/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 Rui Paulo * Copyright (c) 2017 Manuel Stuehn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DPRINTF(fmt, ...) do { \ printf("%s: ", __func__); \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(fmt, ...) #endif static d_open_t ti_pruss_irq_open; static d_read_t ti_pruss_irq_read; static d_poll_t ti_pruss_irq_poll; static device_probe_t ti_pruss_probe; static device_attach_t ti_pruss_attach; static device_detach_t ti_pruss_detach; static void ti_pruss_intr(void *); static d_open_t ti_pruss_open; static d_mmap_t ti_pruss_mmap; static void ti_pruss_irq_kqread_detach(struct knote *); static int ti_pruss_irq_kqevent(struct knote *, long); static d_kqfilter_t ti_pruss_irq_kqfilter; static void ti_pruss_privdtor(void *data); #define TI_PRUSS_PRU_IRQS 2 #define TI_PRUSS_HOST_IRQS 8 #define TI_PRUSS_IRQS (TI_PRUSS_HOST_IRQS+TI_PRUSS_PRU_IRQS) #define TI_PRUSS_EVENTS 64 #define NOT_SET_STR "NONE" #define TI_TS_ARRAY 16 struct ctl { size_t cnt; size_t idx; }; struct ts_ring_buf { struct ctl ctl; uint64_t ts[TI_TS_ARRAY]; }; struct ti_pruss_irqsc { struct mtx sc_mtx; struct cdev *sc_pdev; struct selinfo sc_selinfo; int8_t channel; int8_t last; int8_t event; bool enable; struct ts_ring_buf tstamps; }; static struct cdevsw ti_pruss_cdevirq = { .d_version = D_VERSION, .d_name = "ti_pruss_irq", .d_open = ti_pruss_irq_open, .d_read = ti_pruss_irq_read, .d_poll = ti_pruss_irq_poll, .d_kqfilter = ti_pruss_irq_kqfilter, }; struct ti_pruss_softc { struct mtx sc_mtx; struct resource *sc_mem_res; struct resource *sc_irq_res[TI_PRUSS_HOST_IRQS]; void *sc_intr[TI_PRUSS_HOST_IRQS]; struct ti_pruss_irqsc sc_irq_devs[TI_PRUSS_IRQS]; bus_space_tag_t sc_bt; bus_space_handle_t sc_bh; struct cdev *sc_pdev; struct selinfo sc_selinfo; bool sc_glob_irqen; }; static struct cdevsw ti_pruss_cdevsw = { .d_version = D_VERSION, .d_name = "ti_pruss", .d_open = ti_pruss_open, .d_mmap = ti_pruss_mmap, }; static device_method_t ti_pruss_methods[] = { DEVMETHOD(device_probe, ti_pruss_probe), DEVMETHOD(device_attach, ti_pruss_attach), DEVMETHOD(device_detach, ti_pruss_detach), DEVMETHOD_END }; static driver_t ti_pruss_driver = { "ti_pruss", ti_pruss_methods, sizeof(struct ti_pruss_softc) }; DRIVER_MODULE(ti_pruss, simplebus, ti_pruss_driver, 0, 0); MODULE_DEPEND(ti_pruss, ti_sysc, 1, 1, 1); MODULE_DEPEND(ti_pruss, ti_prm, 1, 1, 1); static struct resource_spec ti_pruss_irq_spec[] = { { SYS_RES_IRQ, 0, RF_ACTIVE }, { SYS_RES_IRQ, 1, RF_ACTIVE }, { SYS_RES_IRQ, 2, RF_ACTIVE }, { SYS_RES_IRQ, 3, RF_ACTIVE }, { SYS_RES_IRQ, 4, RF_ACTIVE }, { SYS_RES_IRQ, 5, RF_ACTIVE }, { SYS_RES_IRQ, 6, RF_ACTIVE }, { SYS_RES_IRQ, 7, RF_ACTIVE }, { -1, 0, 0 } }; CTASSERT(TI_PRUSS_HOST_IRQS == nitems(ti_pruss_irq_spec) - 1); static int ti_pruss_irq_open(struct cdev *dev, int oflags, int devtype, struct thread *td) { struct ctl* irqs; struct ti_pruss_irqsc *sc; sc = dev->si_drv1; irqs = malloc(sizeof(struct ctl), M_DEVBUF, M_WAITOK); irqs->cnt = sc->tstamps.ctl.cnt; irqs->idx = sc->tstamps.ctl.idx; return devfs_set_cdevpriv(irqs, ti_pruss_privdtor); } static