l3 is valid"));
/* New mapping */
pmap_store(l3, new_l3);
cpu_dcache_wb_range((vm_offset_t)l3, sizeof(pt_entry_t));
pmap_resident_count_inc(pmap, 1);
dsb(ishst);
rv = KERN_SUCCESS;
out:
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Remove a single Mali GPU entry.
*/
int
pmap_gpu_remove(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *pde;
pt_entry_t *pte;
int lvl;
int rc;
KASSERT((va & PAGE_MASK) == 0, ("va is misaligned"));
KASSERT(pmap != kernel_pmap, ("kernel pmap used for GPU"));
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, va, &lvl);
if (pde == NULL || lvl != 2) {
rc = KERN_FAILURE;
goto out;
}
pte = pmap_l2_to_l3(pde, va);
pmap_resident_count_dec(pmap, 1);
pmap_clear(pte);
cpu_dcache_wb_range((vm_offset_t)pte, sizeof(pt_entry_t));
rc = KERN_SUCCESS;
out:
PMAP_UNLOCK(pmap);
return (rc);
}
/*
* Add a single SMMU entry. This function does not sleep.
*/
int
pmap_smmu_enter(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
vm_prot_t prot, u_int flags)
{
pd_entry_t *pde;
pt_entry_t new_l3, orig_l3;
pt_entry_t *l3;
vm_page_t mpte;
int lvl;
int rv;
KASSERT(va < VM_MAXUSER_ADDRESS, ("wrong address space"));
va = trunc_page(va);
new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT |
ATTR_S1_IDX(VM_MEMATTR_DEVICE) | IOMMU_L3_PAGE);
if ((prot & VM_PROT_WRITE) == 0)
new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
new_l3 |= ATTR_S1_XN; /* Execute never. */
new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER);
new_l3 |= ATTR_S1_nG; /* Non global. */
CTR2(KTR_PMAP, "pmap_senter: %.16lx -> %.16lx", va, pa);
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
retry:
pde = pmap_pde(pmap, va, &lvl);
if (pde != NULL && lvl == 2) {
l3 = pmap_l2_to_l3(pde, va);
} else {
mpte = _pmap_alloc_l3(pmap, iommu_l2_pindex(va));
if (mpte == NULL) {
CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
rv = KERN_RESOURCE_SHORTAGE;
goto out;
}
goto retry;
}
orig_l3 = pmap_load(l3);
KASSERT(!pmap_l3_valid(orig_l3), ("l3 is valid"));
/* New mapping */
pmap_store(l3, new_l3);
pmap_resident_count_inc(pmap, 1);
dsb(ishst);
rv = KERN_SUCCESS;
out:
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Remove a single SMMU entry.
*/
int
pmap_smmu_remove(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *pte;
int lvl;
int rc;
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, va, &lvl);
KASSERT(lvl == 3,
("Invalid SMMU pagetable level: %d != 3", lvl));
if (pte != NULL) {
pmap_resident_count_dec(pmap, 1);
pmap_clear(pte);
rc = KERN_SUCCESS;
} else
rc = KERN_FAILURE;
PMAP_UNLOCK(pmap);
return (rc);
}
/*
* Remove all the allocated L1, L2 pages from SMMU pmap.
* All the L3 entires must be cleared in advance, otherwise
* this function panics.
*/
void
iommu_pmap_remove_pages(pmap_t pmap)
{
pd_entry_t l0e, *l1, l1e, *l2, l2e;
pt_entry_t *l3, l3e;
vm_page_t m, m0, m1;
vm_offset_t sva;
vm_paddr_t pa;
vm_paddr_t pa0;
vm_paddr_t pa1;
int i, j, k, l;
PMAP_LOCK(pmap);
for (sva = VM_MINUSER_ADDRESS, i = iommu_l0_index(sva);
(i < Ln_ENTRIES && sva < VM_MAXUSER_ADDRESS); i++) {
l0e = pmap->pm_l0[i];
if ((l0e & ATTR_DESCR_VALID) == 0) {
sva += IOMMU_L0_SIZE;
continue;
}
pa0 = l0e & ~ATTR_MASK;
m0 = PHYS_TO_VM_PAGE(pa0);
l1 = (pd_entry_t *)PHYS_TO_DMAP(pa0);
for (j = iommu_l1_index(sva); j < Ln_ENTRIES; j++) {
l1e = l1[j];
if ((l1e & ATTR_DESCR_VALID) == 0) {
sva += IOMMU_L1_SIZE;
continue;
}
if ((l1e & ATTR_DESCR_MASK) == IOMMU_L1_BLOCK) {
sva += IOMMU_L1_SIZE;
continue;
}
pa1 = l1e & ~ATTR_MASK;
m1 = PHYS_TO_VM_PAGE(pa1);
l2 = (pd_entry_t *)PHYS_TO_DMAP(pa1);
for (k = iommu_l2_index(sva); k < Ln_ENTRIES; k++) {
l2e = l2[k];
if ((l2e & ATTR_DESCR_VALID) == 0) {
sva += IOMMU_L2_SIZE;
continue;
}
pa = l2e & ~ATTR_MASK;
m = PHYS_TO_VM_PAGE(pa);
l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
for (l = iommu_l3_index(sva); l < Ln_ENTRIES;
l++, sva += IOMMU_L3_SIZE) {
l3e = l3[l];
if ((l3e & ATTR_DESCR_VALID) == 0)
continue;
panic("%s: l3e found for va %jx\n",
__func__, sva);
}
vm_page_unwire_noq(m1);
vm_page_unwire_noq(m);
pmap_resident_count_dec(pmap, 1);
vm_page_free(m);
pmap_clear(&l2[k]);
}
vm_page_unwire_noq(m0);
pmap_resident_count_dec(pmap, 1);
vm_page_free(m1);
pmap_clear(&l1[j]);
}
pmap_resident_count_dec(pmap, 1);
vm_page_free(m0);
pmap_clear(&pmap->pm_l0[i]);
}
KASSERT(pmap->pm_stats.resident_count == 0,
("Invalid resident count %jd", pmap->pm_stats.resident_count));
PMAP_UNLOCK(pmap);
}