/*- * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Semihalf under * the sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* PCIe external MAC root complex driver (PEM) for Cavium Thunder SOC */ #include __FBSDID("$FreeBSD$"); #include "opt_platform.h" #include #include #include #include #include #include #include #include #ifdef FDT #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "pcib_if.h" #define THUNDER_PEM_DEVICE_ID 0xa020 #define THUNDER_PEM_VENDOR_ID 0x177d /* ThunderX specific defines */ #define THUNDER_PEMn_REG_BASE(unit) (0x87e0c0000000UL | ((unit) << 24)) #define PCIERC_CFG002 0x08 #define PCIERC_CFG006 0x18 #define PCIERC_CFG032 0x80 #define PCIERC_CFG006_SEC_BUS(reg) (((reg) >> 8) & 0xFF) #define PEM_CFG_RD_REG_ALIGN(reg) ((reg) & ~0x3) #define PEM_CFG_RD_REG_DATA(val) (((val) >> 32) & 0xFFFFFFFF) #define PEM_CFG_RD 0x30 #define PEM_CFG_LINK_MASK 0x3 #define PEM_CFG_LINK_RDY 0x3 #define PEM_CFG_SLIX_TO_REG(slix) ((slix) << 4) #define SBNUM_OFFSET 0x8 #define SBNUM_MASK 0xFF #define PEM_ON_REG 0x420 #define PEM_CTL_STATUS 0x0 #define PEM_LINK_ENABLE (1 << 4) #define PEM_LINK_DLLA (1 << 29) #define PEM_LINK_LT (1 << 27) #define PEM_BUS_SHIFT (24) #define PEM_SLOT_SHIFT (19) #define PEM_FUNC_SHIFT (16) #define SLIX_S2M_REGX_ACC 0x874001000000UL #define SLIX_S2M_REGX_ACC_SIZE 0x1000 #define SLIX_S2M_REGX_ACC_SPACING 0x001000000000UL #define SLI_BASE 0x880000000000UL #define SLI_WINDOW_SPACING 0x004000000000UL #define SLI_PCI_OFFSET 0x001000000000UL #define SLI_NODE_SHIFT (44) #define SLI_NODE_MASK (3) #define SLI_GROUP_SHIFT (40) #define SLI_ID_SHIFT (24) #define SLI_ID_MASK (7) #define SLI_PEMS_PER_GROUP (3) #define SLI_GROUPS_PER_NODE (2) #define SLI_PEMS_PER_NODE (SLI_PEMS_PER_GROUP * SLI_GROUPS_PER_NODE) #define SLI_ACC_REG_CNT (256) /* * Each PEM device creates its own bus with * own address translation, so we can adjust bus addresses * as we want. To support 32-bit cards let's assume * PCI window assignment looks as following: * * 0x00000000 - 0x000FFFFF IO * 0x00100000 - 0xFFFFFFFF Memory */ #define PCI_IO_BASE 0x00000000UL #define PCI_IO_SIZE 0x00100000UL #define PCI_MEMORY_BASE PCI_IO_SIZE #define PCI_MEMORY_SIZE 0xFFF00000UL #define RID_PEM_SPACE 1 static int thunder_pem_activate_resource(device_t, device_t, int, int, struct resource *); static int thunder_pem_adjust_resource(device_t, device_t, int, struct resource *, rman_res_t, rman_res_t); static struct resource * thunder_pem_alloc_resource(device_t, device_t, int, int *, rman_res_t, rman_res_t, rman_res_t, u_int); static int thunder_pem_alloc_msi(device_t, device_t, int, int, int *); static int thunder_pem_release_msi(device_t, device_t, int, int *); static int thunder_pem_alloc_msix(device_t, device_t, int *); static int thunder_pem_release_msix(device_t, device_t, int); static int thunder_pem_map_msi(device_t, device_t, int, uint64_t *, uint32_t *); static int thunder_pem_get_id(device_t, device_t, enum pci_id_type, uintptr_t *); static int thunder_pem_attach(device_t); static int thunder_pem_deactivate_resource(device_t, device_t, int, int, struct resource *); static int thunder_pem_detach(device_t); static uint64_t thunder_pem_config_reg_read(struct thunder_pem_softc *, int); static int thunder_pem_link_init(struct thunder_pem_softc *); static int thunder_pem_maxslots(device_t); static int thunder_pem_probe(device_t); static