void ti_pruss_privdtor(void *data) { free(data, M_DEVBUF); } static int ti_pruss_irq_poll(struct cdev *dev, int events, struct thread *td) { struct ctl* irqs; struct ti_pruss_irqsc *sc; sc = dev->si_drv1; devfs_get_cdevpriv((void**)&irqs); if (events & (POLLIN | POLLRDNORM)) { if (sc->tstamps.ctl.cnt != irqs->cnt) return events & (POLLIN | POLLRDNORM); else selrecord(td, &sc->sc_selinfo); } return 0; } static int ti_pruss_irq_read(struct cdev *cdev, struct uio *uio, int ioflag) { const size_t ts_len = sizeof(uint64_t); struct ti_pruss_irqsc* irq; struct ctl* priv; int error = 0; size_t idx; ssize_t level; irq = cdev->si_drv1; if (uio->uio_resid < ts_len) return (EINVAL); error = devfs_get_cdevpriv((void**)&priv); if (error) return (error); mtx_lock(&irq->sc_mtx); if (irq->tstamps.ctl.cnt - priv->cnt > TI_TS_ARRAY) { priv->cnt = irq->tstamps.ctl.cnt; priv->idx = irq->tstamps.ctl.idx; mtx_unlock(&irq->sc_mtx); return (ENXIO); } do { idx = priv->idx; level = irq->tstamps.ctl.idx - idx; if (level < 0) level += TI_TS_ARRAY; if (level == 0) { if (ioflag & O_NONBLOCK) { mtx_unlock(&irq->sc_mtx); return (EWOULDBLOCK); } error = msleep(irq, &irq->sc_mtx, PCATCH | PDROP, "pruirq", 0); if (error) return error; mtx_lock(&irq->sc_mtx); } }while(level == 0); mtx_unlock(&irq->sc_mtx); error = uiomove(&irq->tstamps.ts[idx], ts_len, uio); if (++idx == TI_TS_ARRAY) idx = 0; priv->idx = idx; atomic_add_32(&priv->cnt, 1); return (error); } static struct ti_pruss_irq_arg { int irq; struct ti_pruss_softc *sc; } ti_pruss_irq_args[TI_PRUSS_IRQS]; static __inline uint32_t ti_pruss_reg_read(struct ti_pruss_softc *sc, uint32_t reg) { return (bus_space_read_4(sc->sc_bt, sc->sc_bh, reg)); } static __inline void ti_pruss_reg_write(struct ti_pruss_softc *sc, uint32_t reg, uint32_t val) { bus_space_write_4(sc->sc_bt, sc->sc_bh, reg, val); } static __inline void ti_pruss_interrupts_clear(struct ti_pruss_softc *sc) { /* disable global interrupt */ ti_pruss_reg_write(sc, PRUSS_INTC_GER, 0 ); /* clear all events */ ti_pruss_reg_write(sc, PRUSS_INTC_SECR0, 0xFFFFFFFF); ti_pruss_reg_write(sc, PRUSS_INTC_SECR1, 0xFFFFFFFF); /* disable all host interrupts */ ti_pruss_reg_write(sc, PRUSS_INTC_HIER, 0); } static __inline int ti_pruss_interrupts_enable(struct ti_pruss_softc *sc, int8_t irq, bool enable) { if (enable && ((sc->sc_irq_devs[irq].channel == -1) || (sc->sc_irq_devs[irq].event== -1))) { device_printf( sc->sc_pdev->si_drv1, "Interrupt chain not fully configured, not possible to enable\n" ); return (EINVAL); } sc->sc_irq_devs[irq].enable = enable; if (sc->sc_irq_devs[irq].sc_pdev) { destroy_dev(sc->sc_irq_devs[irq].sc_pdev); sc->sc_irq_devs[irq].sc_pdev = NULL; } if (enable) { sc->sc_irq_devs[irq].sc_pdev = make_dev(&ti_pruss_cdevirq, 0, UID_ROOT, GID_WHEEL, 0600, "pruss%d.irq%d", device_get_unit(sc->sc_pdev->si_drv1), irq); sc->sc_irq_devs[irq].sc_pdev->si_drv1 = &sc->sc_irq_devs[irq]; sc->sc_irq_devs[irq].tstamps.ctl.idx = 0; } uint32_t reg = enable ? PRUSS_INTC_HIEISR : PRUSS_INTC_HIDISR; ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].channel); reg = enable ? PRUSS_INTC_EISR : PRUSS_INTC_EICR; ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].event ); return (0); } static __inline void ti_pruss_map_write(struct ti_pruss_softc *sc, uint32_t basereg, uint8_t index, uint8_t content) { const size_t regadr = basereg + index & ~0x03; const size_t bitpos = (index & 0x03) * 8; uint32_t rmw = ti_pruss_reg_read(sc, regadr); rmw = (rmw & ~( 0xF << bitpos)) | ( (content & 0xF) << bitpos); ti_pruss_reg_write(sc, regadr, rmw); } static int ti_pruss_event_map( SYSCTL_HANDLER_ARGS ) { struct ti_pruss_softc *sc; const int8_t irq = arg2; int err; char event[sizeof(NOT_SET_STR)]; sc = arg1; if(sc->sc_irq_devs[irq].event == -1) bcopy(NOT_SET_STR, event, sizeof(event)); else snprintf(event, sizeof(event), "%d", sc->sc_irq_devs[irq].event); err = sysctl_handle_string(oidp, event, sizeof(event), req); if(err != 0) return (err); if (req->newptr) { // write event if (strcmp(NOT_SET_STR, event) == 0) { ti_pruss_interrupts_enable(sc, irq, false); sc->sc_irq_devs[irq].event = -1; } else { if (sc->sc_irq_devs[irq].channel == -1) { device_printf( sc->sc_pdev->si_drv1, "corresponding channel not configured\n"); return (ENXIO); } const int8_t channelnr = sc->sc_irq_devs[irq].channel; const int8_t eventnr = strtol( event, NULL, 10 ); // TODO: check if strol is valid if (eventnr > TI_PRUSS_EVENTS || eventnr < 0) { device_printf( sc->sc_pdev->si_drv1, "Event number %d not valid (0 - %d)", channelnr, TI_PRUSS_EVENTS -1); return (EINVAL); } sc->sc_irq_devs[irq].channel = channelnr; sc->sc_irq_devs[irq].event = eventnr; // event[nr] <= channel ti_pruss_map_write(sc, PRUSS_INTC_CMR_BASE, eventnr, channelnr); } } return (err); } static int ti_pruss_channel_map(SYSCTL_HANDLER_ARGS) { struct ti_pruss_softc *sc; int err; char channel[sizeof(NOT_SET_STR)]; const int8_t irq = arg2; sc = arg1; if (sc->sc_irq_devs[irq].channel == -1) bcopy(NOT_SET_STR, channel, sizeof(channel)); else snprintf(channel, sizeof(channel), "%d", sc->sc_irq_devs[irq].channel); err = sysctl_handle_string(oidp, channel, sizeof(channel), req); if (err != 0) return (err); if (req->newptr) { // write event if (strcmp(NOT_SET_STR, channel) == 0) { ti_pruss_interrupts_enable(sc, irq, false); ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR, sc->sc_irq_devs[irq].channel); sc->sc_irq_devs[irq].channel = -1; } else { const int8_t channelnr = strtol(channel, NULL, 10); // TODO: check if strol is valid if (channelnr > TI_PRUSS_IRQS || channelnr < 0) { device_printf(sc->sc_pdev->si_drv1, "Channel number %d not valid (0 - %d)", channelnr, TI_PRUSS_IRQS-1); return (EINVAL); } sc->sc_irq_devs[irq].channel = channelnr; sc->sc_irq_devs[irq].last = -1; // channel[nr] <= irqnr ti_pruss_map_write(sc, PRUSS_INTC_HMR_BASE, irq, channelnr); } } return (err); } static int ti_pruss_interrupt_enable(SYSCTL_HANDLER_ARGS) { struct ti_pruss_softc *sc; int err; bool irqenable; const int8_t irq = arg2; sc = arg1; irqenable = sc->sc_irq_devs[arg2].enable; err = sysctl_handle_bool(oidp, &irqenable, arg2, req); if (err != 0) return (err); if (req->newptr) // write