uint32_t thunder_pem_read_config(device_t, u_int, u_int, u_int, u_int, int); static int thunder_pem_read_ivar(device_t, device_t, int, uintptr_t *); static void thunder_pem_release_all(device_t); static int thunder_pem_release_resource(device_t, device_t, int, int, struct resource *); static struct rman * thunder_pem_rman(struct thunder_pem_softc *, int); static void thunder_pem_slix_s2m_regx_acc_modify(struct thunder_pem_softc *, int, int); static void thunder_pem_write_config(device_t, u_int, u_int, u_int, u_int, uint32_t, int); static int thunder_pem_write_ivar(device_t, device_t, int, uintptr_t); /* Global handlers for SLI interface */ static bus_space_handle_t sli0_s2m_regx_base = 0; static bus_space_handle_t sli1_s2m_regx_base = 0; static device_method_t thunder_pem_methods[] = { /* Device interface */ DEVMETHOD(device_probe, thunder_pem_probe), DEVMETHOD(device_attach, thunder_pem_attach), DEVMETHOD(device_detach, thunder_pem_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, thunder_pem_read_ivar), DEVMETHOD(bus_write_ivar, thunder_pem_write_ivar), DEVMETHOD(bus_alloc_resource, thunder_pem_alloc_resource), DEVMETHOD(bus_release_resource, thunder_pem_release_resource), DEVMETHOD(bus_adjust_resource, thunder_pem_adjust_resource), DEVMETHOD(bus_activate_resource, thunder_pem_activate_resource), DEVMETHOD(bus_deactivate_resource, thunder_pem_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, thunder_pem_maxslots), DEVMETHOD(pcib_read_config, thunder_pem_read_config), DEVMETHOD(pcib_write_config, thunder_pem_write_config), DEVMETHOD(pcib_alloc_msix, thunder_pem_alloc_msix), DEVMETHOD(pcib_release_msix, thunder_pem_release_msix), DEVMETHOD(pcib_alloc_msi, thunder_pem_alloc_msi), DEVMETHOD(pcib_release_msi, thunder_pem_release_msi), DEVMETHOD(pcib_map_msi, thunder_pem_map_msi), DEVMETHOD(pcib_get_id, thunder_pem_get_id), DEVMETHOD_END }; DEFINE_CLASS_0(pcib, thunder_pem_driver, thunder_pem_methods, sizeof(struct thunder_pem_softc)); static devclass_t thunder_pem_devclass; extern struct bus_space memmap_bus; DRIVER_MODULE(thunder_pem, pci, thunder_pem_driver, thunder_pem_devclass, 0, 0); MODULE_DEPEND(thunder_pem, pci, 1, 1, 1); static int thunder_pem_maxslots(device_t dev) { #if 0 /* max slots per bus acc. to standard */ return (PCI_SLOTMAX); #else /* * ARM64TODO Workaround - otherwise an em(4) interface appears to be * present on every PCI function on the bus to which it is connected */ return (0); #endif } static int thunder_pem_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct thunder_pem_softc *sc; int secondary_bus = 0; sc = device_get_softc(dev); if (index == PCIB_IVAR_BUS) { secondary_bus = thunder_pem_config_reg_read(sc, PCIERC_CFG006); *result = PCIERC_CFG006_SEC_BUS(secondary_bus); return (0); } if (index == PCIB_IVAR_DOMAIN) { *result = sc->id; return (0); } return (ENOENT); } static int thunder_pem_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { return (ENOENT); } static int thunder_pem_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { int err; bus_addr_t paddr; bus_size_t psize; bus_space_handle_t vaddr; struct thunder_pem_softc *sc; if ((err = rman_activate_resource(r)) != 0) return (err); sc = device_get_softc(dev); /* * If this is a memory resource, map it into the kernel. */ if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { paddr = (bus_addr_t)rman_get_start(r); psize = (bus_size_t)rman_get_size(r); paddr = range_addr_pci_to_phys(sc->ranges, paddr); err = bus_space_map(&memmap_bus, paddr, psize, 0, &vaddr); if (err != 0) { rman_deactivate_resource(r); return (err); } rman_set_bustag(r, &memmap_bus); rman_set_virtual(r, (void *)vaddr); rman_set_bushandle(r, vaddr); } return (0); } /* * This function is an exact copy of nexus_deactivate_resource() * Keep it up-to-date with all changes in nexus. To be removed * once bus-mapping interface is developed. */ static int thunder_pem_deactivate_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { bus_size_t psize; bus_space_handle_t vaddr; psize = (bus_size_t)rman_get_size(r); vaddr = rman_get_bushandle(r); if (vaddr != 0) { bus_space_unmap(&memmap_bus, vaddr, psize); rman_set_virtual(r, NULL); rman_set_bushandle(r, 0); } return (rman_deactivate_resource(r)); } static int thunder_pem_adjust_resource(device_t dev, device_t child, int type, struct resource *res, rman_res_t start, rman_res_t end) { struct thunder_pem_softc *sc; struct rman *rm; sc = device_get_softc(dev); rm = thunder_pem_rman(sc, type); if (rm == NULL) return (bus_generic_adjust_resource(dev, child, type, res, start, end)); if (!rman_is_region_manager(res, rm)) /* * This means a child device has a memory or I/O * resource not from you which shouldn't happen. */ return (EINVAL); return (rman_adjust_resource(res, start, end)); } static int thunder_pem_alloc_msi(device_t pci, device_t child, int count, int maxcount, int *irqs) { device_t bus; bus = device_get_parent(pci); return (PCIB_ALLOC_MSI(device_get_parent(bus), child, count, maxcount, irqs)); } static int thunder_pem_release_msi(device_t pci, device_t child, int count, int *irqs) { device_t bus; bus = device_get_parent(pci); return (PCIB_RELEASE_MSI(device_get_parent(bus), child, count, irqs)); } static int thunder_pem_alloc_msix(device_t pci, device_t child, int *irq) { device_t bus; bus = device_get_parent(pci); return (PCIB_ALLOC_MSIX(device_get_parent(bus), child, irq)); } static int thunder_pem_release_msix(device_t pci, device_t child, int irq) { device_t bus; bus = device_get_parent(pci); return (PCIB_RELEASE_MSIX(device_get_parent(bus), child, irq)); } static int thunder_pem_map_msi(device_t pci, device_t child, int irq, uint64_t *addr, uint32_t *data) { device_t bus; bus = device_get_parent(pci); return (PCIB_MAP_MSI(device_get_parent(bus), child, irq, addr, data)); } static int thunder_pem_get_id(device_t pci, device_t child, enum pci_id_type type, uintptr_t *id) { int bsf; int pem; if (type != PCI_ID_MSI) return (pcib_get_id(pci, child, type, id)); bsf = pci_get_rid(child); /* PEM (PCIe MAC/root complex) number is equal to domain */ pem = pci_get_domain(child); /* * Set appropriate device ID (passed by the HW along with * the transaction to memory) for different root complex * numbers using hard-coded domain portion for each group. */ if (pem < 3) *id = (0x1 << PCI_RID_DOMAIN_SHIFT) | bsf; else if (pem < 6) *id = (0x3 << PCI_RID_DOMAIN_SHIFT) | bsf; else if (pem < 9) *id = (0x9 << PCI_RID_DOMAIN_SHIFT) | bsf; else if (pem < 12) *id = (0xB << PCI_RID_DOMAIN_SHIFT) | bsf; else return (ENXIO); return (0); } static int thunder_pem_identify(device_t dev) { struct thunder_pem_softc *sc; rman_res_t start; sc = device_get_softc(dev); start = rman_get_start(sc->reg); /* Calculate PEM designations from its address */ sc->node = (start >> SLI_NODE_SHIFT) & SLI_NODE_MASK; sc->id = ((start >> SLI_ID_SHIFT) & SLI_ID_MASK) + (SLI_PEMS_PER_NODE * sc->node); sc->sli = sc->id % SLI_PEMS_PER_GROUP; sc->sli_group = (sc->id / SLI_PEMS_PER_GROUP) % SLI_GROUPS_PER_NODE; sc->sli_window_base = SLI_BASE | (((uint64_t)sc->node) << SLI_NODE_SHIFT) | ((uint64_t)sc->sli_group << SLI_GROUP_SHIFT); sc->sli_window_base += SLI_WINDOW_SPACING * sc->sli; return (0); } static void thunder_pem_slix_s2m_regx_acc_modify(struct thunder_pem_softc *sc, int sli_group, int slix) { uint64_t regval; bus_space_handle_t handle = 0; KASSERT(slix >= 0 && slix <= SLI_ACC_REG_CNT, ("Invalid SLI index")); if (sli_group == 0) handle = sli0_s2m_regx_base; else if (sli_group == 1) handle = sli1_s2m_regx_base; else device_printf(sc->dev, "SLI group is not correct\n"); if (handle) { /* Clear lower 32-bits of the SLIx register */ regval = bus_space_read_8(sc->reg_bst, handle, PEM_CFG_SLIX_TO_REG(slix)); regval &= ~(0xFFFFFFFFUL); bus_space_write_8(sc->reg_bst, handle, PEM_CFG_SLIX_TO_REG(slix), regval); } } static int thunder_pem_link_init(struct thunder_pem_softc *sc) { uint64_t regval; /* check whether PEM is safe to access. */ regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_ON_REG); if ((regval & PEM_CFG_LINK_MASK) != PEM_CFG_LINK_RDY) { device_printf(sc->dev, "PEM%d is not ON\n", sc->id); return (ENXIO); } regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS); regval |= PEM_LINK_ENABLE; bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS, regval); /* Wait 1ms as per Cavium specification */ DELAY(1000); regval = thunder_pem_config_reg_read(sc, PCIERC_CFG032); if (((regval & PEM_LINK_DLLA) == 0) || ((regval & PEM_LINK_LT) != 0)) { device_printf(sc->dev, "PCIe RC: Port %d Link Timeout\n", sc->id); return (ENXIO); } return (0); } static int thunder_pem_init(struct thunder_pem_softc *sc) { int i, retval = 0; retval = thunder_pem_link_init(sc); if (retval) { device_printf(sc->dev, "%s failed\n", __func__); return retval; } /* To support 32-bit PCIe devices, set S2M_REGx_ACC[BA]=0x0 */ for (i = 0; i < SLI_ACC_REG_CNT; i++) { thunder_pem_slix_s2m_regx_acc_modify(sc, sc->sli_group, i); } return (retval); } static uint64_t thunder_pem_config_reg_read(struct thunder_pem_softc *sc, int reg) { uint64_t data; /* Write to ADDR register */ bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD, PEM_CFG_RD_REG_ALIGN(reg)); bus_space_barrier(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD, 8, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); /* Read from DATA register */ data = PEM_CFG_RD_REG_DATA(bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD)); return (data); } static uint32_t thunder_pem_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { uint64_t offset; uint32_t data; struct thunder_pem_softc *sc; bus_space_tag_t t; bus_space_handle_t h; if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) || (reg > PCIE_REGMAX)) return (~0U); sc = device_get_softc(dev); /* Calculate offset */ offset = (bus << PEM_BUS_SHIFT) | (slot << PEM_SLOT_SHIFT) | (func << PEM_FUNC_SHIFT); t = sc->reg_bst; h = sc->pem_sli_base; bus_space_map(sc->reg_bst, sc->sli_window_base + offset, PCIE_REGMAX, 0, &h); switch (bytes) { case 1: data = bus_space_read_1(t, h, reg); break; case 2: data = le16toh(bus_space_read_2(t, h, reg)); break; case 4: data = le32toh(bus_space_read_4(t, h, reg)); break; default: data = ~0U; break; } bus_space_unmap(sc->reg_bst, h, PCIE_REGMAX); return (data); } static void thunder_pem_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes) { uint64_t offset; struct thunder_pem_softc *sc; bus_space_tag_t t; bus_space_handle_t h; if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) || (reg > PCIE_REGMAX)) return; sc = device_get_softc(dev); /* Calculate offset */ offset = (bus << PEM_BUS_SHIFT) | (slot << PEM_SLOT_SHIFT) | (func << PEM_FUNC_SHIFT); t = sc->reg_bst; h = sc->pem_sli_base; bus_space_map(sc->reg_bst, sc->sli_window_base + offset, PCIE_REGMAX, 0, &h); switch (bytes) { case 1: bus_space_write_1(t, h, reg, val); break; case 2: bus_space_write_2(t, h, reg, htole16(val)); break; case 4: bus_space_write_4(t, h, reg, htole32(val)); break; default: break; } bus_space_unmap(sc->reg_bst, h, PCIE_REGMAX); } static struct resource * thunder_pem_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct thunder_pem_softc *sc = device_get_softc(dev); struct rman *rm = NULL; struct resource *res; device_t parent_dev; rm = thunder_pem_rman(sc, type); if (rm == NULL) { /* Find parent device. On ThunderX we know an exact path. */ parent_dev = device_get_parent(device_get_parent(dev)); return (BUS_ALLOC_RESOURCE(parent_dev, dev, type, rid, start, end, count, flags)); } if (!RMAN_IS_DEFAULT_RANGE(start, end)) { /* * We might get PHYS addresses here inherited from EFI. * Convert to PCI if necessary. */ if (range_addr_is_phys(sc->ranges, start, count)) { start = range_addr_phys_to_pci(sc->ranges, start); end = start + count - 1; } } if (bootverbose) { device_printf(dev, "thunder_pem_alloc_resource: start=%#lx, end=%#lx, count=%#lx\n", start, end, count); } res = rman_reserve_resource(rm, start, end, count, flags, child); if (res == NULL) goto fail; rman_set_rid(res, *rid); if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res)) { rman_release_resource(res); goto fail; } return (res); fail: if (bootverbose) { device_printf(dev, "%s FAIL: type=%d, rid=%d, " "start=%016lx, end=%016lx, count=%016lx, flags=%x\n", __func__, type, *rid, start, end, count, flags); } return (NULL); } static int thunder_pem_release_resource(device_t dev, device_t child, int type, int rid, struct resource *res) { device_t parent_dev; /* Find parent device. On ThunderX we know an exact path. */ parent_dev = device_get_parent(device_get_parent(dev)); if ((type != SYS_RES_MEMORY) && (type != SYS_RES_IOPORT)) return (BUS_RELEASE_RESOURCE(parent_dev, child, type, rid, res)); return (rman_release_resource(res)); } static struct rman * thunder_pem_rman(struct thunder_pem_softc *sc, int type) { switch (type) { case SYS_RES_IOPORT: return (&sc->io_rman); case SYS_RES_MEMORY: return (&sc->mem_rman); default: break; } return (NULL); } static int thunder_pem_probe(device_t dev) { uint16_t pci_vendor_id; uint16_t pci_device_id; pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); if ((pci_vendor_id == THUNDER_PEM_VENDOR_ID) && (pci_device_id == THUNDER_PEM_DEVICE_ID)) { device_set_desc_copy(dev, THUNDER_PEM_DESC); return (0); } return (ENXIO); } static int thunder_pem_attach(device_t dev) { devclass_t pci_class; device_t parent; struct thunder_pem_softc *sc; int error; int rid; int tuple; uint64_t base, size; struct rman *rman; sc = device_get_softc(dev); sc->dev = dev; /* Allocate memory for resource */ pci_class = devclass_find("pci"); parent = device_get_parent(dev); if (device_get_devclass(parent) == pci_class) rid = PCIR_BAR(0); else rid = RID_PEM_SPACE; sc->reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->reg == NULL) { device_printf(dev, "Failed to allocate resource\n"); return (ENXIO); } sc->reg_bst = rman_get_bustag(sc->reg); sc->reg_bsh = rman_get_bushandle(sc->reg); /* Map SLI, do it only once */ if (!sli0_s2m_regx_base) { bus_space_map(sc->reg_bst, SLIX_S2M_REGX_ACC, SLIX_S2M_REGX_ACC_SIZE, 0, &sli0_s2m_regx_base); } if (!sli1_s2m_regx_base) { bus_space_map(sc->reg_bst, SLIX_S2M_REGX_ACC + SLIX_S2M_REGX_ACC_SPACING, SLIX_S2M_REGX_ACC_SIZE, 0, &sli1_s2m_regx_base); } if ((sli0_s2m_regx_base == 0) || (sli1_s2m_regx_base == 0)) { device_printf(dev, "bus_space_map failed to map slix_s2m_regx_base\n"); goto fail; } /* Identify PEM */ if (thunder_pem_identify(dev) != 0) goto fail; /* Initialize rman and allocate regions */ sc->mem_rman.rm_type = RMAN_ARRAY; sc->mem_rman.rm_descr = "PEM PCIe Memory"; error = rman_init(&sc->mem_rman); if (error != 0) { device_printf(dev, "memory rman_init() failed. error = %d\n", error); goto fail; } sc->io_rman.rm_type = RMAN_ARRAY; sc->io_rman.rm_descr = "PEM PCIe IO"; error = rman_init(&sc->io_rman); if (error != 0) { device_printf(dev, "IO rman_init() failed. error = %d\n", error); goto fail_mem; } /* * We ignore the values that may have been provided in FDT * and configure ranges according to the below formula * for all types of devices. This is because some DTBs provided * by EFI do not have proper ranges property or don't have them * at all. */ /* Fill memory window */ sc->ranges[0].pci_base = PCI_MEMORY_BASE; sc->ranges[0].size = PCI_MEMORY_SIZE; sc->ranges[0].phys_base = sc->sli_window_base + SLI_PCI_OFFSET + sc->ranges[0].pci_base; sc->ranges[0].flags = SYS_RES_MEMORY; /* Fill IO window */ sc->ranges[1].pci_base = PCI_IO_BASE; sc->ranges[1].size = PCI_IO_SIZE; sc->ranges[1].phys_base = sc->sli_window_base + SLI_PCI_OFFSET + sc->ranges[1].pci_base; sc->ranges[1].flags = SYS_RES_IOPORT; for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) { base = sc->ranges[tuple].pci_base; size = sc->ranges[tuple].size; if (size == 0) continue; /* empty range element */ rman = thunder_pem_rman(sc, sc->ranges[tuple].flags); if (rman != NULL) error = rman_manage_region(rman, base, base + size - 1); else error = EINVAL; if (error) { device_printf(dev, "rman_manage_region() failed. error = %d\n", error); rman_fini(&sc->mem_rman); return (error); } if (bootverbose) { device_printf(dev, "\tPCI addr: 0x%jx, CPU addr: 0x%jx, Size: 0x%jx, Flags:0x%jx\n", sc->ranges[tuple].pci_base, sc->ranges[tuple].phys_base, sc->ranges[tuple].size, sc->ranges[tuple].flags); } } if (thunder_pem_init(sc)) { device_printf(dev, "Failure during PEM init\n"); goto fail_io; } device_add_child(dev, "pci", -1); return (bus_generic_attach(dev)); fail_io: rman_fini(&sc->io_rman); fail_mem: rman_fini(&sc->mem_rman); fail: bus_free_resource(dev, SYS_RES_MEMORY, sc->reg); return (ENXIO); } static void thunder_pem_release_all(device_t dev) { struct thunder_pem_softc *sc; sc = device_get_softc(dev); rman_fini(&sc->io_rman); rman_fini(&sc->mem_rman); if (sc->reg != NULL) bus_free_resource(dev, SYS_RES_MEMORY, sc->reg); } static int thunder_pem_detach(device_t dev) { thunder_pem_release_all(dev); return (0); }