enable return ti_pruss_interrupts_enable(sc, irq, irqenable); return (err); } static int ti_pruss_global_interrupt_enable(SYSCTL_HANDLER_ARGS) { struct ti_pruss_softc *sc; int err; bool glob_irqen; sc = arg1; glob_irqen = sc->sc_glob_irqen; err = sysctl_handle_bool(oidp, &glob_irqen, arg2, req); if (err != 0) return (err); if (req->newptr) { sc->sc_glob_irqen = glob_irqen; ti_pruss_reg_write(sc, PRUSS_INTC_GER, glob_irqen); } return (err); } static int ti_pruss_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_is_compatible(dev, "ti,pruss-v1") || ofw_bus_is_compatible(dev, "ti,pruss-v2")) { device_set_desc(dev, "TI Programmable Realtime Unit Subsystem"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int ti_pruss_attach(device_t dev) { struct ti_pruss_softc *sc; int rid, i, err, ncells; phandle_t node; clk_t l3_gclk, pruss_ocp_gclk; phandle_t ti_prm_ref, *cells; device_t ti_prm_dev; rid = 0; sc = device_get_softc(dev); node = ofw_bus_get_node(device_get_parent(dev)); if (node <= 0) { device_printf(dev, "Cant get ofw node\n"); return (ENXIO); } /* * Follow activate pattern from sys/arm/ti/am335x/am335x_prcm.c * by Damjan Marion */ /* Set MODULEMODE to ENABLE(2) */ /* Wait for MODULEMODE to become ENABLE(2) */ if (ti_sysc_clock_enable(device_get_parent(dev)) != 0) { device_printf(dev, "Could not enable PRUSS clock\n"); return (ENXIO); } /* Set CLKTRCTRL to SW_WKUP(2) */ /* Wait for the 200 MHz OCP clock to become active */ /* Wait for the 200 MHz IEP clock to become active */ /* Wait for the 192 MHz UART clock to become active */ /* * At the moment there is no reference to CM_PER_PRU_ICSS_CLKSTCTRL@140 * in the devicetree. The register reset state are SW_WKUP(2) as default * so at the moment ignore setting this register. */ /* Select L3F as OCP clock */ /* Get the clock and set the parent */ err = clk_get_by_name(dev, "l3_gclk", &l3_gclk); if (err) { device_printf(dev, "Cant get l3_gclk err %d\n", err); return (ENXIO); } err = clk_get_by_name(dev, "pruss_ocp_gclk@530", &pruss_ocp_gclk); if (err) { device_printf(dev, "Cant get pruss_ocp_gclk@530 err %d\n", err); return (ENXIO); } err = clk_set_parent_by_clk(pruss_ocp_gclk, l3_gclk); if (err) { device_printf(dev, "Cant set pruss_ocp_gclk parent to l3_gclk err %d\n", err); return (ENXIO); } /* Clear the RESET bit */ /* Find the ti_prm */ /* #reset-cells should not been used in this way but... */ err = ofw_bus_parse_xref_list_alloc(node, "resets", "#reset-cells", 0, &ti_prm_ref, &ncells, &cells); OF_prop_free(cells); if (err) { device_printf(dev, "Cant fetch \"resets\" reference %x\n", err); return (ENXIO); } ti_prm_dev = OF_device_from_xref(ti_prm_ref); if (ti_prm_dev == NULL) { device_printf(dev, "Cant get device from \"resets\"\n"); return (ENXIO); } err = ti_prm_reset(ti_prm_dev); if (err) { device_printf(dev, "ti_prm_reset failed %d\n", err); return (ENXIO); } /* End of clock activation */ mtx_init(&sc->sc_mtx, "TI PRUSS", NULL, MTX_DEF); sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem_res == NULL) { device_printf(dev, "could not allocate memory resource\n"); return (ENXIO); } struct sysctl_ctx_list *clist = device_get_sysctl_ctx(dev); if (!clist) return (EINVAL); struct sysctl_oid *poid; poid = device_get_sysctl_tree( dev ); if (!poid) return (EINVAL); sc->sc_glob_irqen = false; struct sysctl_oid *irq_root = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(poid), OID_AUTO, "irq", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "PRUSS Host Interrupts"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(poid), OID_AUTO, "global_interrupt_enable", CTLFLAG_RW | CTLTYPE_U8 | CTLFLAG_NEEDGIANT, sc, 0, ti_pruss_global_interrupt_enable, "CU", "Global interrupt enable"); sc->sc_bt = rman_get_bustag(sc->sc_mem_res); sc->sc_bh = rman_get_bushandle(sc->sc_mem_res); if (bus_alloc_resources(dev, ti_pruss_irq_spec, sc->sc_irq_res) != 0) { device_printf(dev, "could not allocate interrupt resource\n"); ti_pruss_detach(dev); return (ENXIO); } ti_pruss_interrupts_clear(sc); for (i = 0; i < TI_PRUSS_IRQS; i++) { char name[8]; snprintf(name, sizeof(name), "%d", i); struct sysctl_oid *irq_nodes = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(irq_root), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "PRUSS Interrupts"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO, "channel", CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, sc, i, ti_pruss_channel_map, "A", "Channel attached to this irq"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO, "event", CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, sc, i, ti_pruss_event_map, "A", "Event attached to this irq"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO, "enable", CTLFLAG_RW | CTLTYPE_U8 | CTLFLAG_NEEDGIANT, sc, i, ti_pruss_interrupt_enable, "CU", "Enable/Disable interrupt"); sc->sc_irq_devs[i].event = -1; sc->sc_irq_devs[i].channel = -1; sc->sc_irq_devs[i].tstamps.ctl.idx = 0; if (i < TI_PRUSS_HOST_IRQS) { ti_pruss_irq_args[i].irq = i; ti_pruss_irq_args[i].sc = sc; if (bus_setup_intr(dev, sc->sc_irq_res[i], INTR_MPSAFE | INTR_TYPE_MISC, NULL, ti_pruss_intr, &ti_pruss_irq_args[i], &sc->sc_intr[i]) != 0) { device_printf(dev, "unable to setup the interrupt handler\n"); ti_pruss_detach(dev); return (ENXIO); } mtx_init(&sc->sc_irq_devs[i].sc_mtx, "TI PRUSS IRQ", NULL, MTX_DEF); knlist_init_mtx(&sc->sc_irq_devs[i].sc_selinfo.si_note, &sc->sc_irq_devs[i].sc_mtx); } } if (ti_pruss_reg_read(sc, PRUSS_AM33XX_INTC) == PRUSS_AM33XX_REV) device_printf(dev, "AM33xx PRU-ICSS\n"); sc->sc_pdev = make_dev(&ti_pruss_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "pruss%d", device_get_unit(dev)); sc->sc_pdev->si_drv1 = dev; /* Acc. to datasheet always write 1 to polarity registers */ ti_pruss_reg_write(sc, PRUSS_INTC_SIPR0, 0xFFFFFFFF); ti_pruss_reg_write(sc, PRUSS_INTC_SIPR1, 0xFFFFFFFF); /* Acc. to datasheet always write 0 to event type registers */ ti_pruss_reg_write(sc, PRUSS_INTC_SITR0, 0); ti_pruss_reg_write(sc, PRUSS_INTC_SITR1, 0); return (0); } static int ti_pruss_detach(device_t dev) { struct ti_pruss_softc *sc = device_get_softc(dev); ti_pruss_interrupts_clear(sc); for (int i = 0; i < TI_PRUSS_HOST_IRQS; i++) { ti_pruss_interrupts_enable( sc, i, false ); if (sc->sc_intr[i]) bus_teardown_intr(dev, sc->sc_irq_res[i], sc->sc_intr[i]); if (sc->sc_irq_res[i]) bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->sc_irq_res[i]), sc->sc_irq_res[i]); knlist_clear(&sc->sc_irq_devs[i].sc_selinfo.si_note, 0); mtx_lock(&sc->sc_irq_devs[i].sc_mtx); if (!knlist_empty(&sc->sc_irq_devs[i].sc_selinfo.si_note)) printf("IRQ %d KQueue not empty!\n", i ); mtx_unlock(&sc->sc_irq_devs[i].sc_mtx); knlist_destroy(&sc->sc_irq_devs[i].sc_selinfo.si_note); mtx_destroy(&sc->sc_irq_devs[i].sc_mtx); } mtx_destroy(&sc->sc_mtx); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem_res), sc->sc_mem_res); if (sc->sc_pdev) destroy_dev(sc->sc_pdev); return (0); } static void ti_pruss_intr(void *arg) { int val; struct ti_pruss_irq_arg *iap = arg; struct ti_pruss_softc *sc = iap->sc; /* * Interrupts pr1_host_intr[0:7] are mapped to * Host-2 to Host-9 of PRU-ICSS IRQ-controller. */ const int pru_int = iap->irq + TI_PRUSS_PRU_IRQS; const int pru_int_mask = (1 << pru_int); const int pru_channel = sc->sc_irq_devs[pru_int].channel; const int pru_event = sc->sc_irq_devs[pru_channel].event; val = ti_pruss_reg_read(sc, PRUSS_INTC_HIER); if (!(val & pru_int_mask)) return; ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR, pru_int); ti_pruss_reg_write(sc, PRUSS_INTC_SICR, pru_event); ti_pruss_reg_write(sc, PRUSS_INTC_HIEISR, pru_int); struct ti_pruss_irqsc* irq = &sc->sc_irq_devs[pru_channel]; size_t wr = irq->tstamps.ctl.idx; struct timespec ts; nanouptime(&ts); irq->tstamps.ts[wr] = ts.tv_sec * 1000000000 + ts.tv_nsec; if (++wr == TI_TS_ARRAY) wr = 0; atomic_add_32(&irq->tstamps.ctl.cnt, 1); irq->tstamps.ctl.idx = wr; KNOTE_UNLOCKED(&irq->sc_selinfo.si_note, pru_int); wakeup(irq); selwakeup(&irq->sc_selinfo); } static int ti_pruss_open(struct cdev *cdev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused) { return (0); } static int ti_pruss_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, vm_memattr_t *memattr) { device_t dev = cdev->si_drv1; struct ti_pruss_softc *sc = device_get_softc(dev); if (offset >= rman_get_size(sc->sc_mem_res)) return (ENOSPC); *paddr = rman_get_start(sc->sc_mem_res) + offset; *memattr = VM_MEMATTR_UNCACHEABLE; return (0); } static struct filterops ti_pruss_kq_read = { .f_isfd = 1, .f_detach = ti_pruss_irq_kqread_detach, .f_event = ti_pruss_irq_kqevent, }; static void ti_pruss_irq_kqread_detach(struct knote *kn) { struct ti_pruss_irqsc *sc = kn->kn_hook; knlist_remove(&sc->sc_selinfo.si_note, kn, 0); } static int ti_pruss_irq_kqevent(struct knote *kn, long hint) { struct ti_pruss_irqsc* irq_sc; int notify; irq_sc = kn->kn_hook; if (hint > 0) kn->kn_data = hint - 2; if (hint > 0 || irq_sc->last > 0) notify = 1; else notify = 0; irq_sc->last = hint; return (notify); } static int ti_pruss_irq_kqfilter(struct cdev *cdev, struct knote *kn) { struct ti_pruss_irqsc *sc = cdev->si_drv1; switch (kn->kn_filter) { case EVFILT_READ: kn->kn_hook = sc; kn->kn_fop = &ti_pruss_kq_read; knlist_add(&sc->sc_selinfo.si_note, kn, 0); break; default: return (EINVAL); } return (0); }